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Differences between potassium
and sodium incorporation in
foraminiferal shell carbonate
Laura Pacho1*, Lennart Jan De Nooijer1*, Wim Boer1

and Gert-Jan Reichart1,2

1Royal Netherlands Institute for Sea Research (NIOZ), Ocean Systems, Texel, Netherlands,
2Department of Geosciences, Utrecht University, Utrecht, Netherlands
The isotopic and elemental composition of the fossil shells of foraminifera are

often used for reconstructing past environments and climates. These so-called

proxy relations are based on the effect of environmental conditions (e.g.

seawater temperature, pH) on the isotopic ratio (e.g. d11B or d18O) or

partitioning of elements (commonly expressed as El/Ca or DEl) during

calcification. Whereas many studies focused on proxy-calibrations of divalent

cations, incorporation of monovalent cations are less well constrained. Here we

calibrate shell potassium content (K/Cacc) as a function of 1) seawater K+

concentration, 2) the ratio of potassium and calcium in seawater (K/Casw) and

3) temperature. Moreover, we analyze Na+ incorporation into the calcite as a

function of seawater K+ and Ca2+ concentrations. First, we cultured specimens of

the larger benthic foraminifer Amphistegina lessonii at four different seawater

[Ca2+] and constant [K+], resulting in a range of K/Casw. Secondly, we cultured

specimens of the same species at four different [Ca2+]sw and [K+]sw while keeping

the ratio between these two ions constant. Finally, we tested the effect of

temperature (from 18 to 28°C) on K-incorporation in this species. Measured K/

Cacc values are not notably affected by [Ca2+]sw, while seawater [K+] positively

influences potassium incorporation, resulting in a positive correlation between

seawater K/Ca values and K/Cacc. Although the [Na+] in the culture media was

constant throughout both experiments, incorporated Na responded positively to

decreasing [Ca2+]sw, resulting in a positive correlation between sea water Na/Ca

and Na/Cacc. The difference in the controls on K- and Na-incorporation suggests

that the (biological) control on these ions differs. Part of the observed variability in

element partitioning may be explained by differences in chemical speciation and

crystallographic coordination in the calcite lattice.
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1 Introduction

Our climate is rapidly changing as a consequence of

anthropogenic greenhouse gas emissions to the atmosphere.

Predicting the effects of increases in atmospheric CO2 levels are

greatly helped by reconstructions of past climate change. Such

reconstructions, in turn, can be derived from the chemical

composition of the shells of foraminifera: the boron isotopic

composition of their calcite reflects primarily seawater pH (Sanyal

et al., 1995), while for example the Mg/Ca can be used to

reconstruct past seawater temperature (Nürnberget al., 1996;

Holland et al., 2020). Incorporation of elements is usually also

affected by biological control during calcification. This is apparent

from the large deviation in El/Ca between species (Bentov and Erez,

2006; De Nooijer et al., 2023), within species (De Nooijer et al.,

2014; Sadekov et al., 2016) and even within single chamber walls

(Kunioka et al., 2006; Fehrenbacher et al., 2017; Levi et al., 2019).

These observations have prompted investigating the physiological

controls acting on ion uptake by foraminifera during calcification

(Erez, 2003; De Nooijer et al., 2014; Schmidt et al., 2016; Evans et al.,

2018; Tyszka et al., 2019). The active proton pumping (Bentov et al.,

2009; De Nooijer et al., 2009) and calcium uptake (Toyofuku et al.,

2017) may be the key in understanding divalent cation uptake and

incorporation and at the same time may affect reconstruction of

such elements’ concentrations.

Concentrations of the major ions in seawater (Na+, Mg2+, Ca2+,

K+) are not constant on geological time scales with residence times

of 1.1 to 100 Myrs (Horibe et al., 1974; Hardie, 1996; Lécuyer, 2016;

Zeebe and Tyrrell, 2018; Hauzer et al., 2021). The changes of [Ca2+]

sw result in changes in the incorporation of other elements into the

calcite of foraminifera, likely as a result of competition of these ions

with Ca2+ for a place in the crystal lattice (Dueñas-Bohórquez et al.,

2011; Mewes et al., 2015a; Hauzer et al., 2018). In theory, past

concentrations of calcium in seawater may be estimated from

foraminiferal El/Ca ratios of elements that have a higher

residence time than calcium (Na; (Hauzer et al., 2018). This,

however, requires calibration of El/Ca as a function of [Ca2+]. For

Mg2+ incorporation, a non-linear response to [Ca2+] is described

(Segev and Erez, 2006; Hauzer et al., 2018), It has been described

linear correlations for Li/Cacc versus Li/Casw, Sr/Cacc versus Sr/Casw
(Mewes et al., 2015b; Hauzer et al., 2018) and Na/Cacc versus Na/

Casw (Hauzer et al., 2018).

One of the major elements in seawater is K+ with an average

concentration of 380 mg/L (Wang et al., 2020) and a residence time

of ~12 Myrs (Culkin and Cox, 1966). The 2 main sources for

potassium in seawater are continental runoff and hydrothermal

fluxes, while K is removed from seawater by pore-water entrapment

or adsorption into clay minerals (Kronberg, 1985; Sun et al., 2016).

However, K+ incorporation into foraminiferal calcite and its

potential dependency on environmental parameters are at the

first steps with only a few publications. Culturing experiments

with benthic foraminifera suggested both foraminiferal K/Cacc
and Na/Cacc as a potential proxy for seawater [Ca2+] (Hauzer

et al., 2018; Nambiar et al., 2023). Such reconstructions are

important as they can reveal long-term changes in the oceans’
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major ion composition and thereby allow studying changes in the

rates of geological processes including weathering, seafloor

spreading and authigenic mineral formation (Horita et al., 2002;

Fantle and DePaolo, 2005).

