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Biorepositories, or biobanks, are vital to marine science. Their collections safeguard

biological knowledge, enable follow-up studies and reproducibility confirmations,

and help extend ecological baselines. Biorepository networks and data portals

aggregate catalogs and facilitate open data and material exchange. Such

integrations enrich contextual data and support holistic ecosystem-based

research and management. In the Arctic, where researchers face vast scales,

rapidly changing ecosystems, and limited resampling opportunities, biobanking

builds capacities. However, marine and polar biodiversity remains underrepresented

in collections. Heterogeneous methodologies and documentation practices hinder

data integrations. And open science faces high institutional and cultural barriers.

Here, we explore the potential of biobanking to amplify the impact of individual

marine studies. We address gaps in standardization and vouchering and suggest

improvements to funding and publishing models to incentivize collaboration. We

bring together calls for biobanking advancements from diverse perspectives and

provide examples of expeditions, databases, specimen collections, and standards.

The general analysis is illustrated with two case studies, showcasing the range of the

field: inclusion of citizen science observations in cetacean monitoring, and

preservation of specimens in environmental microbiome studies. In the former,

we suggest strategies for harmonizing data collection for inclusion in global

databases. In the latter, we propose cooperative field collection and intact living

microbiome (complex microbial community) cryopreservation. Our perspective

frames biobanking as a cooperative research strategy, essential to accelerating

science under the current climate change-related pressures. We advocate for

international investment as the precautionary approach to academic and

conservation stewardship of the Arctic biodiversity heritage.
KEYWORDS

biorepository, cetacean, citizen science, microbiome, cryopreservation, marine
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1 Introduction

1.1 Biorepository networks for Arctic
marine research

Broadly defined, biorepositories (biobanks) are archival collections

of biological data or materials (Bledsoe et al., 2019). Biorepositories

include museums, zoos, document archives, and databases (Lotze and

Worm, 2009; Moss et al., 2023; Schmidt et al., 2024; Yeates et al., 2016).

Cryorepositories (cryobanks) are biorepositories that hold living

biological material (e.g., algal cultures, gametes, and tissue samples) in

stasis at ultra-low temperatures (Corthals and Desalle, 2005; Martıńez-

Páramo et al., 2017). Biorepository networks (e.g., Distributed Systemof

Scientific Collections – DiSSCo DiSSCo, GGBN, GBIF, and GenBank)

aggregate specimenanddata catalogs into shareddatabases andestablish

specimen sharing agreements (Collins et al., 2021; Hardisty et al., 2022;

Supplementary Table 1; Wu et al., 2017).

As biobanking advances, repositories can address increasingly

complex research problems (Jensen et al., 2022). At the same time,

Arctic marine ecosystems face accelerated warming, shifts in trophic

webs, pollution, and exploitation (Alabia et al., 2023; Cassotta and

Goodsite, 2024; Colaço et al., 2022; Ford and Myers, 2008; Lydersen

et al., 2014; Post et al., 2021; Qi et al., 2024; Rantanen et al., 2022). With

ecosystems changing, returning scientists may not find comparable

samples, managers lack data for baselines, and conservationists see

populations in decline (Álvarez-Romero et al., 2018; Fontaine et al.,

2012). Biorepositories are hedges against biodiversity loss and sources

of material for follow-up studies, new investigations, and active

conservation, including assisted reproduction (Bolton et al., 2022;

González et al., 2018; Meineke et al., 2018; Supplementary Table 1).
1.2 Holistic science: integrated,
place-based, and transdisciplinary

Collection integrations (cross-referencing of repository catalogs

into meta-databases) support multidisciplinary ecosystem-based

management and science, and data aggregators (e.g., GBIF, Seabird)

enable investigations across broad spatiotemporal scales (Bernard et al.,

2021; Cook et al., 2017; Davies et al., 2021; Schindel and Cook, 2018).

