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Recently, the use of unmanned aerial vehicles (UAVs) in bathymetric applications

has become very popular due to the rapid and periodic acquisition of high spatial

resolution data that provide detailed modeling of shallow water body depths and

obtaining geospatial information. In UAV-based bathymetry, the sensor

characteristics, imaging geometries, and the quality of radiometric and

geometric calibrations of the imagery are the basic factors to achieve most

reliable results. Digital bathymetric models (DBMs) that enable three-dimensional

bottom topography definition of water bodies can be generated using many

different techniques. In this paper, the effect of different UAV imaging bands and

DBM generation techniques on the quality of bathymetric 3D modeling was

deeply analyzed by visual and statistical model-based comparison approaches

utilizing reference data acquired by a single-beam echosounder. In total, four

different DBMs were generated and evaluated, two from dense point clouds

derived from red–green–blue (RGB) single-band and multispectral (MS) five-

band aerial photos, and the other two from Stumpf and Lyzenga empirical

satellite-based bathymetry (SDB) adapted to UAV data. The applications were

performed in the Tavşan Island located in Istanbul, Turkey. The results of

statistical model-based analyses demonstrated that the accuracies of the

DBMs are arranged as RGB, MS, Lyzenga, and Stumpf from higher to lower and

the standard deviation of height differences are between ±0.26 m and ±0.54 m.

Visual results indicate that five-band MS DBM performs best in identifying the

deepest areas.
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1 Introduction

All over the world, coastal zones are in constant development and

alteration because of natural processes (Neeman et al., 2015) and

human-centered actions (Halpern et al., 2008). Responsible factors for

changes in coastal zones may be categorized as geological including the

type of sediment, distribution and resistance of sediment formations,

and isostasy; geomorphological; hydrodynamic; biological including

the effect of plants; climatic including rainfall and wind dynamics; and

anthropogenic including settlements, industrial expansion, agricultural

activities, deforestation, and conservation of coastal areas (Labuz,

2015). Coastal systems additionally have a dynamic structure and

generally react in a non-linear morphological way to change (Dronkers,

2005). Also, coastal zones are an essential part of human life due to the

fact that approximately 40% of the world’s population live within 100

km of the coast zones and 10% live inside coastal areas that are below

10 m above sea level (United Nations, 2017). Throughout the

twentieth century, the global sea level rose at a rate of approximately

1.7 ± 0.5 mm/year, whereas the global ocean temperature has increased

by 0.10°C from the water surface to the 700-m depth over the period

between 1961 and 2003 (Bindoff et al., 2007). Therefore, monitoring of

coastal zones can be an important task for coastal zone protection, well-

being of people living inside these zones, and economic activities

related to water resources. Periodic observation of coastal areas is

also important for the detection of sediment transport, erosion, and

accretion (Bio et al., 2015; Kavzoglu et al., 2021; Colkesen et al., 2023).

The production of bathymetric maps is also an important task for

monitoring marine environment. Depth information and mapping of

the water body in coastal areas is critical for many fields of study such

as coastal zone management and safety, navigation, oceanography,

dredging planning, and construction of marine infrastructure facilities

(Muzirafuti et al., 2020; Specht et al., 2020; Alevizos and Alexakis,

2022b). Various technologies and methods have been utilized over the

years for bathymetry studies in coastal areas (Lubczonek et al., 2021).

In traditional methods, depth is measured with the help of a

pole. With the accumulation of knowledge and developing devices

over time, echosounders that form the basis of hydrographic studies

have been produced. Echosounders with two different models,

single-beam and multi-beam, have been a popular source for

determining the depth of a body of water. Multi-beam

echosounders can cover the entire seabed with their large swath

widths and require a relatively short time for data acquisition

(Wlodarczyk-Sielicka and Stateczny, 2016). Some studies have

emphasized the disadvantages of these technologies such as cost,

high labor requirements, difficulty in data processing, and narrow

coverage in shallow waters. Therefore, alternative methods have

been proposed for bathymetry measurements (Alvarez et al., 2018;

He et al., 2022).

Airborne or space-borne remote sensing methods are relatively

low-cost means of data acquisition for monitoring water areas.

Airborne laser bathymetry (ALB) has developed rapidly in recent

years and has become a widely used resource for bathymetry

measurements (Wang and Philpot, 2007; Niemeyer and Sörgel,

2013; Mandlburger, 2019). ALB works with a green laser that can

penetrate water bodies. Depth information is calculated based on

the values between the water surface and the laser beam reflected
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from the water floor. The fact that ALB devices can be used as

hybrid sensor systems together with digital cameras also increases

the potential of bathymetric measurements (Mandlburger et al.,

2021). However, factors such as water turbidity, wind, and seabed

condition affect the working principle of this technology and cause

limitations. Satellite-derived bathymetry (SDB) studies are also

carried out by processing multispectral (MS) space-borne

imagery. The SDB method is a much more economical resource

for researchers than conventional and airborne laser technologies.

The first study using satellites was carried out by NASA in 1975, and

the depth of the Bahamas was calculated to approximately 20 m

using the MS images of the Landsat 1 satellite. Recent advancements

in satellite technology have ushered in a new era for the field of SDB,

with cutting-edge satellites like WorldView-2 and -3 and QuickBird

leading the way. These state-of-the-art satellites are equipped with

high-resolution and MS sensors, presenting unparalleled

opportunities for advancements in underwater terrain mapping

and bathymetric applications (Belcore and Di Pietra, 2022). The MS

sensors on these satellites enable the capture of data across different

wavelengths, enhancing the ability to discriminate between various

water depths and seafloor characteristics. Energy of different

electromagnetic wavelengths can penetrate the water surface, and

information about depths at different levels can be obtained

(Philpot, 1989). Light with a long wavelength is absorbed faster

than light with a short wavelength. The blue band, with its low

wavelength and high energy, has a high ability to penetrate more

deeply water bodies and is suitable for extracting more information

for water regions. The near-infrared (NIR) band is often used for

shoreline extraction because it produces low reflectance values for

water areas (Jagalingam et al., 2015; Randazzo et al., 2020; Celik and

Gazioglu, 2022). Pollution, water turbidity, and atmospheric effects

are highly influential in the bathymetric use of satellites with passive

sensors (Gao et al., 2007). SDB has a coarser resolution than ALB

and does not produce information with sufficient accuracy for

specific studies (Jegat et al., 2016; Cao et al., 2019).