Compared to other major elements in seawater, K+ has a large

ionic radius and can interfere with the structure of proteins,

requiring cells to regulate the concentration of this ion. Studies

looking at the impact of temperature showed no apparent effect on

K/Ca in a variety of organisms (Li et al., 2021) and suggest that K-

incorporation is correlated only to the concentration of K+ in the

medium during inorganic precipitation experiments (Ishikawa and

Ichikuni, 1984). Another very well-known monovalent ion in

seawater is Na+, with an average concentration of 10.6 g/L

(Duxbury et al., 2024). Na/Cacc has being studied as a proxy

before for changes in salinity in the past (Wit et al., 2013;

Geerken et al., 2018), although this was debated to be the case by

Hauzer et al. (2021). In addition, there is no effect of temperature on

Na-incorporation (Allen et al., 2016).

Incorporation of monovalent cations and whether these

elements are affected by the so-called vital effects of foraminifera

remain largely unknown. Incorporation of K+ by skeleton of corals

has been shown to be related to incorporation of Na+ and explains

the similarity in the way they are incorporated (Mitsuguchi and

Kawakami, 2012). Moreover, using the incorporation of divalent

cations such as Mg2+ and Sr2+ as proxies also requires known sea

water element to calcium ratios, which is on geological time scales

can rely on changes in seawater [Ca2+]. It is also vital to understand

the inter-species’ effect of environmental parameters on element

incorporation. Finally, it is necessary to quantify the interaction

between incorporated ions, for example Na+ and K+, to correct

fossil El/Ca for changes in the composition of the seawater’s major

ion inventory.

In this study, we report the results of a set of experiments to

calibrate K+ incorporation in the benthic foraminifer Amphistegina

lessonii as a function of [Ca2+], [K+]and [Ca2+] and temperature.

We set up controlled growth experiments to decouple the effect of

these variables on calcitic K/Ca, which are inherently correlated in

nature to deconvolve the underlying processes involved in K+ and

Na+ uptake. Hence, grown specimens were also used to analyze

their Na/Ca to test potential impacts of [Ca2+], [K+] and

temperature on sodium incorporation. Accordingly, we aim to

evaluate the potential of foraminiferal K/Ca and Na/Ca values as

a proxy for [Ca2+]sw and seawater chemistry in general.
2 Materials and methods

Three sets of controlled growth experiments were performed

(Table 1). In the first set only the seawater’s calcium concentration

(i.e. [Ca2+]sw) was varied. In the second set of experiments, we varied

both [K+]sw and [Ca2+]sw, while keeping K/Casw constant. These two

sets of experiments were done under identical, constant temperature,

salinity, and inorganic carbon chemistry. Finally, a set of experiments

was conducted with varying temperatures, while keeping element

concentrations, salinity and inorganic carbon chemistry constant.
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2.1 Culture set-up: [Ca2+]sw, and [K+]sw and
[Ca2+]sw

For the two experiments in which Ca- and/or K-concentrations

were varied, specimens of A. lessonii were isolated from coral rubble

retrieved from the tropical aquarium of Burgers’ Zoo [Arnhem, the

Netherlands; (Ernst et al., 2011)]. Approximately 100 living

specimens were selected and transferred to Petri dishes and

placed at 26°C with a light/dark cycle of 12h/12h to stimulate

asexual reproduction. Within 2 weeks, between 80 and 90 juveniles

were released from several adults that were incubated in pre-made

culture media.

For these two sets of experiments, the amounts of salts were

added following the recipes of (Kester, 1967) and (Wit et al., 2013),

however changing the concentrations of CaCl2 and KCl

(Supplementary Tables S4, S5). We mixed the artificial seawater

with filtered (< 2 mm) North Sea Water, using a ratio of 1 to 5 (20%

North Sea Water and 80% artificial seawater) and we measured and

controlled the salinity (within +/-0.1 salinity units) at the start and

at the end of the experiment using a conductometer.

The prepared media were divided over culture flasks (De

Goeyse et al., 2021) that were placed in a cabinet with a

controlled atmospheric pCO2 of 600 ppm and a light/dark cycle

of 12h/12h. Evaporation of the culture media was minimized by

saturating the atmosphere inside the cabinet with water vapor. The

culture media were subsampled for DIC and TA by filling replicate

5mL vials, pre-poisoned with HgCl2, and storage at 4°C until

analyses using a Continuous Segmented Flow Analyzer

(QuAAtro). For DIC the method was the same as the one used in

the temperature experiment (2.1.1) but for TA an adapted method

from (Sarazin et al., 1999) was used, changing the organic acid from

formic acid to Phthalic acid, keeping the same indicator Bromo

Phenol Blue which is blue at a pH of 3.7 and giving a green color at

more alkaline phases having an absorbance at 590nm

(Supplementary Tables S1, S2). A. lessonii was grown under these

pre-set conditions for six weeks. Almost all replicates had sufficient

material to have one or two analysis per replicate for K/Cacc using

ICP-MS (Supplementary Tables S1, S2). Every batch of foraminifera

measured contained between 10-25 individuals per condition. The

specimens that were selected for analysis were fully grown (i.e.

consisted of more than 15 chambers) to minimize the contribution

to the chemical signal by the first 1 or 2 chambers that were built

before the experimental incubation a correlation with weight of Ca

against K/Cacc was plotted to ensure there was no correlation and

hence no effect of growth rate when K and Na incorporated into the
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calcite (Supplementary Table S12, Supplementary Figure S2) The

mortality rate during the experiments was derived from the

temperature experiment and equaled 22% (i.e. 78% of the

incubated specimens were alive at the end of the experiment).
2.2 Culture set-up:
temperature experiment