For example, eDNA testing, remote sensing, and historical records can

complement traditional monitoring efforts (see Section 4.2) (Citta et al.,

2018; Cubaynes et al., 2019; Ojaveer et al., 2018; Stefanni et al., 2022;

Vachon et al., 2022). Coordinated collecting of specimens,

metagenomes, observations, and environmental data also supports

genes-to-ecosystems modeling (González et al., 2018; Leigh et al.,

2021; Supplementary Table 1). Meta-databases and aggregators work

by cross-referencing item-associated metadata (Bakker et al., 2020;

González et al., 2018; Supplementary Table 1).
1.3 Cooperative fieldwork: growing
capacities in remote locations

Cooperation and crowdsourcing enable data collecting at scale

and at amortized project costs (Rölfer et al., 2021). Examples
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include global collecting drives (Earth Microbiome Project),

equipment sharing on expeditions and observation platforms

(Tara, FRAM), and opportunistic collecting from commercial

vessels (Fadeev et al., 2021; Fischer et al., 2020; Gilbert et al.,

2014; Karsenti et al., 2011; Supplementary Table 1; Stephenson,

2021; Thompson et al., 2017; Valsecchi et al., 2021). See Sections

3.2–3 and 5.3 for examples.

Cooperative fieldwork includes sharing across time. Today,

archives and museum collections advance modeling and discovery

(Bakker et al., 2020; Hornborg et al., 2021; Mecklenburg et al., 2011;

Thornton and Scheer, 2012). Tomorrow, restoration programs might

rely on the fertility cryocollections established today (Bolton et al.,

2022; Mooney et al., 2023; Moss et al., 2023). Participation can also

cycle, such as when different “cohorts” of volunteers contribute to

separate stages of a citizen science project (Sweeney et al., n.d.).

Citizen science expands options for cooperative research,

engaging non-specialist contributors during project planning, field

collecting, or data analysis (Burgess et al., 2017; Garcia-Soto and

van der Meeren, 2017; Danielson et al., 2022; Johnston et al., 2023).

Participants may be external researchers, trained long-term

volunteers, or members of the public (Gilbert et al., 2014; Sayigh

et al., 2013; Valsecchi et al., 2021).

As collecting capacities grow and repository infrastructures

develop, Arctic marine science is gaining material for research,

restoration, and data-driven stewardship (Figure 1). In Section 2, we

discuss the general challenges in collecting, standardizing, and

integrating biodiversity data and the financial and cultural

barriers to sharing. Building on that discussion, the case study in

Section 3 brings into focus the specifics of standardized data

collection, as seen through the eyes of a cetologist. Next, Sections

4 and 5 highlight the needs of specimen collections, through the lens

of microbiological cryoconservation.
2 Biodiversity biobanking needs
and recommendations

2.1 Standardization for cross-referencing,
discoverability, traceability,
and reproducibility

To integrate catalogs, historically independent databases

must adopt common metadata vocabularies and translations

(Sterner et al., 2020). However, current standards (e.g., DwC,

MIxS) have limited coverage of disciplines and ontologies and

insufficient provisions for searchability (machine-readability), and

their implementations are lagging due to the difficulties of building

global acceptance and of re-annotating existing data. Experimental

methodologies are also unharmonized. Consequently, cross-

institutional and transdisciplinary integrations, such as associating

zoo specimens with museum-based research or field specimens with

omics and environmental observations, are rare. Global coordination

initiatives must address these gaps (examples in Sections 3.3, 4.2, and

5.2) (Blumberg et al., 2021; Canonico et al., 2019; Colella et al., 2021;

Howe et al., 2008; Meyer et al., 2023; Poo et al., 2022; Rölfer et al.,

2021; Ryan et al., 2021a; Schuurman and Leszczynski, 2008).
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Standardization toward Access and Benefit Sharing traceability

is also lacking. Key stakeholders, such as local contributors and

Indigenous communities, are inconsistently represented in

metadata. We join calls for institutional resources and

comprehensive standards of conduct toward inclusive co-creation

(Arctic Council, 2019; Collins et al., 2019; Laird andWynberg, 2018;