In recent years, unmanned aerial vehicle (UAV) has become an

alternative technology for remote sensing community with the

advantage of very high-resolution data achieved from lower flight

altitudes, and low cost (Toro and Tsourdos, 2018; Casella et al.,

2022). Today, UAVs are actively used in solving many problems by

rapid observations about the relevant areas (Mulsow et al., 2018;

Nex et al., 2022; Sefercik et al., 2022). This advantage of UAVmakes

it highly effective in studies on the analysis of water bodies

such as water failure monitoring (Kim et al., 2023), oil spill

detection (De Kerf et al., 2020), monitoring of pollution source

(Cai et al., 2023), and determination of concentrations of

physiochemical parameters in water (Ozdogan et al., 2021; Isgro

et al., 2022). Current developments in UAV sensing technologies

and data processing techniques have made it possible to imaging

and modeling of the seafloor. The processing of high-resolution

imagery with the help of the structure frommotion (SfM) approach,

the development of high-accuracy point clouds, and surface models

produced from these data have paved the way for the use of UAVs

in underwater areas such as bathymetric mapping (Starek and

Giessel, 2017). The presence of rocks at specific elevations along

the coastline poses a significant hindrance to smooth ship
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movement, thereby underscoring the practical utility of employing

UAVs for bathymetric studies. Bathymetric mapping using UAVs

emerges as a notably cost-effective alternative source, particularly in

the case of clear waters below 10 m in depth, when contrasted with

ship-borne echo sounding or underwater photogrammetric

methods (Agrafiotis et al., 2018; Alevizos et al., 2022b). UAVs

offer numerous advantages, such as swift data acquisition across

expansive areas, cost-effective alternatives to traditional methods,

and minimal labor requirements for conducting bathymetric

measurements (Rossi et al., 2020; Slocum et al., 2020; Alevizos

et al., 2022a). In addition to providing depth data based on image-

based bathymetric mapping, it also provides simultaneous

acquisition of many data with the help of spectral information

contained in the image and indices derived from them. In light of

the aforementioned advantages, the UAV-derived bathymetry

(UDB) method (Rossi et al., 2020), which builds upon the

foundations of traditional SDB, is increasingly being adopted in

the shallow bathymetry mapping. Recently, learning-based

methods, including deep convolutional neural network (Alevizos

et al., 2022a), gene-expression programming (Lee et al., 2022), and

support vector regression (Specht et al., 2023), have been employed

in the field of UDB studies. Nevertheless, empirical SDB methods

are still employed in UDB studies, offering reasonable results in

shallow bathymetry mapping (Rossi et al., 2020; Specht et al., 2022;

Alevizos and Alexakis, 2022a; Apicella et al., 2023).

The accuracy of bathymetry data is significant for a large variety of

marine-related applications such as monitoring of sand mobility,

coastal erosion, and hydrodynamic structure in the coastal zone, and

maritime navigation (Muzirafuti et al., 2020; Doukari et al., 2021;

Alevizos and Alexakis, 2022a; Lange et al., 2023). Like any data

acquisition technique, the UAV bathymetry has limitations and it

should be taken into consideration that bathymetric mapping

performed with UAV cannot produce results as consistent as in-situ

measurements (Santos et al., 2023). In this context, it is necessary to

consider factors affecting the accuracy of bathymetry data. In shallow

bathymetric mapping, a key limitation is the influence of refraction

caused by bending of electromagnetic energy or light as it passes

through the water surface, causing the apparent depth to be shallower

than the actual depth (Tewinkel, 1963; Harris and Umbach, 1972;

Dietrich, 2017; Cao et al., 2019). To overcome this problem, various

refraction correction approaches have been developed in recent years

for SfM point clouds and UDB models (Woodget et al., 2015; Dietrich,

2017; Agrafiotis et al., 2019, 2020; Lambert and Parrish, 2023; Lingua

et al., 2023). A straightforward refractive correctionmethod (Westaway

et al., 2000) was employed in Woodget et al. (2015) by multiplying

apparent depths, calculated using an underlying digital elevation model

(DEM) and estimated water surface elevations, by the refractive index

of clear water, thus obtaining corrected water depths with an error

reduction from 16 mm–89 mm to 8 mm–53 mm. Dietrich (2017)

proposed an iterative approach for off-nadir multiview stereo

photogrammetry, based on calculating a set of equations for each

point/camera combination in the point cloud. Compared with the

approach applied in Woodget et al. (2015), this iterative approach is

also applicable to off-nadir photos, which in turn provides higher

accuracy and precision, as well as better camera calibration results

(James and Robson, 2014; Carbonneau and Dietrich, 2016). The
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iterative approach proposed in Dietrich, (2017) was also applied in a

shallow stream bathymetry by Lingua et al. (2023) through the usage

of raster data instead of point cloud. The results were satisfactory,

with accuracies and precisions of ~0.019% and ~0.07%, respectively, of

the flying height. Among these approaches is a learning-based

refraction correction approach, DepthLearn, which employs an SVR

model developed on the basis of known depth values to correct the

systematically underestimated depth values present in the SfM point

cloud (Agrafiotis et al., 2019, 2020). Moreover, the SVR model trained

on synthetic UAV data with varying flight heights, depths, and seabed

anaglyphs displayed notable performance in the correction of estimated

depth values while reducing the root mean square error (RMSE) in the

z-direction in the range between 7 cm and 24 cm (Agrafiotis et al.,

2021). In a recent study, Lambert and Parrish (2023) modified the well-

known Stumpf algorithm to test the effect of refraction correction on

UAV data. The results demonstrated that the modified algorithm

significantly improved accuracy, reducing the RMSE by 3 cm–11 cm.

In this paper, the effect of various UAV imaging bands and

different DBM generation methods on the bathymetric 3D

modeling quality was comprehensively analyzed through visual

and statistical model-based comparison approaches using

reference bathymetry data obtained via a single-beam

echosounder. Accordingly, four different DBMs were generated

and evaluated, two of which were generated using dense point

clouds acquired from single-band red–green–blue (RGB) and MS

five-band aerial photos, and the other two were generated utilizing

Stumpf and Lyzenga empirical SDB models adapted to UAV data.