The procedure for selecting specimens, feeding, and

subsampling of the culture media were identical to that in the

first two sets of experiments. Juveniles derived from asexual

reproduction events were divided into 4 equal groups, with at

least 20 juveniles per group, which were transferred to Petri

dishes with filtered (< 2 mm) North Sea water. At this stage, the

juveniles had not more than seven chambers. Three or four

replicates (depending on the number of juveniles available per

condition) were subsequently incubated at each of the four

different temperatures: 18°C, 22°C, 26°C, and 28°C (Table 1). All

incubations used a light/dark cycle of 12h/12h and a light intensity

of approximately 180 mmol photons m-2 s-1 for a total of eight

weeks. During the experiment, the foraminifera were observed

weekly to monitor how many of the incubated specimens were

alive. Every week, culture media were replaced and the foraminifera

were fed freeze-dried algae Dunialiella salina (Van Dijk et al.,

2017a) suspended in precleaned water (cleaned by rinsing the

Falcon tubes with Milli-Q water three times).

To monitor potential changes in inorganic carbon chemistry,

culture media were subsampled for dissolved inorganic carbon

(DIC) and total alkalinity (TA) (Supplementary Table S3). Vials

for these sub-samples were pre-poisoned with HgCl2 and stored at

4°C until they were analyzed. DIC samples were acidified, and the

CO2 was dialyzed to reduce the phenolphthalein indicator and

spectrophotometrically measured at 550nm using Continuous

Segmented Flow Analyzer (QuAAtro); TA was measured by using

an acid buffered solution of formic acid and was measured

spectrophotometrically (Sarazin et al., 1999) using a QuAAtro.

For the temperature experiments salinity of the culture media was

monitored using a refractometer and was always 36 +/- 0.5. Because

we used the same culture water for the different temperature

experiments, we do not expect offsets between these experiments.

Measured values for DIC and TA together with the temperature and

salinity were used to calculate pH, pCO2, [HCO3
-], [CO3

2-] and the

saturation state with respect to calcium (ΩCa) using PyCO2SYS

(Humphreys et al., 2022) (Supplementary Table S3).
TABLE 1 Three different culture experiments with A. lessonii.

Manipulated
parameter

Temperature °C
[Ca2+]sw

(mmol/kg)
[K+]sw

(mmol/kg)
K/Casw

(mol/mol)
Na/Casw * 10-3

(mol/mol)

[Ca2+]sw 24 (constant) 7.63 - 19.93 8.4 (constant) 0.44 - 1.01 23.8 - 58.52

[K+]sw, [Ca
2+]sw 24 (constant) 7.84 - 15.36 6.78 - 13.86 0.87 (constant) 33.25 - 67.47

Temperature °C 18, 22, 26 and 28 9.97 (constant) 9.72 (constant) 0.95 (constant) 26 (constant)
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2.3 Element/Ca ratios

2.3.1 Element/Ca in seawater
To analyze the El/Ca values of the culture media, we sub-

sampled the culture media from every replicate of the two

experiments (2.1.1). Samples were diluted 900 times in 2 steps

using a 30x dilution with 1MHNO3 sub boiled distilled quality acid,

with a standard element mix containing Sc, Rh and In added to it.

Rhodium was used as an internal standard to correct instrumental

drift during the analysis of the mass spectrometer. Samples were

measured on a sector field SF-ICPMS (ThermoFisher Scientific,

Element-2) at the Royal NIOZ. Resolutions for the measurements

were based on 3 slits, measuring at high resolution: 10000; medium

resolution: 4000; low resolution: 300. To fully separate the 39K-

signal from 38Ar1H, potassium was measured in high resolution.

This strategy was based on the ratio of the mass over the mass

difference: 39K has an atomic mass (M) of 38.96371 and 38Ar1H has

an M of: 38.97056. Dividing the M of potassium over the difference

in M, gives 5688 > 4000, which requires the high-resolution settings

of the detector (Supplementary Figure S1). Similarly, measuring in

medium resolution is also necessary for 32S due to interference from
16O16O, dividing the M of sulfur over the difference in M gives 479 >

300. 11B, 23Na, 25Mg, 43Ca, 88Sr and 103Rh were all measured in low

resolution (Tables 2, 3) and values El/Casw (Tables 4, 5).

2.3.2 Foraminiferal element uptake
2.3.2.1 Cleaning procedure for shells from the
culture experiments

Even though the foraminifera were all derived from culture

experiments in which no sediment was present, all samples were

carefully cleaned prior to element analyses. We followed a cleaning

procedure based on the protocol from Barker et al. (2003). The

foraminifera were not crushed, because the specimens do not

contain sedimentary infillings. Crushing or over-crushing can

lead to losses of carbonate material (Barker et al., 2003). First

organic matter was removed using a 1% H2O2 buffered with a

NH4OH solution, adding 250 µL to each 500 mL Eppendorf, which

was then transferred to a pre-warmed water-bath at 95°C for 10

minutes and ultrasonicated. Afterwards, the solution was removed

with a 0.1 ml pipette. This procedure was repeated twice and the

uncrushed foraminifera and buffered H2O2 solution probably gave a

neglectable loss of carbonate during this organic removal step. After

this step, the foraminifera were rinsed three times with ultrapure

water (Milli-Q, >18.2 MW) by filling the tube fully with ultrapure
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remaining contaminants at the surface of the foraminiferal shells

were finally removed by a leaching step with diluted HNO3 (250µL

0.001 M) and concurrent gentle ultrasonication for 30 seconds. The

HNO3 was removed, and samples were cleaned with ultrapure

water. The cleaned foraminifera were dissolved in 0.5 ml 0.1M

ultra-pure HNO3 (two times sub-boiled analytical grade acid in the

NIOZ clean lab). To enhance the dissolution, vials were placed in an

ultrasonic bath for 15 min and visually inspected to ensure

complete dissolution.