McCluskey, 2017; Stephenson, 2021; Supplementary Table 1).
2.2 Funding biorepository networks and
cooperative fieldwork

Arctic biodiversity is severely underrepresented in collections

(Laiolo et al., 2024; Lendemer et al., 2020). To address this, novel

funding strategies must spur the adoption of cooperative research

(Rölfer et al., 2021; Rosendal et al., 2016). Networks need financing

toward collection rescues and backups, standardization, and

education and legal compliance services (Bakker et al., 2020;

Bledsoe et al., 2022; Boundy-Mills et al., 2020; Goodwin et al.,

2017; O’Brien et al., 2022; Supplementary Table 1). Specimen

repositories need expansions to accommodate project vouchers

alongside type specimens (Colella et al., 2020). (A type specimen

identifies a species, whereas multiple voucher specimens provide

evidence of that species at a certain time and place). Strategies, such
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as setting wait intervals for future scientists, can help conserve finite

materials (Duarte, 2015).

Researchers need dedicated funding allocations for shipments

to biorepositories. Building on recent work by Bentley et al. (2024),

we also suggest funder-led matching of applicants to repositories,

along with repository services offering guidance on the writing of

specimen and data management plans (SMPs and DMPs). Funding

for small projects should be prioritized. While large, long-term

expeditions are rare, small and local projects already cover wide

areas (Gauthier et al., 2021; Rusch et al., 2007; Sunagawa et al., 2020;

Supplementary Table 1). With additional funding and

standardization training, smaller teams can amplify their impact

by contributing source material for future research (Cook et al.,

2017; Vangay et al., 2021). We recommend that field teams collect

duplicate samples for accessioning (O’Brien et al., 2022). When

feasible, cryopreservation on site using portable containers or

shipboard equipment is ideal (Bakker et al., 2020; Corrales and

Astrin, 2023; Corthals and Desalle, 2005; Gauthier et al., 2021;

Nissimov et al., 2022; Tennant et al., 2022; Zuchowicz et al., 2021).

Alternatively, DNA/RNA specimens can be fixed in solution at

ambient temperature and later cryopreserved by the receiving

repository (Brennan and Logares, 2023; Song et al., 2016). More

research is needed to optimize techniques (Lee et al., 2019; Menke

et al., 2017) (see Sections 3.1–3 and 5.2–3).
FIGURE 1

Visualization of our perspective: Fieldwork teams collect samples and/or observations. For microbiome studies, duplicates of the raw samples are
sent to biorepositories. Researchers analyze samples and data, and submit to biorepositories all that is applicable of: contextual metadata, raw data,
processed data, written analytics code, and sample processing protocols. Global biorepository networks are integrated, so that collections of
physical specimens, omic sequences, environmental conditions, published literature, etc. are cross-referenced. (Physical specimens may include:
microorganisms and tissues cryopreserved in stasis, microbial cultures, museum specimens, historical records, archaeological records, etc..) Funders
and publishers require open data, open protocol/analytics, and open specimens (when feasible) as conditions for funding and publication. Funders
and publishers access biorepository portals to verify submissions. For all steps in the cycle, accompanying metadata include information on
provenance, chain of custody (traceability), and techniques, protocols and equipment used in sample and/or data collection, curation, storage, and
processing. Metadata records also make use of globally unique specimen, data, and project IDs, to support meta-database cross-referencing.
Repository-secured biodiversity materials and integrated data are available to future research. Integrated data is accessible to policy makers,
managers of marine areas and stocks, and to local stakeholders.
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While the upfront costs of amplifying biobanking may seem

high, they are fractional compared to other infrastructure

investments (Dasgupta, 2021; Duarte, 2015; Smith et al., 2014). At

the same time, collections minimize redundancies and increase

returns on investment into science (Boundy-Mills et al., 2020;