Moreover, the most suitable two-by-two band pair for the Stumpf

log-band ratio was determined by means of optimal band ratio

analysis (OBRA) and refraction correction was applied to generate

SfM point clouds.
2 Study area and materials

Tavs ̧an Island is located at the 2-km South of Büyükada in the

Sea of Marmara, Istanbul, Turkey. Marmara is an 11,000-km²

inland sea, and seven cities bordering it have vital importance for

the country’s economy with industrial, trade, tourism, and

agricultural activities. The area of Tavs ̧an Island is 3.6 ha, and the

elevation reaches up to 30 m from the sea level. The coastal length of

the island is approx. 1 km, and the average depth is around 5 m. The

Island is home to a diverse range of marine life, including fish,

dolphins, sea turtles, and a rare type of soft coral known as yellow

gorgon (Topaloglu, 2016). The study area is placed at the east side of

the Island, and the size is 18 m × 90 m. In the study area, the

underwater topographic elevations are between −1 m and −5.5 m

according to the reference bathymetric model. Figure 1 shows the

Istanbul in the Turkey map, location of Tavşan Island in Istanbul,

and the study area on RGB orthomosaic of the Island.

The aerial photos of the Tavs ̧an Island were captured with an

average ground sampling distance (GSD; i.e., pixel size) of 3.4 cm by

using DJI Phantom IV MS UAV. The UAV includes a FC6360 MS

camera which have Red, Green, Blue, Red Edge, and NIR

monocrome sensors and a traditional RGB sensor for visible light

imaging. In addition, the UAV has a real-time kinematic (RTK)
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global navigation satellite system (GNSS) receiver for precise

positioning. Although the UAV has an RTK receiver, ground

control points (GCPs) have been established in the Island against

RTK signal interruptions that frequently occur when flying over

water surfaces. The GCPs were measured by utilizing a CHC i80

GNSS receiver in fixed positioning mode for the highest positioning

accuracy (>3 cm). Since the MS UAV flights took 3 h–4 h, the aerial

photos were affected by different lighting due to atmospheric and

solar conditions; that is why radiometric calibration, converting the

digital number into a unit of scene reflectance, was required (Guo

et al., 2019). For radiometric calibration, MAPIR Camera

Reflectance Calibration Ground Target Package V2 was

employed. Table 1 shows the specifications of the used UAV,

GNSS receiver, and radiometric calibration ground target.
3 Methodology

The methodology of the study consists of three main stages:

i) UAV data acquisition and photogrammetric processing,

ii) generation of UAV DBMs by multiple methods, and iii)

accuracy assessment of UAV DBMs. These stages were presented

in detail as subsections of Methodology.
3.1 UAV data acquisition and
photogrammetric processing

In UAV data acquisition, many parameters should be

considered for a safe flight and the generation of high-quality

products. One of the most significant parameters is the flying

altitude which directly affects the GSD that determines spatial
Frontiers in Marine Science 04
resolution (Koch et al., 2019). Due to determining of the flying

altitude from the UAV home point, the spatial resolution in

elevated areas is higher than that of flat topography due to being

closer to the UAV camera. The maximum object height in the flying

path is another main parameter in flying altitude determination. In

the elevated part of the Tavşan Island, two different high masts exist

for safety purposes. Regarding these circumstances, two different

altitude flights were planned. While the 80-m flying altitude was

preferred for elevated parts of the Island, 60 m was applied for low

parts and 633 aerial photos with average 3.4 cm GSD were achieved.

To obtain maximum shallow water coverage and high-performance

3D modeling, different geometry polygonal flying paths with nadir

view were applied in the flights.

The workflow used up to very high-resolution (VHR)

orthomosaic generation with acquired MS UAV data is shown in

Figure 2. Photogrammetric processing steps were completed

utilizing Agisoft Metashape, one of the most preferred UAV data

processing software in scientific applications. Similar to popular

UAV data processing software such as Pix4D, ContextCapture, and

Visual-SfM, Agisoft Metashape uses the low-cost and robust

structure from motion (SfM) technique for high-resolution image

matching and generation of 3D geometry from a series of

overlapping aerial photos (Westoby et al., 2012). One of the main

objectives of this study is to determine the effect of different imaging

bands on bathymetric model quality; that is why the orthomosaic

generation process was applied two times as for RGB single bands

and the R, G, B, red edge, and NIR multi-bands separately. In the

RGB band workflow, distinct from the MS workflow, radiometric

calibration is not included because of single band usage.

For correct validation, raw imagery derived from remote

sensing platforms has to be calibrated before scientific analyses

(Lee et al., 2004). In this study, the calibration of the aerial photos
FIGURE 1

(A) Istanbul in Türkiye map, (B) location of Tavşan Island in Istanbul, (C) the study area on RGB orthomosaic of the Island.
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was completed in two steps as radiometric and geometric. While

geometric calibration is sufficient for RGB data, radiometric

calibration is additionally mandatory for MS data to achieve more

accurate spectral reflectance data (Teixeira et al., 2020). To use in

radiometric calibration, before the flights, the photos of MAPIR

Camera Reflectance Calibration Ground Target Package V2 were

captured by MS UAV. In these photos, four colors placed on

MAPIR V2 as white, black, light gray, and dark gray were masked

separately to isolate them from the rest for a correct calibration

(Sefercik et al., 2023a). The exact spectral reflectance values of these

colors were obtained from the distributor of MAPIR. The geometric

calibration of the aerial photos was realized in two steps as initial

(mutual) alignment and absolute orientation. In initial alignment,

aerial photos were matched by applying the SfM approach and

sparse point clouds were generated. For absolute orientation, 13

GCPs distributed on the Island before the flight were used. In

addition, 16 and 4 tie points were manually marked around the sea

surface for RGB and MS data, respectively, to include aerial photos

on the sea area to the orientation. The precision of GCPs and

additional tie points was determined as RMSE utilizing Equation 1

where X̂i, Ŷi, Ẑi = estimated values for i camera position and Xi, Yi,

Zi = input values for i camera position.