2.3.2.2 SF-ICPMS analyses

For all solutions with dissolved calcium carbonate, the [Ca2+]

were pre-determined in medium resolution with the SF-ICPMS

against a 5-point external calibration line using 45Sc as an internal

standard. Based on this data, samples were diluted to obtain a 100

ppm Ca matrix for each sample, minimizing mass bias effects

between samples and standards. To determine foraminiferal

element to calcium ratios with the SF-ICPMS, a ratio calibration

method (de Villiers et al., 2002) was employed using standards with

similar matrices as the samples. Samples (between 20-40 individuals

per condition) were divided to obtain a minimum weight of 300µg.

Samples were measured in triplicate using a low sample flow of

50ml/min (ESI, microFAST). To monitor accuracy, JCp-1

(Geological Survey of Japan, coral; Porites sp (Okai et al., 2004),

JCt-1 (giant clam), and NFHS-2NP (Boer et al., 2022) were included

in the analyses. NFHS-1(NIOZ Foraminifera House Standard;

(Mezger et al., 2016) was used as a drift standard. Accuracies are

listed in (Supplementary Table S6).
2.4 Statistical analysis

To analyze (potential) correlations between seawater

temperature/chemistry and foraminiferal calcite composition, a

bootstrap method was applied. This allows calculating confidence

intervals for potential correlations through iterative resampling of

the dataset generating distinct simulated sub-sets of samples (in

this case 1000 iterations were used). The results of these

regressions are only shown when p-values< 0.05. Confidence

intervals displayed in the figures were taken from the means and

standard deviations obtained from the bootstrap analysis.

Analyses were performed using a standard package available for

Python: scipy.stats (Virtanen et al., 2020).
TABLE 2 Elements in the seawater (mean +/- SD) after mixing with North Sea water and measured with SF-ICPMS in the [Ca2+]sw experiment. Low
resolution analysis (LR), Medium resolution analysis (MR), High resolution analysis (HR).

Ca (LR) K (HR) B (LR) Na (LR) Mg (LR) Sr (LR) S (MR)

(mmol/kg) (mmol/kg) (µmol/kg) (mmol/kg) (mmol/kg) (µmol/kg) (mmol/kg)

7.76 ± 0.13 7.98 ± 0.03 408.77 ± 2.5 447.22 ± 0.83 49.81 ± 0.04 94.79 ± 0.45 25.81 ± 0.27

15.33 ± 0.05 8.48 ± 0.09 432.77 ± 2.72 469.86 ± 2.16 52.46 ± 0.08 101.89 ± 0.55 27.44 ± 0.14

17.1 ± 0.13 8.39 ± 0.06 426.83 ± 3.34 452.23 ± 0.63 51.52 ± 0.09 100.56 ± 0.46 27.04 ± 0.14

19.76 ± 0.18 8.74 ± 0.09 443.62 ± 3.89 470.09 ± 4.01 53.89 ± 0.54 105.8 ± 0.47 28.47 ± 0.35
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2.5 Element partitioning

The incorporation of elements is often presented as the

El/Ca (where El is the element analyzed) or DEL, known as the

partition coefficient:

½El�cc=½Ca2+�cc = D*(½El�sw=½Ca2+�sw
When D > 1 the element is more concentrated in the shell than

in the seawater and when D< 1 the element is excluded from the

shell (Lea, 2003). As it is explained by (Lea, 2003) this relation is not

strictly following thermodynamic properties, but also affected by

biology. Nevertheless, expressing element incorporation into the

calcite in terms of D allows better comparison between different

ocean chemistries and also between experiments.
3 Results

3.1 Experiment [Ca2+]sw

In the first experiment, both [K+]sw and [Na+]sw were kept

constant and therefore variability in foraminiferal calcite composition

must be related to changes in [Ca2+]sw (Supplementary Table S7).
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The K/Cacc values of the different conditions used are statistically

the same. The K/Cacc at the lowest K/Casw appear higher than at

higher K/Casw, but this is likely caused by the contribution of pre-

existing calcite (see also discussion, 4.1). Na/Cacc, however, increases

with increasing Na/Casw values (and hence decreasing [Ca2+]sw) with

a significant offset between the lower and the higher Na/Cacc
conditions used in the experiments (Figure 1B; bootstrap analysis,

p<0.05). Also clear from these figures is that the partitioning

coefficients does not remain constant with changing [Ca2+]sw, for

both K and Na incorporation.
3.2 Experiment [Ca2+]sw and [K+]sw

When varying both [K+]sw and [Ca2+]sw and keeping K/Casw
constant, K/Cacc increases linearly (Figure 2A). In the same cultured

foraminifera, the Na/Cacc also increases significantly with higher

seawater Na/Ca ratios (Figure 2B). When directly comparing these

results with those from the first experimental set, it is clear that K-

incorporation depends not on [Ca2+] but does respond when both

[K+] and [Ca2+] are varied (Figure 2C). Na-incorporation, on the

other hand, does react to changes in [Ca2+]sw, irrespective of

changes in [K+] (Figure 2, Supplementary Table S8).
TABLE 4 El/Ca in the seawater after mixing with North Sea water and measured with SF-ICPMS in the [Ca2+]sw experiment.

