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Coastal karst structures have been recently explored and documented in

Chetumal Bay, Mexico, at the southeast of the Yucatan Peninsula. These

structures, recognized as blue holes, stand out for their remarkable dimensions

within a shallow estuarine environment. Particularly the Taam Ja’ Blue Hole

(TJBH), revealed a depth of ~274 mbsl based on echo sounder mapping,

momentarily positioning it as the world's second-deepest blue hole. However,

echo sounding methods face challenges in complex environments like blue

holes or inland sinkholes arising from frequency-dependent detection and range

limitations due to water density vertical gradients, cross-sectional depth

variations, or morphometric deviations in non-strictly vertical caves. Initial

exploration could not reach the bottom and confirm its position, prompting

ongoing investigation into the geomorphological features of TJBH. Recent CTD

profiler records in TJBH surpassed 420 mbsl with no bottom yet reached,

establishing the TJBH as the deepest-known blue hole globally. Hydrographic

data delineated multiple water layers within TJBH. Comparison with Caribbean

water conditions at the Mesoamerican Barrier Reef System, reef lagoons, and

estuaries suggests potential subterranean connections. Further research and

implementation of underwater navigation technologies are essential to decipher

its maximum depth and the possibilities of forming part of an interconnected

system of caves and tunnels.
KEYWORDS

coastal karst structures, underwater geomorphology, blue holes, Yucatán Peninsula,
Mexican Caribbean, cave system, anchialine system
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Introduction

Anchialine systems stand out as impressive and exciting

environments to be explored across different disciplines. These

systems provide a vast research field, from microbiology (Benıt́ez

et al., 2019; Little et al., 2021; Sha et al., 2021), to sea-level dynamics

or paleoclimate (van Hengstum et al., 2011; Husson et al., 2018; van

Hengstum et al., 2020; Wallace et al., 2021), stratigraphy (Vimpere,

2017), physicochemical water properties (Perry et al., 2002, Perry

et al., 2009), as well as groundwater hydrology (Gondwe et al., 2010;

Björnerås et al., 2020). However, a common basis across all

disciplines is the need to understand the geomorphology and

dimensions of the karst structures.

The Yucatan Peninsula, part of Central America's Maya block,

lacks Paleozoic folds (Weber et al., 2012). With dynamic diagenesis

and gradual Pliocene emergence, it exhibits significant geological

structures in vadose (Perry et al., 2003, Perry et al., 2009) and

phreatic settings (van Hengstum et al., 2010, van Hengstum et al.,

2011), as well as in coastal submarine environments (Bauer-

Gottwein et al., 2011a). Moreover, the Yucatan Peninsula's

northern side hosts the Ring of Cenotes Fault, a regional-scale

structure formed by sinkholes, related to the Chicxulub meteorite

impact 65 million years ago (Bauer-Gottwein et al., 2011a).

Simultaneously, the world's most extensive subterranean cave

system, shaped by glacio-eustatic sea-level changes, is found on

the western side (Supper et al., 2009; Kambesis and Coke, 2013).

Across the eastern margin, parallel to the Caribbean coast, the

Yucatan Peninsula features two regional fracture zones—the

Holbox Fracture Zone to the north and the Rio Hondo Fault

Zone to the south (Bauer-Gottwein et al., 2011a) with possible

intersections and water exchange (Gondwe et al., 2011). To the

southeast, inland sinkholes and lagoons aligned with the Rio Hondo

Fault Zone have been extensively studied (e.g. Gischler et al., 2011;

Perry et al., 2021). Also, recent exploration in Chetumal Bay

reported large coastal karstic formations recognized as blue holes

(Carrillo et al., 2009b; Alcérreca-Huerta et al., 2023; Flórez-Franco

et al., 2023). These blue holes represented an outstanding revelation,

particularly that of the Taam-ja’ Blue Hole (TJBH), preliminarily

recognized as the world's second-deepest, surpassing the depths of

the Dean’s Blue Hole in the Bahamas (~202 mbsl) (Vimpere, 2017),

the Dahab Blue Hole in Egypt (~130 mbsl) (Li et al., 2018), or the

Great Blue Hole in Belize (~125 mbsl) (Schmitt et al., 2021).

The TJBH, first documented by Alcérreca-Huerta et al. (2023),

stands as a noteworthy geological feature. Bathymetric mapping

employing echo sounder technology indicated an impressive

maximum depth of 274.4 meters below sea level (mbsl). Echo

sounding, serving as an indirect method, a l lowed a

comprehensive 3D spatial coverage of the TJBH morphology.