RMSEGCP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(X̂ i−Xi)
2+(Ŷ i−Yi)

2+(Ẑ i−Zi)
2

n

s
(1)
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The accuracy of the model after absolute orientation was

calculated employing 5 of 13 GCPs as independent check points

(ICPs). Unlike GCPs, ICPs are not used for absolute orientation and

determine the 3D accuracy of the geometrically calibrated model by

calculating the difference from reference GNSS measurements

(Sefercik and Nazar, 2023b). The accuracies of the models

acquired by oriented photos regarding ICPs were calculated by

Equations 2–5. Figure 3 illustrates the masked reflectance targets

and GCP distribution on the Tavs ̧an Island. RMSE values of GCPs,

additional tie points, and ICPs for MS and RGB data geometric

calibration are separately presented in Table 2. Table 2 shows that

the average RMSE of ICPs is approximately ±5 cm for both MS and

RGB models; this means ±1.5 pixels (i.e., 5 cm/3.4 cm) and is quite

sufficient considering the steep and irregular topography of the

island.

RMSEX=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(Xref −XDBM)

2

n

s
(2)

RMSEY=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(Yref −YDBM)

2

n

s
(3)

RMSEZ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(Zref −ZDBM)

2

n

s
(4)
TABLE 1 Specifications of used UAV, GNSS receiver, and radiometric calibration ground target.

DJI P4 MS UAV CHC-i80 GNSS Receiver– GCP - MAPIR

Specification Value Specification Value

Camera
FC6360, 6 sensors 1/2.9″ CMOS, RGB + 5

Monochrome, 2.08 MP
GNSS technology

GPS, GLONASS, GALILEO, BeiDou,
SBAS, NavIC

Camera focal length 5.7 mm Operating system Linux

Gimbal
3-axis, (pitch, roll, yaw)
Vertical: −90°–+30°

Working modes Static, VRS RTK, UHF RTK, all surveying modes

RTK GNSS receiver Include Network-RTK Available

Positioning accuracy of
RTK GNSS

1 cm + 1 ppm H; 1.5 cm + 1 ppm V Positioning accuracy RTK
± 0.8 cm H, ± 1.5 cm V with initialization

reliability >99.9%

Hover accuracy range

RTK enabled:
± 0.1 m V, ± 0.1 m H;

RTK disabled:
± 0.1 m V, ± 0.3 m H (Vision);
± 0.5 m V, ± 1.5 m H (GPS)

Battery
Dual; static up to 10 h, cellular receive only up

to 9 h,
UHF receive/transmit up to 6 h

Max. flight time/weight 27 min/1487 gr Modem—Bluetooth 4G, 3G, GSM – V4

Max. speed 13.85 m/s Internal memory 32 GB

Max. operational wind speed 10 m/s GCP 0.25 m × 1 m, polycarbonate

Max. operational temperature 0°–40°
Radiometric
reflectance targets

4 colors: white, light gray, dark gray, black
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RMSEICP=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSEX

2+RMSEY
2+RMSEZ

2
p

(5)

Following geometric calibration processes, dense point clouds were

generated for RGB and MS data using mild depth filtering, which

reduces noisy points while preserving fine details. Depth filtering
Frontiers in Marine Science 06
evaluates pairwise depth maps for matching aerial photos using the

component filter, taking into account the pixel ranges from the sensor

(Tinkham and Swayze, 2021). In dense point cloud of water-included

study areas, when sunlight is reflected from the sea surface at the same

angle as the UAV sensor views, sunlight occurs and causes considerable
FIGURE 3

Masked reflectance targets: (A) white, (B) light gray, (C) dark gray and (D) black Workflow, and (E) used GCPs.
FIGURE 2

Workflow used up to orthomosaic generation with acquired MS UAV data.
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noise. Additionally, the reduction of imagematching quality depending

on low correlation of aerial photos in water areas causes noise.

Therefore, generated RGB and MS dense point clouds were filtered

by fencing and classifying noisy points. For the refraction correction of

RGB and MS dense point clouds, an iterative approach proposed by

Dietrich (2017), based on the calculation of a set of equations to correct

the refraction of point/camera combinations in the point cloud, was

used and it is available from a GitHub repository (https://github.com/

geojames/pyBathySfM). In this approach, based on Snell’s law

(Equation 6), which governs the refraction of light between two
Frontiers in Marine Science 07
different mediums, a set of equations is solved for the actual depth h

of the seafloor point.

n1sini=n2sinr (6)

In Equation 6, while the refractive index of seawater n1 is 1.337

(Harvey et al., 1998) and the refractive index of air n2 is 1.0, the

incidence angle from the seabed to the water surface is i and the

refraction angle from the water surface to the optical sensor is r. As

light rays pass through the air/water interface, they are refracted

according to the Snel/Descartes law of refraction, so as the camera
TABLE 2 RMSE values of GCPs, additional tie points, and ICPs for MS and RGB data geometric calibration (ICPs are dark).

RGB MS

GCP/TP RMSE (m)
Average RMSE (m)

RMSE (m)
Average RMSE (m)

29 GCPs/TPs 5 CPs 17 GCPs/TPs 5 CPs

GCP-1 0.032/0.088

0.045 0.058

0.020/0.083

0.043 0.056

GCP-2 0.028 0.002

GCP-3 0.010 0.012

GCP-4 0.008 0.009

GCP-5 0.003/0.032 0.006/0.035

GCP-6 0.012 0.006

GCP-7 0.010 0.012

GCP-8 0.005/0.016 0.004/0.013

GCP-9 0.009 0.005

GCP-10 0.012/0.042 0.009/0.051

GCP-11 0.028 0.010

GCP-12 0.050 0.008

GCP-13 0.053/0.078 0.021/0.071

TP-1 0.122

Not used

TP-2 0.066

TP-3 0.023

TP-4 0.007

TP-5 0.015

TP-6 0.001

TP-7 0.004

TP-8 0.024

TP-9 0.022

TP-10 0.007

TP-11 0.041

TP-12 0.083

TP-13 0.118 0.141

TP-14 0.010 0.007

TP-15 0.015 0.020

TP-16 0.027 0.038
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moves, the i and r angles also fluctuate, affecting the h values

(Westaway et al., 2001; Butler et al., 2002). Hence, there is a need to

solve Equation 6 for each camera position. This can be simplified to

Equation 7, where x represents the horizontal distance from the air/

water interface to the underwater point, and ha is the apparent

depth.

sini≅tani=
x
h
       sinr≅tanr=

x
ha

       h=1:337�ha (7)

The initial step involved selecting all cameras associated with

visible points within the study area. The estimated camera

positions (x, y, z), orientations (pitch, roll, yaw), and internal

parameters (focal length and sensor size) were then used to

calculate the instantaneous field of view (IFOV) for each camera.