K/Ca B/Ca Na/Ca Mg/Ca Sr/Ca S/Ca

(mol/mol) (mol/mol) (mol/mol) (mol/mol) (mol/mol) (mol/mol)

1.01 0.05 56.78 6.31 12.07 3.31

1.05 0.05 58.52 6.53 12.37 3.35

0.56 0.03 30.66 3.41 6.66 1.79

0.56 0.03 30.66 3.41 6.66 1.79

0.54 0.03 30.55 3.43 6.64 1.78

0.56 0.03 30.68 3.43 6.62 1.80

0.49 0.02 26.11 2.99 5.85 1.58

0.49 0.03 26.61 3.02 5.89 1.58

0.49 0.03 26.61 3.02 5.89 1.58

0.44 0.02 23.79 2.73 5.33 1.45

0.44 0.02 23.80 2.72 5.38 1.44
TABLE 3 Elements in the seawater (mean +/- SD) after mixing with North Sea water and measured with SF-ICPMS in the [Ca2+]sw and [K+]sw
experiment. Low resolution analysis (LR), Medium resolution analysis (MR), High resolution analysis (HR).

Ca (LR) K (HR) B (LR) Na (LR) Mg (LR) Sr (LR) S (MR)

(mmol/kg) (mmol/kg) (µmol/kg) (mmol/kg) (mmol/kg) (µmol/kg) (mmol/kg)

7.9 ± 0.03 6.81 ± 0.04 418.85 ± 4.93 531.01 ± 3.87 50.98 ± 0.07 91.22 ± 0.44 26.75 ± 0.28

9.88 ± 0.08 8.67 ± 0.07 424.62 ± 2.71 470.25 ± 3.7 51.91 ± 0.55 93.24 ± 0.87 27.5 ± 0.03

11.38 ± 0.16 9.82 ± 0.37 421.17 ± 8.33 461.78 ± 5.28 51.17 ± 0.55 91.72 ± 1.29 26.72 ± 0.41

15.24 ± 0.09 13.67 ± 0.27 421.36 ± 1.05 506.16 ± 1.68 51.35 ± 0.04 93.5 ± 0.05 26.54 ± 0.4
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3.3 Temperature experiment

Both K/Cacc and Na/Cacc of the cultured A. lessonii do not show

consistent changes with varying temperature (Figures 3A, B),

although the average K/Cacc was slightly higher at the lowest

temperature (0.21 +/- 0.06 mmol/mol) (Supplementary Table S9).

Variability observed for K/Cacc was higher than that of Na/Cacc but

does not change consistently between the four temperature

conditions using a regression analysis giving for both plots

(Figure 3) p-values > 0.05.
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3.4 K/Cacc versus Na/Cacc

Combining all data, Na/Cacc and K/Cacc of the cultured A.

lessonii do not correlate with each other (Figure 4) when varying

temperature or changing only [Ca2+]. However, when considering the

experiments in which both [K+] and [Ca2+] varied with a constant K/

Casw K- and Na-incorporation were negatively correlated, this

correlation is due to the difference in [Ca2+]sw that changes the Na

incorporated, and not because of a Na+ and K+ compete for the same

spot in the calcite crystal lattice during incorporation.
A B

FIGURE 1

(A) K/Cacc in cultured A. lessonii versus K/Casw from the experiment with varying [Ca2+], keeping [K+] constant; (B) Na/Cacc from the same specimens
versus Na/Casw, keeping [Na+]sw constant. Blue dots are the measured El/Cacc, the blue line in (B) indicates the linear correlation between Na/Ca in the
culture media and the foraminiferal calcite. The shading surrounding this correlation represents the confidence interval (0.99 darker blue and 0.95 lighter
shade of blue) based on a bootstrap analysis (1000 iterations). In both plots, lines with constant partition coefficients (DK and DNa) are plotted (dashed
red lines) to facilitate interpretation of the observed changes in the relative incorporation of elements. The standard deviation for every replicate using
the internal error from the SF-ICPMS was very small making it imperceptible in the plotted data (Supplementary Table S10).
TABLE 5 El/Ca in the seawater (mean +/- SD) after mixing with North Sea water and measured with SF-ICPMS in the [Ca2+]sw and [K+]sw experiment.

K/Ca B/Ca Na/Ca Mg/Ca Sr/Ca S/Ca

(mol/mol) (mol/mol) (mol/mol) (mol/mol) (mol/mol) (mol/mol)

0.86 0.05 67.22 6.44 11.43 3.44

0.88 0.05 66.80 6.48 11.69 3.40

0.86 0.05 67.47 6.45 11.55 3.35

0.86 0.05 67.47 6.45 11.55 3.35

0.86 0.04 47.62 5.28 9.33 2.76

0.88 0.04 47.65 5.26 9.52 2.79

0.88 0.04 47.65 5.26 9.52 2.79

0.88 0.04 47.61 5.24 9.40 2.81

0.86 0.04 40.22 4.45 8.03 2.36

0.89 0.04 40.80 4.52 8.09 2.34

0.83 0.04 40.69 4.51 8.05 2.35

0.86 0.03 33.10 3.35 6.09 1.76

0.91 0.03 33.26 3.38 6.16 1.73

0.91 0.03 33.26 3.38 6.16 1.73
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4 Discussion

4.1 Consistency of the data, the effect of
temperature and the proxy value of K/Ca
and Na/Ca

The K/Cacc values obtained for A. lessonii in all experiments

ranged between 0.05 and 0.26 mmol/mol (Supplementary Table S9),

without a noticeable effect of temperature (Figure 3A). The total

amount of calcite added per treatment, either when changing [Ca2+]
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sw or temperature did not correlate to K/Cacc (Supplementary Figures