González et al., 2018; Schindel and Cook, 2018). Biorepositories

guard biodiversity heritage and resources and must be secured long-

term through multi-agency and international partnerships

(Alivisatos et al., 2015; Collins et al., 2021; Lendemer et al., 2020;

McCluskey, 2017).
2.3 Academic culture: incentivizing shared
stewardship of samples and data

Academic culture often disincentivizes open science due to

“publish or perish” pressures, industry vs. academia tensions,

insufficient recognition of collaborative work, and intellectual

property concerns. Yet, open data practices bolster replicability,

traceability (Becker et al., 2019; Stark, 2018), and inclusivity

(Buckner et al., 2021; O’Brien et al., 2022). Transparency empowers

integrated marine management and policymaking and informs

funding impact metrics. Unfortunately, there is no consensus on

implementation and specimen deposits and full data disclosures are

rare (Buckner et al., 2021; Colella et al., 2021; Costello et al., 2013;

Laird andWynberg, 2018; Tessnow-von Wysocki and Vadrot, 2020).

Smaldino and McElreath (2016) see a gradual institutional shift away

from good science and research longevity.

To encourage transparency, institutional and cultural barriers must

be lowered. Academic journals must realize coordinated guidelines and

verification structures for associating publications with published

primary and secondary (derived) data, code, and vouchers. Metadata

for sequence records must include machine-readable links to

environmental and metagenomic contexts, accessioned vouchers,

data, methods and analytics, stakeholders, generated publications and

patents, and subsequent downloads and use (Blumberg et al., 2021;

Buckner et al., 2021; Laird and Wynberg, 2018; Samuel et al., 2021).

Researchers need paid learning and preparation time (Fredston and

Lowndes, 2024). Publishers, funders, and institutions must invest in

transparency, recognition of interproject collaboration, archiving, and

vouchering in researchers’ impact metrics and career assessments

(Bernard et al., 2021; Costello et al., 2013; Hardisty et al., 2022;

Howe et al., 2008; Vangay et al., 2021). Fears of “getting scooped”

and intellectual property considerations can impede compliance.

However, open data management planning provides for the

coordinated release of proprietary time-sensitive data (Colella et al.,

2021; Dubilier et al., 2015).
3 Case study: biobanking of Arctic
cetacean data

3.1 Cetacean biorepository networks

On top of the general challenges of Arctic research, gathering

data on cetaceans is difficult, given the animals’ long-distance
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movements and elusive nature (Mann, 1999; Stephenson, 2021).

Arctic cetaceans are affected by climate change due to their reliance

on affected Arctic ecosystems (van Weelden et al., 2021). A

repository of cetacean observations over time can help assess such

changes. Large-scale research cruises, such as the long-running

North Atlantic Sightings Survey, have collected standardized data

for scientific estimates of cetacean abundance (NAMMCO, 2019),

though at high financial costs. Regionalized cetacean data collection

apps and databases, such as Whale Alert (Conserve.io), Whale

Spotter (EarthNC, Inc.), WhaleReport (Ocean Wise), Whale and

Dolphin Tracker (Davidson et al., 2014), and MONICET (Garcıá

et al., 2023), have emerged. Regionalized data are often collected by

trained personnel on public platforms such as whale-watching boats

(Vinding et al., 2015), cruise ships (Compton et al., 2007), or ferries

(Aïssi et al., 2015) to lower costs (see Sections 1.3 and 2.2).

The Global Biodiversity Information Facility (GBIF) has a

public database boasting occurrence data of over 1.8 million

animal species, including cetaceans (GBIF), contributed by global

partner organizations collecting standardized biodiversity data.