Angles i and r were calculated according to Equation 8 for every

visible point within the IFOV. Here, D represents the Euclidean

distance (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xc − Xa)

2 + (Yc − Ya)
2

p
) between the optical sensor

and the underwater point and dH represents the vertical distance

between the optical sensor and the underwater point (Zc − Za).

r=tan−1=
D
dH

       i=sin−1(
n2
n1

*sinr) (8)

Estimating a planar water surface is crucial for obtaining water

surface elevations WSz to establish ha(ha = WSz − Za). The water

depth in the area can be measured, and water edge points can be

sampled in the SfM point cloud to achieve this. In both RGB and

MS point clouds, water edge points are selected based on the

noticeable color shift from wet to dry points. For each

combination of point/camera, the calculation of h is carried out

using the aforementioned equations and the formula for the x value

(Equation 9).

x=ha*tanr       i=
ha*tanr

tan½sin−1( n2n1 *sinr)�
(9)

Finally, the true Z-coordinate of the underwater point Zp can be

calculated using Equation 10. Since Za is a certain value, ha is also

certain for each point, resulting in different x and h values for each

camera. As a result, the values of x and Zp will vary, resulting in the

final corrected depth being the average of all h values (�h), explained

in Butler et al. (2002) as the depth correction value hc(hc = h − ha)

calculated for each camera position and the average of these values
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are used to determine the (�h), which is then subtracted from the

surface of the water to obtain the corrected height.

Zp=WSz−�h (10)

Dense point cloud consists of non-continuous point-based

vector form; for more realistic and continuous raster form, it has

to be converted into the 3D solid form. That is why, using the

refraction-corrected dense point clouds, 3D mesh models and

digital surface models (DSMs) were generated and finally 3.42-cm

GSD RGB and 3.39-cm GSD MS orthomosaics were produced

(Figure 4). To demonstrate the effect of radiometric calibration, MS

orthomosaics were presented with and without radiometric

calibration separately in Figure 4.
3.2 Generation of UAV DBMs by
multiple methods

In the study, four DBMs with different characteristics were

generated to evaluate the effect of spectral bands and different

principle generation methods on UAV-derived DBM potential in

shallow water. While RGB and MS DBMs were generated from 3D

dense point clouds derived by RGB and MS calibrated aerial photos,

in Stumpf and Lyzenga DBM production, reflectance values of 2D

MS orthomosaic were employed. The high-quality RGB and MS

DBMs were generated in Surfer software using reprocessed dense

point clouds in MicroStation Terrasolid, which presents more

detailed point filtering advantage in comparison with Agisoft

Metashape. For the generation of DBMs by Stumpf and Lyzenga

empirical methods, the following methodologic workflow presented

in Figure 5 was applied on MS UAV orthomosaic utilizing the

ENVI™ 5.6 suite and QGIS 3.23.3 for the determination of model

parameters and LibreOffice for error calculations. In preprocessing,

the study area was subset and the MS orthomosaic was

downsampled to 10-cm grid to generate 10-cm Stumpf and

Lyzenga DBMs for 100% pixel-based overlap with the reference

DBM and better interpretation with RGB and MS DBMs.

Proper use of water pixels requires masking out any pixel

containing land features including soil, vegetation, rocks, and

urban. For this purpose, water pixels were extracted from the MS

UAV orthomosaic by generating a land mask. This was
FIGURE 4

Generated Orthomosaics: (A) RGB, (B) MS without radiometric calibration, (C) MS with radiometric calibration.
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accomplished through the normalized difference water index

(NDWI) presented by McFeeters (1996) to delineate features of

open water and improve their visibility in remotely sensed imagery

by adopting a band ratio of green and NIR bands (Equation 11).

This index is created firstly for maximizing the reflectance of water

features by means of green wavelength; secondly to minimize the

low reflectance values of the NIR band being absorbed mostly by

water features; and thirdly to benefit from the high reflectance of

vegetation and soil features in NIR band (Xu, 2006). In Equation 11,

r_Green is the reflectance value of green band pixels and r_NIR is

the reflectance value of NIR band pixels. Results of NDWI displayed

that index values of water features were mostly larger than 0.5

similar to Du et al. (2016). Therefore, this value was selected as a

threshold for water–land separability and a land mask was

generated.

NDWI=
rGreen−rNIR

rGreen+rNIR
(11)

Indeed, Stumpf and Lyzenga are two different empirical SDB

methods which are conventionally applied to satellite imagery in the

literature. In this study, we adapted these methods to UAV-derived

DBM generation, that is why these models will be called UDB

models. An empirical solution was proposed by Stumpf et al. (2003)

based on ratio transform for producing SDB models over shallow

waters. This solution follows the fundamental that water
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absorptivity differentiates from band to band and as the depth

increases, the spectral irradiance decreases at a higher rate in the

higher absorption band (green band) compared with the lower

absorption band (blue band) (El-Sayed, 2018). It uses the natural

logarithmic ratio of two different visible bands with dissimilar

absorptivities for derivating the depth value over different bottom

types, and it can be applied to low-albedo depth features as an

alternative to the linear transform approach (Equation 12). In

addition, the ratio transform algorithm makes utilization of two

bands to reduce the number of depth retrieval parameters and it can

minimize errors due to differing variations in the atmosphere, water

column, and sea bottom (Pushparaj and Hegde, 2017).

Z=m1
ln (nRw(l i))
ln (nRw(l j))

−m0 (12)

In the equation, Z is the calculated depth value, m1 is a

changeable constant to scale the ratio to depth, n is a fixed

constant for all zones, for the depth of 0 m m0 is the offset, and

whereas Rw(li) is the reflectance values of high absorption band

Rw(lj) defines the reflectance values of the low absorption band.

However, to properly apply the Stumpf UDB model to MS UAV

data, the most suitable band combination should be determined.