S2 and S3, respectively). This means that the average K/Cacc does not

depend on growth rate and changes therein reflect directly the effects

of temperature or seawater chemistry. The relatively high variability

observed for K/Cacc at the lowest temperature (Figure 3A) may be

explained by uneven growth of foraminiferal specimens across

temperatures. At the lowest temperature (18°C) on average fewer

chambers were added per specimen than at higher temperatures

(Supplementary Tables S13, S14). As this increases the relative

contribution of pre-existing carbonate (i.e. from before the actual
A B

FIGURE 3

(A) K/Cacc and DK versus temperature. (B) Na/Cacc and DNa versus temperature. The RSD for every replicate using the internal error from the SF-
ICPMS are plotted with black lines (Supplementary Table S11). For either of the elements, a regression analysis shows no significant correlation
between El/Cacc and temperature (p< 0.05).
A B

C

FIGURE 2

(A) K/Cacc in cultured specimens of (A) lessonii as a function of the culture’s media [Ca2+]sw. (B) Na/Cacc of the same specimens versus [Ca2+]sw.
(C) K/Cacc versus [K

+]sw. In panels (A, B), blue dots and lines are the results from the experiment in which both [Ca2+] and [K+] were varied. In black are
the results from the experiments (Figure 1) where only [Ca2+] was varied. Lines indicate the linear correlations (both with p-values<0.05) based on the
bootstrap analysis, for which the confidence intervals are added as envelopes (0.99 darker blue and 0.95 lighter shade of blue). The standard deviation
for every replicate using the internal error from the SF-ICPMS was very small making it imperceptible in the plotted data (Supplementary Table S10).
Panel (C) shows the same statistical analysis for both experiments axys X changes, and instead of [Ca2+]sw, the results are plotted against [K+]sw.
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experiment) this would add to the variability in the data. The

contribution of chambers formed before start of the incubation

may have also biased average K/Ca and Na/Ca values, with a larger

impact for specimens that added less chambers during

the experiment.

The potassium-to-calcium ratio in A. lessonii (0.10 – 0.26;

Figure 1A) overlap with those established for inorganically

precipitated calcites (Ishikawa and Ichikuni, 1984); K/Cacc: 0.01-

0.1 and (Okumura and Kitano, 1986). Still, it is challenging to

compare these coefficients directly as the overall composition of the

culture media (artificial seawater) in our experiment differed

considerably from that used in the inorganic precipitation

experiments, which only contained few elements.

The only other report on foraminiferal K/Cacc indicated similar

ratios for the benthic O. ammonoides (0.12-0.30; Nambiar et al.,

2023), as those reported here (Supplementary Tables S10, S11). The

small offset in the average ratios could be caused by differences in

culturing conditions or by inter-species differences in El/Ca values

as observed for many elements (Bentov and Erez, 2006). Although

we used a slightly different analytical approach (higher mass

resolution) this is unlikely to have resulted in appreciable offsets

between studies (methods and Supplementary Figure S1).

The average and range in Na/Cacc of cultured specimens

(Supplementary Tables S9-S11) are similar to ratios reported

previously for this genus (Geerken et al., 2019; Levi et al., 2019).

The Na/Cacc in specimens cultured from 18 to 28°C vary between

8.8 and 11 mmol/mol (Supplementary Table S9) and are not

correlated to temperature, which is in line with previous reports

(Allen et al., 2016; Geerken et al., 2019). In the experiment with

temperatures ranging from 18 to 28°C (Supplementary Table S9,

Figure 3), K/Cacc values show no significant differences between

different temperature conditions, agreeing with the field data from

(Nambiar et al., 2023). The absence of an effect of temperature on

either K/Cacc or Na/Cacc underscores the potential for applying
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these ratios in reconstructing (long-term) changes in

seawater composition.

Element/Ca ratios vary greatly between genera and species and

generally show elevated ratios for multiple elements in the same

taxon (Evans et al., 2015; Mewes et al., 2015a; Hauzer et al., 2018; Van

Dijk et al., 2019; Dämmer et al., 2021). The magnitude by which the

different elements vary among species, however, is not constant. For

K/Cacc, ratios are on average slightly higher in O. ammonoides

(Nambiar et al., 2023) than in A. lessonii. (Figures 1–3), which is in

line with the observed difference in Mg/Cacc between these species.

Mg/Cacc is approximately 140 mmol/mol for O. ammonoides

(Evans et al., 2015) and varies between 25 and 30 mmol/mol for

Amphistegina sp (De Nooijer et al., 2017). Similarly, Na/Cacc in A.

lessonii varies between 7 and 11 mmol/mol (Figures 1B, 2B and 3B;

(Van Dijk et al., 2017c) and around 20 - 25 mmol/mol in O.

ammonoides (Hauzer et al., 2018). In contrast, interspecific

differences in Sr/Ca are relatively small [~1.7 versus ~2.6 mmol/

mol for Amphistegina and Operculina, respectively; (Geerken et al.,

2019; Hauzer et al., 2021)], but still, as for the other elements, they are

all higher in Operculina than in Amphistegina. The consistent offsets,

albeit with different magnitudes, suggest that differences in

biomineralization pathways, e.g. Ca2+ pumping rate, between

genera and species are reflected in element incorporation

(De Nooijer et al., 2023). These inter-specific differences in element

uptake are consistent with the reported relatively low K/Cacc values

for planktonic foraminiferal species [0.06-0.12 mmol/mol; (Li et al.,

2021)], as these are also known to have low values for Mg/Ca (1-5

mmol/mol; (Nürnberg et al., 1996; Anand et al., 2003) compared to

Amphistegina and O. ammonoides (Figure 5). More recently

(Nambiar et al., 2023), however, showed ratios (about 0.25 mmol/

mol) for G. ruber comparable to those reported here and for A.

lessonii (Nambiar et al., 2023).