Metadata standardization requirements allow GBIF to integrate

observations from multiple sources, as discussed in Sections 1.2 and

2.1. The resultant amalgamated catalog can be a rich source of data

for scientific research and publication (GBIF). Similarly, the Joint

Cetacean Data Programme collates standardized ship-based and

aerial cetacean survey data in an open-access database for scientific

use (Joint Cetacean Data Programme Information Hub). Recently,

machine learning photo-identification database projects such as

Flukebook (WildMe, 2024) and Happywhale (2024) began

gathering cetacean photos from users, including companies,

research organizations, and individual “citizen scientists.”
3.2 Cooperative fieldwork through
citizen science

The case of cetacean research showcases both the potential and

needs of interdisciplinary collections and citizen science. In the Arctic

and worldwide, whale-watching tours and expedition ships can

provide valuable platforms for opportunistic data collection

(Robbins and Frost, 2009). NOAA encourages this, provided that

data are collected with clear scientific or management goals, and

those collecting the data are well trained (Pyle, 2007). Citizen science

can provide valuable information on species distribution and

abundance, as well as on the differences between data collection

methods to further determine best practices (McBride-Kebert et al.,

2019). Another advantage is that collection can cover greater areas

and longer time spans at lower costs than when performed by

dedicated researchers. For example, Alessi et al. (2019) found that

including citizen science data in their research resulted in the

expansion of the distribution map of bottlenose dolphins (Tursiops

truncatus) by 22%.

Citizen science is not limited to visual observations. For

example, trained volunteers can conduct opportunistic

hydroacoustic surveys and eDNA collection for cetacean

monitoring from commercial ferries and offshore energy platform

service ships, increasing the range and frequency of surveys while
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minimizing costs (Stephenson, 2021; Valsecchi et al., 2021). Citizen

science also extends to data analysis. For example, the Zooniverse

web platform helps researchers engage volunteers to process remote

sensing data. Accuracy and reliability are ensured by online tutorial

training and by requiring agreement between multiple observers

before an observation is accepted (Deep Sea Explorers - Zooniverse;

Killer Whale Count - Zooniverse; Sayigh et al., 2013). Machine

learning algorithms for species identifications and counts in

opportunistic observations are trained on such crowdsourced data

(Canonico et al., 2019).
3.3 Needs and recommendations

Public observation databases successfully support projects such

as Flukebook (WildMe, 2024) and Happywhale (2024). Their

machine learning photo-identification algorithms rely mainly on

location data and a high-quality photo. However, standardization of

citizen science data collection protocols across platforms and

regions is needed for integrated cetacean studies (Bowser et al.,

2020; Garcia-Soto and van der Meeren, 2017). Firstly, a thorough

protocol should be developed for all participants. Suggested basic

required data to be collected include species, number of animals,

GPS location, date and time, Beaufort sea state, and start and end

time of tour (e.g., Bertulli et al., 2018; Garcıá et al., 2023). Additional

information could include behaviors of interest, such as foraging

and jumping. Behavior sampling should include the start and end

time of the observation and would be considered ad libitum,

meaning that only as much data as possible or the most easily

interpreted behaviors are recorded (Mann, 1999).

eBird is a global public observations database with clear

standards, and an example of the principles to be applied to

cetacean data collection. eBird accepts standardized observations

of bird sightings from citizen scientists, researchers, and

organizations. It also provides open-access data for species

monitoring and conservation management plans (eBird, 2023).

To improve accuracy, the eBird observation reporting app has

users gauging sightings against filtered lists of local species.

Similar workflows would aid observers in cetacean species

identification. eBird requires photos or further identifying details

for species flagged as rare in the observer’s area (eBird, 2023), and

this would also benefit cetacean data. For example, a cetacean

monitoring project in the North Atlantic (CETUS) found that

once they required photos for species/genus validation, the

accuracy of their survey data improved and even led to the

addition of a species (Oliveira-Rodrigues et al., 2022).

Each participating region should have a local organization or

group of experts overseeing the database. They may be expert

volunteers or research institute/NGO staff who have an interest in

the data and can manage community submissions. Though the

model can be labor-intensive, feasibility is demonstrated by eBird,

where expert volunteers verify rare bird sightings in each covered

area (eBird, 2023). It is also the model for Happywhale, where

organization members verify all submissions (Happywhale, 2024).
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Whale-watching companies are likely to be quick to adopt such a

platform, given that studies on spatial and temporal occurrence and

abundance are already conducted using whale-watching boats as

research platforms (e.g., Isojunno et al., 2012; Hupman et al., 2014;

Vinding et al., 2015; Klotz et al., 2017; Garcıá et al., 2023).