This was carried out by using optimal band ratio analysis (OBRA),

and wavelength pairs that establish the strongest relationship

linearly between Z and the remotely sensed variable X were
FIGURE 5

Generation methodology of Stumpf and Lyzenga empirical UDB DBMs.
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analyzed (Legleiter et al., 2009). In addition, OBRA utilizes a log-

ratio of bands so it aids in the selection of bands that are less

sensitive to substrate variability of sea bottom (Dierssen et al., 2003;

Niroumand-Jadidi and Vitti, 2016). In Equation 13, X is calculated

by applying log-ratio to selected bands Rw(li) and Rw(lj)
reflectance values. Two-by-two band pair combinations were

evaluated by conducting linear regression between X and flow

depth. In this evaluation, single-beam echosounder reference

bathymetry values d to be selected as the optimal pair which has

the highest correlation coefficient (R2) (Figure 6).

X= ln
Rw(l i)
Rw(l j)

" #
(13)

R2 values of each two-by-two band pair were obtained as

0.060224, 0.635757, and 0.201552 for blue–green, blue–red, and

green–red, respectively. After carrying out OBRA using bands of

MS orthomosaic, having the highest R2 compared with other band

combinations li and lj were selected as the lBlue and lRed ,
respectively, to establish a log-band ratio. In this step, to ensure

that logarithms will be positive in any situation and to eliminate any

non-linear response from depth, fixed constant n was selected as

1,000 which is conventionally utilized in literature (Bramante et al.,

2013; Caballero and Stumpf, 2020, 2023). The model parameters m0

and m1 were determined by applying a linear regression between the

logarithmic band ratio and the single-beam echosounder reference

bathymetry values as shown in Figure 7 (Zhu et al., 2020). By

applying a linear regression, the trend line equation f (x) and R2

were obtained (Equation 14).

f (x)=m1
ln (nRw(l i))
ln (nRw(l j))

+m0

=−5:702447
ln (nRw(l i))
ln (nRw(l j))

+6:018247     R2=0:514420

(14)

As mentioned before, the possibility of generating UDB models

from MS aerial photos was further analyzed by adopting another

empirical method Lyzenga (1978), based on log-linear inversion of MS

bands with advantages of i) enhanced operational flexibility due to

spectral bands not restricted to the ones with the same coefficients of

water attenuation, ii) enhanced performance in separation of bottom
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substances with similar spectral behavior, and iii) utilization of more

than two bands in contrast to log-ratio based methods providing

increased robustness. This method assumes that the optical properties

of a water area are uniform over a sample region and reflectance values

obtained from MS bands can be combined to acquire information

about water attenuation (Lyzenga, 1981). However, Lyzenga et al.

(2006) stated that whereas in some cases the atmospheric scattering

and optical properties of water are amply uniform, in general, there

may be pixel-to-pixel variations due to sunlight effect, haze, or

fluctuations in water quality. The Lyzenga UDB model operates

upon the fact that the reflected values from the sea floor can be

approximated by using bottom reflectance values to form a linear

function and utilizing water depths to produce an exponential function

(Equation 15). In other words, single-beam echosounder reference

bathymetry values are used to calibrate the parameters of the Lyzenga

UDB model to estimate unknown depth values (Figueiredo et al.,

2015).

Z=m0+o
N

i=1
mi ln½L(l i)−L∞(l i)� (15)

where Z is the calculated depth values in meters, m0 and mi are

model parameters calculated for N MS bands, and L(li) and L∞(li)
are the spectral reflectance and the deep-water reflectance for li MS

band, respectively. Model parameters were calculated for (i = 1,2,3)

spectral bands as blue, green, and red by doing multiple linear

regression between logarithmic band values and single-beam

echosounder reference bathymetry values (Figure 8). After multiple

linear regression, Lyzenga UDB model parameters m0 and mi were

obtained using Equation 16.

f (x)=mBluex1+mGreenx2+mRedx3+m0

=−6:469978x1+0:378375x2+5:684873x3+2:477796

R2=0:639605 (16)

Noise effects, especially those caused by sunlight, on Stumpf and

Lyzenga DBMs were filtered using MicroStation Terrasolid software

to avoid misleading results in accuracy analyses. Figure 9 shows the

linear regression results of Stumpf and Lyzenga DBM values after
FIGURE 6

OBRA two-by-two band pair combinations.
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final filtering. Considering Figure 9, it can be mentioned that

Lyzenga DBM estimates the depth values better than Stumpf

DBM. The R2 value is calculated as 0.814660 for Lyzenga whereas

0.612081 for Stumpf, which demonstrates that in-depth estimation

via UDB adopting more than spectral bands can improve the

performance in comparison with band ratio approach.
3.3 Accuracy assessment of UAV DBMs

Accuracy of DBMs is assessed with two common approaches as

point-based and model-based similar to other digital 3Dmodels like

digital surface, elevation, terrain, and canopy height models. While

the point-based approach uses limited number of control points

distributed on the study area, the model-based approach utilizes

reference models. The advantage of the model-based approach is

that it enables all pixels of the DBM to participate in the accuracy
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evaluation by comparing matching pixels in the reference 3D model

(Lin et al., 1994). In this study, the model-based approach was

adopted by using a reference DBM derived from single-beam

echosounder measurements and all pixels of the generated DBMs

were included in the accuracy analyses. In reference data

acquisition, a Navisound NS 600 RT-1 single-beam echosounder,

equipped with a two-channel 50-kHz transducer and a GNSS

receiver, was employed. The device can reach the depth of 600 m

with 1° beam width (Celik et al., 2023). As known, sonar ships

generally cannot safely navigate in shallow areas. Considering this

situation, a small boat, which could easily approach the island

shores, was used for single-beam sonar data collection. Both the

year of UAV flights and the reference single-beam echosounder

data collection is 2023.

In the accuracy assessment of generated DBMs, comprehensive

visual and statistical approaches were performed. In visual approaches,

DBMs, and the differential DBMs (DIFFDBM) (Equation 17) which

are the height error maps between generated DBMs and the reference

DBM, were generated by utilizing Surfer and LISA software and

interpreted. In statistical approaches, the accuracies of the generated

DBMs were calculated using the standard deviation (SZ) of the height

differences between the DBMs and the reference model, as well as the

normalized median absolute deviation (NMAD), obtained by

normalization of the median absolute deviation (Equations 18–20).