Recently, foraminiferal Na/Cacc was suggested to act as a proxy

for seawater [Ca2+] (Hauzer et al., 2018) in addition to its potential
FIGURE 4

Na/Cacc versus K/Cacc for the three experiments. Solid lines indicate the linear correlations (both with p-values<0.05) based on the bootstrap
analysis, for which the confidence intervals (0.99 darker black and 0.95 lighter black) are added as shading. The color-scale in experiment [K+]sw and
[Ca2+]sw shows the [Ca2+]sw from green (higher [Ca2+]sw to yellow (lower [Ca2+]sw).
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to reconstruct salinity (Wit et al., 2013; Mezger et al., 2019). Our

results confirm that foraminiferal Na/Cacc is responsive to changes

in [Ca2+] (Figures 1, 2) and the salinity range in Tables 2 and 4 in

this case, show no significant effect in the Na or K incorporation,

due to [Ca2+]sw differences act as the main driver where they are

incorporated. Here we show that foraminiferal K/Cacc may be used

to reconstruct past seawater [K+], adding to our understanding of

the long-term cycling of the oceans’ major ions as was suggested by

Nambiar et al., 2023). For seawater potassium concentrations, such

a reconstruction may indicate rates of continental weathering

(Kronberg, 1985; Sun et al., 2016) and indirectly, may reflect

long-term changes in total alkalinity. Alternatively, seawater

potassium concentrations may reflect rates of oceanic crust

formation due to the difference between seawater and the mantle

(Bloch and Bischoff, 1979).
4.2 Incorporation of potassium in
foraminiferal calcite

K/Cacc in A. lessonii does not vary consistently with [Ca2+]sw
(and hence K/Casw; Figure 1A). Conversely, K/Cacc increases when

[Ca2+] and [K+] both increase (and K/Casw remains similar;

Figure 2A). The absence of an effect of seawater Ca2+ and a

positive effect of the combined K+ and Ca2+ elevation suggests

that seawater [K+] is the main driver of K-incorporation into

foraminiferal calcite (Figure 2C), whereas it is not affected by

[Ca2+]. This resembles results from inorganic experiments in

which K-incorporation was found to depend on solution [K+]

(Ishikawa and Ichikuni, 1984; Okumura and Kitano, 1986). Such

a dependency is hence fundamentally different from that observed

for many divalent cations like Ba2+, Mn2+, Mg2+, or Sr2+, for which

the concentration in seawater relative to [Ca2+]sw directly translates

into a calcitic El/Ca ratio (Okumura and Kitano, 1986; Alkhatib
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et al., 2022). Such an incorporation pattern is caused by the

competition of these ions with Ca2+ for a place in the calcite

crystal lattice: for the monovalent cation incorporation is not

governed by competition with Ca2+. However, incorporation of

monovalent ions (Li+, Na+, K+, etc.) may be affected by different

processes such as crystal surface sorption, speciation, and crystal

growth rate, which complicates a straightforward interpretation of

the environmental controls on element partitioning during

calcification. Most likely a combination of all these effects impacts

the uptake of monovalent cations.

More precisely, incorporation of an element into foraminiferal

calcite is at least a two-step process (Figure 6; Bentov and Erez,

2006). There is the biological activity that configures the size and

shape of the calcifying space and sets the composition of the fluid

from which CaCO3 precipitates (Erez, 2003; Bentov and Erez, 2006;

Bentov et al., 2009; De Nooijer et al., 2014). The exact controls are

only partly characterized and may vary between species, but include

selective ion transport (Nehrke et al., 2013; Toyofuku et al., 2017),

pH manipulation (Bentov et al., 2009; De Nooijer et al., 2009; Glas

et al., 2012) and production of organic templates (Branson et al.,

2016; Tyszka et al., 2019). Secondly, there are various (physico-)

chemical processes that operate within the calcifying space that

determine how much of each ion in the fluid is incorporated into

the shell. Relevant processes include Rayleigh fractionation

(Elderfield et al., 1996; Evans et al., 2018), kinetics (Uchikawa and

Zeebe, 2012; Devriendt et al., 2021), CaCO3 phase-transformations

(Gray and Evans, 2019), chemical speciation (Van Dijk et al.,

2017b) and configuration of ions within the crystal lattice

(Branson et al., 2015) (Figure 6). For K one would expect a

different trend as K uptake does not depend on Ca concentration

(Figures 1, 2), but should reflect K concentration at the site of

calcification (SOC). Nambiar et al. (2023), however, suggested an

effect of [Ca2+] on K-incorporation, as was observed in corals (Ram

and Erez, 2021). The within chamber wall K profiles of Geerken
FIGURE 5

K/Cacc versus Na/Cacc for groups with different average Mg/Cacc. Low-Mg/Ca (<40 mmol/mol), Intermediate-Mg/Ca (40 – 100 mmol/mol) and
High-Mg/Ca (>100 mmol/mol) (Blackmon and Todd, 1959).
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et al. (2019) actually show a gradual increase towards the end of a

low concentration band (i.e. towards the outer surface of the shell

wall). Other studies, however, have shown a tight correlation

between the alternating high- and low-K bands with those of

other elements (e.g. Mg) in Amphistegina lobifera and A. lessonii

(Levi et al., 2019), which hints at a similarity in their incorporation

dynamics. In addition, phosphorus is present in relatively narrow

bands, similar to those of potassium, which hints to a coupling in

their incorporation mode.