Smartphone technology makes data collection relatively easy.

Smartphone apps can present dynamic training and observation

workflows, collect location data and photos, and assist

in identifications. Apps may also help implement Aarhus

Convention-mandated reporting (Garcia-Soto and van der

Meeren, 2017). Networked portals are well-positioned to develop

such tools (Chandler et al., 2017). Given their value to science and

conservation, funding should be made available for standardized,

collaborative, open-access citizen science platforms to be created,

managed, and included in biorepository networks.
4 Case study: biobanking of Arctic
marine microbiomes

4.1 Microbial biorepository networks:
museums, universities, and microbial
domain Biological Resource
Centers (mBRCs)

Arctic oceans are rich in microbial biodiversity hotspots (Aalto

et al., 2022; Gilbertson et al., 2022; Morganti et al., 2022). The

microorganisms’ adaptations to their extreme habitats are vital to

ecosystem functions and have inspired discoveries in

biotechnologies, medicine, and evolutionary modeling (Bruno

et al., 2019; Brennan and Logares, 2023; Dorrell et al., 2023;

Galand et al., 2009; Gregory et al., 2019; Suttle, 2007). However,

Arctic microbes are under threat, with studies showing slow

community recovery times and permanent shifts in response to

environmental changes, and emphasizing that scientific

preservation efforts are crucial to future research (Amend et al.,

2019; Gilbertson et al., 2022; Ibáñez et al., 2023; Lofgren and

Stajich, 2021).
4.2 Holistic science: integrated monitoring,
restoration, and innovation

Because microbial communities participate in ecosystem

processes, their compositions can signal ecological change. Thus,

microbial monitoring can complement traditional ecological

assessments (see Section 1.2). In the Arctic, autonomous

observatories monitor microbial DNA year-round to establish

management baselines (Canonico et al., 2019; Goodwin et al.,

2017; Wietz et al., 2021; Supplementary Table 1).

Similarly, animal and plant microbiomes can be specific to host

species, and can reflect life histories, host fitness, and adaptive

responses to changing conditions. With further study, host-

associated microbiomes may give new options for non-invasive
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monitoring (Apprill et al., 2017; Franz et al., 2022; Glaeser et al.,

2022; Hanning and Diaz-Sanchez, 2015; Osman andWeinnig, 2022;

Sehnal et al., 2021; Sanders et al., 2015; Wilkins et al., 2019).

Conversely, healthy (fitness-supporting) host microbiomes are

integral to the success of active in situ restoration and ex situ

(captive) breeding efforts (Hahn et al., 2022; Lynch and Hsiao,

2019). Microbial management, such as through transplantation,

probiotics, prebiotics, and captive environment engineering, may

prove vital, and microbiota preservation must be included in

restoration planning (Hauffe and Barelli, 2019; Peixoto et al.,

2022; West et al., 2019).

With references disappearing in the wild, biobanked

microbiomes may become reservoirs of material for future

research, industries, and active restoration of biodiversity.
5 Biobanking marine microbiomes—
needs and recommendations

5.1 Sequencing is limited; biorepositories
are missing microbiomes

Most microbiome studies are limited to taxonomic profiling of

prokaryotic community compositions (Flaviani et al., 2018; Knight

et al., 2018). Advanced omics technologies are less accessible and

have their own limitations, especially for low-biomass Arctic

marine samples (Breitwieser et al., 2019; Edwards et al., 2020;