The linear errors with 90% or 95% probability levels (LE90 and LE95,

respectively) were not preferred as accuracy metrics because they are

strongly depending on the percentage of blunders and they do not

match with the frequency distribution of the height differences in most

cases (Sefercik et al., 2013; Jacobsen, 2014). The statistical analyses were

completed utilizing BLUH software from Leibniz University Hannover.

DIFFDBM=DBMGenerated−DBMRef (17)

SZ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(DZi−m)2

n−1

s
(18)
FIGURE 8

Multiple linear regression between the logarithmic band values and the reference values for determination of the model parameters m0 and mi.
FIGURE 7

Linear regression between the log-band ratio and the reference
values for determination of the model parameters m0 and m1.
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MAD=~xi½ DZi−~xj(Zj)
�� ��� (19)

NMAD=1:4826*(MAD) (20)

where n is the total pixel number of generated DBMs;  DZ is the

height differences from reference DBM and m is the arithmetic

mean of the DZ (bias). ~xj is the median of DZ univariate dataset

(DZ1, DZ2, DZ3,…., DZn) and ~xi is the median of absolute values of

the DZ dataset from ~xj. In normal DZ distribution, the values of SZ

and NMAD are expected as similar. However, a qualified 3D model

generation with optical remote sensing in underwater conditions is

not as simple as surface conditions and in many cases large outliers

are likely to arise. In that case, NMAD is used as a robust scale

estimator to estimate the scale of the DZ distribution and can be

considered as an estimate for the standard deviation more resilient

to outliers in the dataset (Höhle and Höhle, 2009).

To estimate the relative accuracy level between neighboring

pixels on produced DBMs, contour maps of the evaluated DBMs

were created and relative standard deviation (RSZ) was calculated

for each pixel using 10 pixel diameter (point spacing × 10) distance

groups (D) by Equation 21. In the equation, Dl and Du are the lower

and upper ranges of the group and DZi and DZj   are closely

neighbored pixels. For each pixel in distance group, the height

difference from the reference DBM is considered. In Equation 21,

 nv is the number of point combinations in the distance group. To

normalize RSZ to SZ, a multiplication factor of 2 for nv was

employed. If the height differences of the neighbored points are

independent as a result of error propagation, the RSZ would be the

square root of 2:0 larger than SZ, described by 2 × nv .

RSZ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(DZi−DZj)

2

2�nv

s
   ,   Dl  < D < Du (21)

To consider at the interpretations of visual and statistical

approaches, Secchi Disc measurements (Zielinski, 2021) were

completed around the study area and turbidity depth of the water

was determined as 7.4 m. In addition, geoid undulation in the study

area was calculated and applied as 36.501 m in the analyses.
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4 Results and discussion

As aforementioned, four different DBMs as RGB, MS, Stumpf,

and Lyzenga were generated and comprehensively evaluated by

visual and statistical approaches utilizing a reference DBM

produced from single-beam echosounder data. Figure 10 shows

the generated reference DBM and four evaluated DBMs of the study

area. According to the reference DBM, the elevation of deep

topography is maximum and minimum in the Southwestern and

Northeastern sides of the study area, respectively and around −1 m

to −5.5 m. In the first view, the bathymetric surface descriptions of

RGB and MS DBMs are closer to the reference than Stumpf and

Lyzenga DBMs. In fact, the height scale of the MS DBM produced

from five-band aerial photos is almost in the same range as the

reference. However, the minimum elevation of RGB DBM is around

−4.8 m whereas the reference is around −5.5 m. This shows that the

limitations of RGB DBM increase as water depth increases. A

similar situation exists for Stumpf DBM, which could not identify

topographic details lower than ~−4.8 m.

The model-based absolute vertical accuracy assessment results

of the generated DBMs are presented in Table 3. The systematic bias

values were calculated and eliminated before the assessment, and SZ

and NMAD values do not include bias. The systematic biases were

determined as −0.09 m and 0.07 m for RGB and MS DBMs,

respectively. As can be seen in Table 3, while the accuracies of

RGB and MS DBMs based on SZ and NMAD are around ±0.23–

0.27 m, they are around ±0.40–0.55 m for Stumpf and Lyzenga

DBMs. This result demonstrates that generation of DBMs directly

from 3D dense point clouds of the aerial photos is more reasonable

than generation of DBMs using the reflectance values of the MS

UAV orthomosaic. In parallel with R2 values, the accuracy of

Lyzenga DBM is higher than Stumpf DBM as both SZ and

NMAD. This result also reveals that in-depth estimation via UDB

adopting more than spectral bands can improve the performance in

comparison with the band ratio approach.

The frequency distribution, SZ, and NMAD of height

differences between generated DBMs and the reference DBM is
FIGURE 9

The linear regression of Stumpf and Lyzenga DBM values after final filtering.
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given by distribution graphics in Figure 11. In the graphic, while the

peaks of frequency distribution of height differences (FDZ) of 3D

dense point cloud-based RGB and MS UAV DBMs are around 30K

pixels, it is around 15K pixels for UDB DBMs. In SZ and NMAD

sides, symmetric distribution, which reveals a normal error

propagation, is available for all DBMs. The NMAD distributions

of RGB and MS DBMs are very similar to each other whereas SZ is

slightly different. SZ and NMAD distributions prove that Lyzenga

DBM performs better compared with Stumpf DBM.

Figure 12 shows the contour maps which enable to interpret

relative vertical accuracies between neighboring pixels on generated

DBMs. While the contour lines are clearly detectable in RGB and

MS DBMs, small contour islands stand out in UDB DBMs with a

discontinuous structure. This points out irregular morphologic

description of the seabed. The RSZ values in Figure 13 can assist

to interpret this situation. While the RSZ values of RGB and MS

DBMs begin around ±0.03 m, they are around ±0.11 m for Stumpf

and Lyzenga DBMs. Particularly in Stumpf DBM, the RSZ trend is

sharper than expected and the values reach up to ±0.3 m. The main

reason of this result may be very high resolution (0.1 m) of the UAV
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dataset against space-borne datasets that are commonly utilized for

Stumpf and Lyzenga methods.