The observed relation between a solution’s El/Ca and the calcitic

El/Ca is likely affected by both biological and ‘chemical’ steps during

foraminiferal biomineralization. Transport of K-ions over a cell

membrane is not likely facilitated by Ca-transporters, while an

occasional Mg-ion may well pass a Ca-pump (e.g. Dudev and Lim,

2013). For the precipitation dynamics, the monovalent K ion may

occupy the interstitial sites in the calcite lattice (Ishikawa and Ichikuni,

1984), in the organic phases, or be incorporated in amorphous K2CO3

(Li et al., 2021). It is likely that all or most of these processes together

determine the eventual K/Cacc and Na/Cacc of the foraminiferal

calcite (Figure 6).

Our results show that the seawater’s [K+], rather than [Ca2+] is the

main driver for K partitioning. This is in line with free K+ being the

main species present in seawater (Johnson and Pytkowicz, 1979), with

K sorption at the crystal lattice being the primary way K is
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incorporated. It should be noted however, that the chemical

speciation of potassium in the calcifying fluid may differ from that in

seawater due to the foraminfer’s biological control on that fluid’s

composition (Erez, 2003; Bentov and Erez, 2006; De Nooijer et al.,

2014) In contrast, for Na-incorporation, our results, and the

dependence of Na/Cacc on the solution’s Na/Ca (Figure 2) suggest

that sodium and calcium compete for the same place in the crystal

lattice. This would imply that sodium incorporation substitutes by

replacement of two Na ions for one Ca ion (Devriendt et al., 2021) in

the calcite and form a quadratic relationship. Since we do not observe

this, alternatives including lattice vacancies can be filled by other

divalent elements such as Mg2+ or Sr2+ may also play a role in the

calcite’s El/Ca.

Although our results cannot exclude that K-incorporation at

interstitial sites is responsible for a (minor) part of the foraminiferal

K/Cacc, (Nambiar et al., 2023) showed an increasing K/Cacc with K/

Casw for O. ammonoides with similar conditions as the one show in

the [Ca2+]sw experiment from this study. This may indicate that the

crystallographic orientation of potassium differs between

foraminiferal species but may also indicate that biological uptake of

potassium ions varies among species. The presence of specialized K-

transporters in addition to Ca-transporters (Toyofuku et al., 2017)

promoting K-incorporation into the shell would imply an advantage

of higher K/Ca, which is not immediately apparent. Alternatively,
FIGURE 6

Simplified calcification scheme for rotaliid foraminifera. Biological and chemical processes at the site of calcification are presented, with a focus on
the differences between Na+ and K+ incorporation into the calcite.
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inward K-transport into the site of calcification may result from the

organismal need to accompany inward transport of a negatively

charged ions and/or to counter the outward transport of another

positively charged ion in the calcifying fluid. Major anions are SO4
2-,

Cl-, but both do not seem to be enriched in foraminiferal calcite

compared to seawater and inorganically precipitated calcite (Kontrec

et al., 2004; Van Dijk et al., 2017b; Roepert et al., 2020). Cations that

are pumped out during calcification include H+ (Glas et al., 2012) and

are hypothesized to be coupled to an inward Ca2+ pumping (De

Nooijer et al., 2017). The outward pumping of H+ may sometimes

also affect Na+- and/or K+-transport. With it is considerably larger

ionic radius K+ (152 pm) is less likely to be ‘accidentally’ transported

through a transporter designed for H+ (ionic radius of 66 pm)

compared to Na+ (116 pm).

When pumping of K+ by the foraminifer is somehow affecting

the K/Ca at the site of calcification incorporation of potassium in

foraminiferal calcite may be impacted by an intracellular role of

[K+]. Potassium is often used as an agent to regulate osmosis and is

found in cells at [K+]/[Na+] ratios in the 0.1–1.0 range (Dibrova

et al., 2015). Sodium ions form relatively strong hydrogen bonds,

therefore attract water, and disrupt intracellular processes. For this

reason, many (marine) cells have [K+]/[Na+] antiporters

(Nakamura et al., 1992; Shabala et al., 2009). Such a transport

mechanism may (partly) explain the observed difference in Na/Ca

and K/Ca in foraminifera when compared to inorganically

precipitated calcite. The partition coefficients for potassium are

relatively similar between inorganic and foraminifera calcite, while

the partition coefficients for sodium are much lower in inorganically

precipitated calcite (compared to foraminiferal shells). Overall, this

makes K uptake in foraminiferal calcite a much more reliable proxy

for reconstructing past sea water major ion composition.
5 Conclusions

Potassium in the shells of the benthic foraminifera A. lessonii was

found at concentrations of 0.05-0.26 mmol/mol Ca. The incorporation

of potassiumwas found not to depend on temperature, nor on seawater

[Ca2+]. This also implies a fundamental difference in uptake compared

to that of Na, the other major monovalent cation in sea water.

Experiments in which [K+] and [Ca2+] varied simultaneously,

resulted in a change in the foraminifer’s K/Ca, indicating the direct

and unique effect of seawater [K+] on potassium partitioning during

calcification. This implies that fossil foraminiferal K/Ca may directly

reflect changes in seawater [K+], without being affected by changes in

[Ca2+]. We did find an effect of [Ca2+]sw on Na- incorporation,

highlighting the potential to use these two elements combined to

reconstruct both seawater potassium and calcium concentrations.
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