However, this method could grapple with constraints arising from

frequency-dependent detection and range limitations (Colbo et al.,

2014). These challenges are usually accentuated in blue holes and

inland sinkholes due to fluctuations in water density (Cejudo et al.,

2022) and cross-sectional variations in depth (Li et al., 2018),

particularly in non-strictly vertical caves where the blue hole

structure deviates from their entrance position. Direct methods

for depth measurement employed in TJBH relied on CTD profiling
Frontiers in Marine Science 02
but encountered limitations with measurements being restricted to

a maximum depth of 200 mbsl to safeguard against potential

instrument damage (Alcérreca-Huerta et al., 2023; Flórez-Franco

et al., 2023). Notably, the measurements could not reach the bottom

and confirm its position, leaving the depths of TJBH and the vertical

thermohaline structure partially unresolved.

Therefore, recent direct methods for water depth measurement

gathered with a SWiFT CTD Profiler reveal water depths within the

TJBH that surpassed the previous reported records, but also the

maximum water depth record held by the Sansha Yongle Blue Hole

(SYBH) at ~301 mbsl in the South China Sea (Li et al., 2018). This

groundbreaking finding establishes the TJBH as the recently

confirmed deepest-known blue hole globally. Additionally, the

hydrographic data collected is also described to delineate the

water temperature and salinity variations along the recent depths

reached, the formation of previously unknown pycnoclines, and

comparison of the thermohaline conditions in TJBH with those

found in the literature for waters in the Caribbean at the

Mesoamerican Barrier Reef System and coastal reef lagoons, as a

proxy of possible hydraulic connectivity between them and the

blue hole.
Methods

Study area

Cenotes, underground springs, freshwater inlets, and a complex

lagoon and anchialine system develop at the southeastern region of

the Yucatán Peninsula (Figure 1A). The system connects with

Chetumal Bay, a semi-closed mesohaline tropical estuary

developed over carbonated sedimentary deposits of the Miocene,

Mio-Pliocene and Holocene (Gondwe et al., 2010; Domıńguez-

Herrera et al., 2023), which hydrographic conditions are described

in Carrillo et al (2009a), Carrillo et al (2009b) and Ruıź-Pineda

et al. (2016).

The TJBH (378823 m E, 2059390 m N, UTM 16Q) is located in

the central portion of Chetumal Bay, within the Mexican State

Reserve “Chetumal Bay-Manatee Sanctuary” (RESMBCH). It is

~4.5 km from Tamalcab island, and ~19.2 km from Chetumal,

the most urbanized area. TJBH, Lool ja’ Blue Hole (LJBH), and

Ch’och-ja’ Blue Hole (CJBH) are among the blue holes recently

documented in Chetumal Bay (Carrillo et al., 2009b; Alcérreca-

Huerta et al., 2023; Flórez-Franco et al., 2023) (Figure 1A), for

which preliminary insights into their geomorphological features,

and temporal variability of physicochemical properties have

been provided.
Field work and data analysis

On December 6th, 2023, a scuba diving expedition was

conducted to identify the environmental conditions prevailing at

the TJBH and related to factors such as visibility, substrate

characteristics, and wall coverage within a depth range extending

from 0 to 30 mbsl. Additionally, on December 6th and 13th, 2023,
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measurement of new CTD profiles was conducted within the TJBH

aiming to reach its bottom and confirm the echo-sounding results

described in Alcérreca-Huerta et al. (2023). Employing a SWiFT

CTD Profiler (Valeport UK), single profiles at each campaign with

simultaneous measurements of water pressure, temperature, and

conductivity were acquired throughout the water column of TJBH.

The coordinates for the CTD profiles were 378830.7 m E and

2059383.6 m N (UTM 16Q), selected based on preliminary echo

sounding measurements that indicated water depths surpassing 250

mbsl. The vessel was anchored to prevent drifting caused by waves

and currents. In this specific location, the CTD instrument was

lowered, utilizing ~500 m of cable down to the bottom, adhering to

the maximum depth supported by the instrument.

Salinity and density values from CTD casts are computed

employing the Chen and Millero/UNESCO international

algorithm (Chen and Millero, 1977; Fofonoff and Millard, 1983),

leading to an accuracy of ±0.01 PSU and ±0.01 kg/m³, respectively.