Thukral et al., 2023). Microbiome investigations can miss

intraspecific variations (microdiversity), organismal adaptations

(functional diversity), interdomain and cell-to-cell interactions,

and epigenetic responses (Gregory et al., 2019; Manter et al.,

2017; Rotter et al., 2021). For Arctic microbiomes, the dearth of

reference data is a particular challenge (Edwards et al., 2020). Future

technologies will enable deeper investigations and serendipitous

discoveries. However, context is lost without the ability to re-

examine the original sources (Astrin et al., 2013; Eirin-Lopez and

Putnam, 2019; Heylen et al., 2012). Researchers need vouchers of

intact whole microbiomes, such as source substrates (Edwards et al.,

2020). Multistrain vouchers are also needed in climate studies,

aquaculture, and biotechnological and pharmaceutical research,

where microbial consortia can outperform monocultures as

model systems (Biteen et al., 2016; Borges et al., 2021; Hoag,

2009; Kerckhof et al., 2014>; Wolf et al., 2019).

Despite their importance, environmental microbiome vouchers

are rare. Collections are dominated by commercially relevant

bacterial and algal monocultures (Nissimov et al., 2022; Prakash

et al., 2013; Ryan et al., 2021b). Conservation agendas must include

microbial biodiversity, in all domains. We join calls for international

initiatives to expand cryocollections and include whole microbiomes

(Dubilier et al., 2015; Lofgren and Stajich, 2021; Ryan et al., 2021b).

Such collections would capture biodiversity better than traditional

methods alone, and enable repeat examinations (Rain-Franco et al.,

2021; Vekeman and Heylen, 2015). Priority must be given to

microbiomes from unique, understudied, and endangered
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environments and hosts, such as those in the Arctic (Colella et al.,

2020). Non-prokaryotic material is essential to community and

ecosystem functions, and needs focus (Cockell and Jones, 2009;

Danovaro et al., 2011).
5.2 Extending metadata standards and
optimizing collection and cryopreservation

To integrate microbial records with other databases (see Section

2.1), microbiological data need references to the source contexts

(originating microbiomes and environments) (Goodwin et al., 2017;

Lobanov et al., 2022; Sehnal et al., 2021). Commercial

bioprospecting potential also demands comprehensive

compliance-related tracking of contributors and beneficiaries

(Fritze, 2009; Laird and Wynberg, 2018). Extensions to existing

standards are in discussion (Ryan et al., 2021a).

Reliable comparisons of results across studies also require

standardization of techniques (Osman and Weinnig, 2022;

Samuel et al., 2021; Supplementary Table 1). Many microbial

collections use cryopreservation to save storage space, avoid

subculturing-associated contamination and genetic drift, and

accommodate non-culturable or unstable material (Becker et al.,

2019; Boundy-Mills et al., 2020; Nakanishi et al., 2012; Nissimov

et al., 2022; Vekeman and Heylen, 2015). However, there are no

standard methodologies for environmental microbiomes or for

many of the component viral, prokaryotic, and eukaryotic taxa,

and marine microorganisms are not prioritized in research

(Kerckhof et al., 2014; Lofgren and Stajich, 2021; Nissimov et al.,

2022; Prakash et al., 2020). Notably, the new MICROBE EU

initiative seeks to expand scientific focus. Storage temperatures

can vary, with many smaller collections using −80°C electric

freezers. While −80°C is sufficient for up to 5 years, −196°C in a

liquid nitrogen facility is best practice for long-term storage

(Corrales and Astrin, 2023; Heylen et al., 2012). This is especially

true for Arctic marine psychrophiles, which may retain some

activity at ultra-low temperatures (Junge et al., 2006). Investment

is needed toward collection transfers to liquid nitrogen facilities

(Becker et al., 2019; Manter et al., 2017; Nissimov et al., 2022).

Standardized live/dead analysis techniques would add value by

giving insight into the community states at the time of collection.