The DIFFDBMs, differential DBMs of evaluated DBMs with the

reference DBM, are presented in Figure 14. For better

interpretation, the 3D dense point cloud-based RGB and MS

DIFFDBMs and Stumpf and Lyzenga UDB DIFFDBMs were

validated separately and the height differences between these

validated DBMs and the reference DBMs were classified as

between ±1 m, ± 0.5 m, and ±0.1 m. The dark-blue color points

out that the height difference interval is exceeded. As mentioned

before, water deepens from Southwest to Northeast of the study area

and the first result of DIFFDBMs is that the accuracy of all analyzed

DBMs decreases with increasing water depth. According to the

reference DBM, the depth of the water in the study area is around

−1 m and −5.5 m and considering the Secchi disc value (7.4 m),

turbidity does not exist. From this point of view, it can be discussed

that there is a quality limitation in all four UAV-based DBMs,

although there is no turbidity in the study area. In general view, the

3D dense point cloud-based RGB and MS DBMs are more coherent

with the reference and in the large part of the ±1-m DIFFDBMs,
TABLE 3 Absolute vertical accuracies of UAV DBMs.

Reference DBM Evaluated DBM Eliminated bias (m) SZ (m) NMAD (m)

Echosounder
single-beam
(0.1 m)

RGB
(0.1 m)

-0.09 0.26 0.23

MS
(0.1 m)

0.07 0.27 0.23

Stumpf
(0.1 m)

0.00 0.54 0.55

Lyzenga
(0.1 m)

0.00 0.41 0.40
FIGURE 10

Generated RGB, MS, Stumpf, and Lyzenga DBMs.
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FIGURE 12

Morphologic structure of generated DBMs.
FIGURE 11

FDZ, SZ, and NMAD of DBM height differences from reference DBM.
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continuous structure is available without exceeding the height

difference scale. There are gaps at the scales of ±0.5 m and ±0.1

m, as expected under underwater conditions.

At the ±0.1-m scale, a considerable part of MS DBM was still

coherent with the reference in the deepest areas whereas RGB not.

No doubt, this result demonstrates the advantage of multiband

usage in UAV-based bathymetric modeling. In the UDB DBM side,

it is clearly seen that Lyzenga DBM’s compatibility with the

reference is much higher than Stumpf DBM in every height

difference range. Additionally, the ±1-m scale DIFFDBMs of

RGB-MS and Stumpf-Lyzenga DBMs are also included in

Figure 14. While the consistency of RGB and MS DBMs is high

at minimum and medium depths, differences of close to 1 m occur

at maximum depths. Stumpf and Lyzenga DIFFDBM have an

irregular distribution of height differences, and considerable

differences are noticeable even at minimum depths in addition to

deepest areas.
5 Conclusion

The use of UAVs in DBM generation in shallow waters is

increasing permanently due to its potential to provide rapid,

periodic, and very high-resolution data. However, several

parameters related with sensor characteristics, imaging geometry,

and calibration requirements limit the UAV-derived DBM quality.

In this paper, four DBMs, two from single-band RGB and five-band

MS 3D dense point clouds and Stumpf and Lyzenga UDB methods,

were generated and comprehensively analyzed by visual and

statistical model-based comparison approaches. Before the

analyses, radiometric and geometric calibrations of UAV aerial

photos were carefully completed. While 13 GCPs and 16 additional

TPs were used for absolute orientation of RGB aerial photos, 13

GCPs and 4 TPs were used for MS. In both models, five similar ICPs
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selected from GCPs were employed and approx. ± 0.05-m general

orientation accuracy were achieved. In optimal MS band

combination determination to properly apply Stumpf and

Lyzenga UDB models using very high-resolution MS

orthomosaic, OBRA were applied and blue–red band

combination was preferred accordingly. To avoid misleading

depth description, refraction correction was applied in the

generation of all evaluated DBMs.

While DBMs and the DIFFDBMs were generated for visual

accuracy analyses, SZ and NMAD of the height differences

between the DBMs and the reference model were utilized in

statistical analyses. In addition to absolute vertical accuracies,

the relative accuracies of the DBMs were also exposed by RSZ

calculation for neighboring pixels by distance grouping and

morphologic analyses by creating contour-lines. The results of

visual and statistical analyses demonstrated that i) the accuracy of

all analyzed DBMs decreases as water depth increases considering

the DIFFDBMs and ii) the accuracy of RGB and MS DBMs

produced from 3D point clouds of aerial photos is higher than

DBMs produced from Stumpf and Lyzenga UDB methods. While

SZ and NMAD of RGB and MS DBMs are around ±0.23 m–0.27

m, this is around ±0.40 m–0.55 m for UDB DBMs. In detailed

view, the representation capability of MS DBM is higher than that

of RGB DBM and that of Lyzenga DBM is higher than that of

Stumpf as the water depth increases. In contrast, it has been

observed that the situation reverses in minimum depths. In

addition, the systematic bias determined in RGB DBM between

reference DBM was determined as −0.09 m, whereas in MS, it was

determined as 0.07 m. iii) Relative accuracies of RGB and MS

DBMs produced from 3D point clouds are also higher than UDB

DBMs. While RSZ values are between ±0.03 m and 0.15 m for

RGB and MS DBMs, they are ±0.11–0.30 m for Stumpf and

Lyzenga DBMs. In addition, generated contour lines revealed

the noisy structure of Stumpf and Lyzenga DBMs in comparison
FIGURE 13

RSZ of generated DBMs.
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with RGB and MS DBMs that cause small contour islands. The

reason of this result may be the very high resolution (0.1 m) of the

UAV dataset against space-borne datasets that are commonly

utilized for Stumpf and Lyzenga methods.

Overall, theaccuracyofDBMsgeneratedwithdifferent techniqueshas

been documented, thus allowing their use for different bathymetric
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purposes to be evaluated. The advantages and disadvantages of

generated DBMs compared with each other are discussed. The common

conclusion is that the results given by the examined DBMs can be

evaluated for shallow waters up to 5-m depth. It has been documented

that at depths greater than 5 m, height differences (i.e., height error)

between tested and reference DBMs are partially greater than ±1 m.
FIGURE 14

DIFF models of RGB, MS, Stumpf, and Lyzenga DBMs according to reference DBM.
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