Temperature data from SWiFT CTD Profiler measurements has an

accuracy of ±0.01 °C. Data was resampled to achieve a fixed depth

resolution of 0.5 m for the calculation of temperature (∂T/∂z),

salinity (∂S/∂z), and density (∂r/∂z) vertical gradients, to delineate

variations in these parameters with depth. The vertical gradient

resulted from the absolute difference in a variable quantity over the

vertical distance between their resampled measurement locations.

Pycnoclines, indicative of density variations, were estimated by

considering the maximum vertical density gradient surpassing a
Frontiers in Marine Science 03
defined threshold of d1 = 0.5 kg·m4 (Read et al., 2011; Flórez-Franco

et al., 2023). Building upon the findings by Flórez-Franco et al.

(2023), density transition zones are identified assuming a density

gradient of d2 ≥ 0.05 kg·m4.

A temperature-salinity diagram was also devised to identify a

potential relationship between the waters of the TJBH and those in

coastal and open-sea waters in the Caribbean. For this purpose,

existing hydrographic data from the Caribbean Surface Water

(CSW data) at the Mesoamerican Barrier Reef (0-150 mbsl)

delineated in Carrillo et al. (2016) was employed. Insights derived

from data detailed in Tovar et al. (2009), encompassing coastal reef

lagoons within the Mexican Caribbean, were considered (CC data).

Additionally, existing quarterly data measurements at stations ~500

m apart from the TJBH (i.e., TJBHN, TJBHS, TJBHE, TJBHW)

between March 2021 to December 2023, were used to describe

the observed conditions within Chetumal Bay and in the vicinity of

the TJBH (CB data). Location of the different comparative study

areas (CB, CSW and CC) is depicted in Figure 1A.
Results

The boundary of TJBH, clearly defined around 5.0 mbsl,

features a soft substrate covered by biofilms, which extends across

the upper walls of the blue hole (Figure 1B). The turbidity of

Chetumal Bay's waters conceals this border from being visible at the
B

C

D

A

FIGURE 1

(A) Location of the Taam ja’ Blue Hole (TJBH) in Chetumal Bay, Mexico, is presented alongside the CC and CSW data regions for further comparison
of water temperature and salinity conditions. Regional fracture zones and geological faults in the Yucatán Peninsula are indicated (INEGI, 2002),
along with the locations of documented blue holes within Chetumal Bay. CB data was measured at sampling stations positioned at cardinal positions
~500 m apart of the TJBH (TJBHN, TJBHS, TJBHE and TJBHW). Images from scuba explorations of the TJBH at depths (B) 5.0 mbsl, (C) 20 mbsl, and
(D) 30 mbsl are also presented.
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surface. However, the border becomes clearly seen after a depth >4.0

mbsl The TJBH wall exhibits speleothem-like formations covered

by biofilms, yet they are soft, fragile, and prone to collapse

(Figure 1C). Beyond 25-30 mbsl, the wall steepens and develops a

firm substrate. This substrate occasionally forms a tilted roof largely

free of biofilms (i.e. 0-20% coverage), possibly due to limited natural

light penetration (Figure 1D).

Profiles and vertical gradients of water temperature, salinity,

and density are depicted in Figure 2. The depths attained from CTD

casts on both December 6th and 13th, 2023, recorded 416.0 and

423.6 mbsl, respectively. Consequently, these new findings

unequivocally establish the Taam Ja’ Blue Hole (TJBH) as the

world's deepest known blue hole, with its bottom still not reached.

The CTDmeasurements revealed a depth shorter than the cable

length (~500 m) employed to lower the CTD profiler, indicating an

oblique descent of the instrument at an angle of approximately 32.1-

33.7° from the vertical. This deviation in orientation could be

ascribed to either the specific geomorphology of the Taam Ja’

Blue Hole (TJBH) or the influence of prevailing underwater

currents. Moreover, echo sounding data from prior investigations

(Alcérreca-Huerta et al., 2023) had reported a maximum depth of

274.4 mbsl, with the deeper regions of the TJBH concentrated

predominantly on the northern side, where depths were in average

250 mbsl. This depth coincides with the location of a pycnocline,

positioned at a depth of 246.1 mbsl. Consequently, it can be inferred

that the echo sounding results reported by Alcérreca-Huerta et al.