One such technique is the collection of a duplicate aliquot,

pretreated with the propidium monoazide (PMA) permanent dye

to exclude relic, contaminant, and other exDNA from downstream

amplification (Burot et al., 2021; Emerson et al., 2017; Yun et al.,

2023; Supplementary Table 1). It may be of particular interest in

Arctic marine microbiology, where low biomass and contamination

are significant challenges. Further research is needed, including

knowledge-sharing collaborations with medical and agricultural

cryopreservation programs and innovative non-profits (Bolton

et al., 2022; Hagedorn et al., 2019; Martiny et al., 2020; Ryan

et al., 2021b; Supplementary Table 1).

Despite its technical challenges, cryopreservation is imperative

as the precautionary approach, as damaged specimens can
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still provide genetic material toward more traditional studies

(De Vero et al., 2019; Microbe, 2023; Prakash et al., 2013, 2020;

Ryan et al., 2021b; Supplementary Table 1).
5.3 Funding cooperative fieldwork: novel
and opportunistic samples and
evolved expectations

In addition to the capacity and interoperability needs described

in Section 2.2, cryocollections need funding to broaden accepted

biodiversity (Debode et al., 2024; Lofgren and Stajich, 2021; Ryan

et al., 2023). Many mBRCs (e.g., ECCO, MIRRI, WFCC) are

partially self-funding and need independent financing for

conservation-focused growth (McCluskey, 2017; Rosendal et al.,

2016; Smith et al., 2014). Museums and academic centers need

funding to process and store novel material and share collection

backups. Fundamentally, specimens obtained with public funds

should not be wasted or lost (Cary and Fierer, 2014; Costello

et al., 2013; Dubilier et al., 2015).

Colella et al. (2020) suggest establishing collaborative sampling

networks. An expansion to the principle would be the creation of

“matchmaking” organizers to connect field teams with projects that

need access. For example, Project A has limited field access. They

request to be matched with teams working in the target area. Project

B already has a fieldwork grant, and agrees to also collect samples

for Project A. The organizer assists both teams with paperwork and

allocates extra funding to Project B. In contrast to collaborative

research, in this cooperative model the teams are matched after they

receive their individual project grants. They are working on separate

topics, much as teams sharing an expedition ship would.

Grants for teams to collect specimens or data on behalf of other

projects are not the current norm. However, given the benefits of

wider collections and inclusive access and the costliness of Arctic

research, new funding paradigms may prevent future opportunity

losses (Mallory et al., 2018). We also propose a new type of

publication impact metric, to acknowledge major contributors

who collect data without participating in the analysis. This

particular acknowledgment would confer credit without the

complication of meeting co-authorship standards (Buckner et al.,

2021; Hardisty et al., 2022; Vangay et al., 2021). See Sections 2.2–3

for a generalized discussion.
6 Conclusion

As Arctic ecosystems destabilize, researchers are rushing to

capture biodiversity across expansive spatio-temporal scales.

Cooperative science is evolving, expanding access and reach

for scientists.

Biorepository networks are essential to this effort, and are

expanding catalogs and capabilities. However, biobanking is

lagging behind the pace of change in the Arctic. Modernized

funding, publishing, and academic practices are called for.

Repositories require permanent funding through multi-agency

multinational alliances, and researchers need new grant budget
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categories. Current academic realities discourage co-creation, and

publishers, employers, and funders must drive a cultural shift by

updating incentivization and assistance models.

The case of citizen science-led cetacean monitoring

demonstrates the technological conditions of coordinated

observing through biorepository networks. Acceptance of

collection and documentation standards will help harmonize

records between studies and environmental datasets. Data quality

can be ensured with oversight of annotations by regional experts.

The case of microbiome cryopreservation highlights the need for

holistic science and specimen preservation. Global cryocollections

hold little of Arctic marine biodiversity, and few specimens are

shared across projects or reused. Expanding public cryocollections

with environmental microbiomes will help secure a legacy for the

next generation and maximize scientific opportunities.

With the environmental challenges coming in the next decades,

scientists will be increasingly working from biorepositories.

Biobanking is essential to improving the representation of Arctic

marine resources in research and is a precautionary approach to the

problem of biodiversity loss. Costs of inaction are high.
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