(2023) might have been affected by a possibly non-strictly vertical

morphology of the TJBH or acoustic scattering given by fluctuations

in water density (Figure 2C, D).
Frontiers in Marine Science 04
The development of four primary clines with density gradients

exceeding 0.5 kg/m4 is also shown in Figure 2A–C. Pycnoclines

were delineated on average at 4.6-5.3 mbsl for the 1st

pycnocline, 246.1 mbsl for the 2nd pycnocline, 323.3 mbsl for the

3rd pycnocline, and 414.5 mbsl for the 4th pycnocline. Transition

zones (TZ) between layers above and below the pycnoclines are

defined by gradients ∂r/∂z > 0.05 kg/m4.

The surface water layer (~0-4 mbsl) above the 1st pycnocline

exhibits substantial variability in temperature (ranging from 24.9 to

27.9°C) and salinity (13.5-15.0 PSU) across measurements.

Temperature and salinity variabilities decrease within the layers

below the 1st pycnocline within the TJBH. On average, the layer

between pycnoclines 1-2 describes an average temperature of 24.9

±0.30 °C and salinity of 22.2±1.02 PSU within a depth range of 8 to

236 mbsl. In the layer encompassing depths of 249-313 mbsl

(between pycnoclines 2-3), the average temperature decreases,

while salinity increases, with values of 22.3±0.18 °C and 29.5±0.53

PSU, respectively. The layer below, spanning depths of 332-399

mbsl, registers an average salinity of 35.1±0.01 PSU and the lowest

average temperature (19.8±0.01 °C). Beyond 400 mbsl, there is a

significant increase in temperature within the transition zone, rising

from 19.8 to 23.9 °C, accompanied by a salinity increase of up to

37.5 PSU and an average water density of 1027 kg/m3.

Possible hydrographic relationships across the TJBH, Chetumal

Bay (CB), the Caribbean Surface Water (CSW) and Mexican

Caribbean reef lagoons (CC) are explored in the temperature-

salinity diagram in Figure 3. The CB data presents a wide

variability of temperature (>25°C) and salinity (<17 PSU) with

water densities below 1010 kg/m3, similar to those observed in the
B C DA

FIGURE 2

Vertical profiles and gradients of (A) water temperature, (B) salinity, (C) density, and (D) sound speed measured on 06.12.2023 and 13.12.2023 in
TJBH with a CTD profiler. Pycnoclines are given by the maximum density gradient above a threshold d1=0.5 kg/m4. Regions next to the pycnoclines
location with a density gradient d2>0.05 kg/m4 (TZ) are also shown.
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surface layer above the entrance of TJBH. This reflects the influence

of the estuarine Chetumal Bay water atop the TJBH entrance.

Beyond the depth of 400 mbsl within the TJBH, the water

conditions gradually converge with those of in the Caribbean Sea

(CSW and CC, Figure 3). Salinity levels in the Caribbean Surface

Water reach up to 36.9 PSU, particularly at depths ranging from 115

to 150 mbsl, where the water densities are in average 1023±0.1 kg/

m³ and reach up to 1026 kg/m³. These marine hydrographic values

resemble the results obtained from CTD casts within TJBH at

depths exceeding 400 mbsl with average salinity of 36.0±0.74 PSU

and density of 1027±0.3 kg/m³. Similarly, data from the coastal reef

lagoons of the Mexican Caribbean describe an average salinity value

of 36.0±0.53 PSU, accompanied by water temperatures surpassing

18.3 °C and averaging approximately 27.9±2.48 °C. Coastal reef

hydrographic data represents shallow areas (less than 9.5 mbsl)

showing a wider range of density values between 1020 and 1026 kg/

m³ with a mean value of 1023±0.8 kg/m³. This data alignment

suggests a potential subterranean connection between these water

bodies and the TJBH.
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Discussion and concluding remarks

Hydrogeology and geomorphology of karst systems such as blue

holes are highly valuable with implications for water resources,

biodiversity, or physicochemical and geological processes. The

initial results in Alcérreca-Huerta et al. (2023) yielded preliminary

insights into the geomorphology, depths, and water properties of

TJBH. Confirmation of the maximum depth was not possible due to

instrumental limitations during the scientific expeditions in 2021,

prompting the need for further exploration and analysis.

The recent records from CTD profiling in 2023 conclusively

verifies that the TJBH is now the deepest blue hole discovered to

date, exhibiting water depths surpassing 420 mbsl, with its bottom

yet to be reached. In line with the approach undertaken by Li et al.

(2018), further investigations should incorporate advanced

underwater navigation technologies in conjunction with CTD

profilers. This integrated methodology would allow an accurate

three-dimensional spatial representation of the TJBH leading to a

detailed analysis on its geomorphological features and water depths.

CTD measurements provided valuable results into the

temperature–salinity stratification of the TJBH, contributing to a

more comprehensive understanding of its hydrographical

characteristics. Variations in temperature and salinity within the

water layers of the TJBH and the pycnoclines development offered

insights of TJBH in relation to surrounding marine environments.

In this regard, the CTD measurements hint potential yet

undiscovered connections with the seawater of either the coastal

reef lagoons or deeper coastal zones of the Mesoamerican Barrier

Reef System. The notable increase of temperature (~DT>4.0 °C) and
salinity (up to 37.5 PSU) at depths beyond 400 mbsl could probably

be related to these connections. The increase in salinity may stem

from various mechanisms, as delineated by Fleury et al. (2007).

These mechanisms could include salinization processes triggered by

the inflow of marine water through a Venturi effect, water density

differences (Mijatovic, 1962; Fleury et al., 2007), or the difference in

hydraulic head as long as that of the seawater is higher than that of

the freshwater (Whitaker and Smart, 1997). Thermal specific

features could also be related to geological, volcanic or tectonic

processes in relation to water circulation (Šusm̌elj et al., 2024). The

increase in water temperature at depths >400 mbsl in TJBH could

be hypothesized to resemble that observed in the Floridian aquifer

(Meyer, 1989; Fleury et al., 2007), where geothermal activity warms

cold seawater at deep layers, prompting its upward movement

through existing sinkholes or factures at confining units.

Subsequent interaction with the aquifer and the presence of

further hydraulic connections with seawater could occur at upper

layers, resulting in a reduction of the water temperature. This

geothermal activity and the recharging areas from seawater have

been related with fracture and fault zones in Florida (Whitaker and

Smart, 1997) and the Northern Adriatic Sea (Šusm̌elj et al., 2024).

Research on blue holes encompasses a series of ambitious and

exploration projects, often spanning several years or even decades,

as occurred for the SYBH (e.g. Li et al., 2018; He et al., 2019; Xie
FIGURE 3

Temperature-salinity diagram for the water features corresponding
to the TJBH. Water temperature and salinity from measured data in
Chetumal Bay (CB) between 2021-2023 is also depicted together
with data corresponding to the Caribbean Surface Water (CSW) for
water depths 2-150 m (Carrillo et al., 2016) and to reef lagoons in
the Caribbean Coast (CC) (Tovar et al., 2009). Curves show density
in kilograms per cubic meter. Color bar refers to water depth
in meters.
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et al., 2019; He et al., 2020; Jinwei et al., 2022; Chen et al., 2023) or

the Bahamian blue holes (e.g. Bottrell et al., 1991; Mylroie, 2008;

Gonzalez et al., 2011; Vimpere, 2017; van Hengstum et al., 2020; Sha

et al., 2021). Moreover, the exploration and research of inland

vertical caves, such as the Krubera–Voronya, the world's deepest

known cave with a depth of 2191 meters, has continually set

successive new depth records since 1960s (Klimchouk et al., 2009;

Klimchouk, 2019). This evinces the needs of continuous exploration

of these karst geological structures, their intricate geomorphology,

and the development of cave branches. Delving into the underwater

spatial geomorphology of TJBH, the focus is on deciphering its

maximum depth and the possibilities of forming part of an

underwater intricate and potentially interconnected system of

caves and tunnels.

Therefore, the new findings and the discovered challenging depths

of TJBH entails a multifaceted inquiry encompassing various scientific

dimensions. Efforts should extend to unravel the hydrogeology,

stratification, and mixing processes within TJBH, delineating their

relationship with regional water bodies, hydraulic connections, water

quality dynamics, and water residence times. Within the depths of

TJBH could also lie a biodiversity to be explored and linked to

physicochemical and geomorphological processes, forming a unique

biotope. Geological studies should extend to understanding TJBH's

relationship with the fault and fracture system of the region (i.e. the Rio

Hondo Fault Zone), with implications for its origin. Analyses are

needed to describe the stratigraphic sequence within TJBH and

potential connections between TJBH, other blue holes and cenotes in

or nearby Chetumal Bay. Thus, uncovering the challenges and

mysteries concealed in TJBH urges further exploration, monitoring,

and scientific inquiry.
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