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Storm surges, a significant coastal hazard, cause substantial damage to both

property and lives. Precise and efficient storm surge models are crucial for long-

term risk assessment and guiding emergency management decisions. While

high-fidelity dynamic models offer accurate predictions, their computational

costs are substantial. Hence, recent efforts focus on developing data-driven

storm surge surrogate models. This study focuses on the Pearl River Estuary in

Guangdong Province. Initially, the dynamic ADvanced CIRCulation (ADCIRC)

model was utilized to construct storm surge data for 16 historical typhoons,

serving as training, validation, and testing data for data-driven models.

Subsequently, Long Short-Term Memory (LSTM), Convolutional Neural

Networks (CNN), and Informer deep learning (DL) models were employed for

forecasting of storm surge over the next 1h, 3h, 6h, 12h, and 18h. Finally, Shapley

Additive exPlanations (SHAP) values were used for interpretability analysis of the

input factors across different models. Results indicated that the proposed DL

storm surge prediction model can effectively replicate the dynamic model’s

simulation results in short-term forecasts, significantly reducing computational

costs. This model offers valuable scientific assistance for future coastal storm

surge forecasts in the Greater Bay Area.
KEYWORDS

storm surge, ADCIRC, DL, SHAP, intelligent forecasting
1 Introduction

Storm surge is a phenomenon characterized by a significant rise in sea level in a coastal area

due to intense atmospheric disturbance (Lagmay et al., 2015; Needham et al., 2015; Kohno et al.,

2018). Storm surges are commonly classified into two types based on their triggers: extratropical

and typhoon-induced. Extratropical surges have a slower rise and generally lower surge heights
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compared to typhoon-induced surges (Chu et al., 2019). Typhoon-

induced surges, occurring predominantly in summer and autumn, are

characterized by swift onset and high destructive potential. The Greater

Bay Area, with its vital economic role in China, faces heightened storm

surge risks due to the frequent typhoons, intricate terrain, and unique

astronomical tide characteristics (Chen et al., 2014; Yin et al., 2017; Wu

et al., 2018; Feng et al., 2021). Hence, studying and forecasting storm

surges in this region is essential, offering practical applications for local

disaster prevention and mitigation efforts (Munroe et al., 2018; Shi

et al., 2020).

Traditional storm surge forecasting methods rely on dynamically

driven numerical models, providing insights into coastal water level

changes and inundation processes. For instance, departments such as

the National Oceanic and Atmospheric Administration (NOAA) and

the National Hurricane Center (NHC) in the United States employed

the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model

to study storm surge probability and maximum possible inundation,

offering decision support for government agencies (Jelesnianski et al.,

1992; Glahn et al., 2009; Kohno et al., 2018). However, these rapid,

low-fidelity models may overlook critical physical features,

potentially leading to high errors. Thanks to the development of

computer technology, several high-fidelity physical ocean numerical

models with non-structured grids have been developed, including

ADCIRC, FVCOM, SELFE and others (Luettich et al., 1992; Chen

et al., 2006; Burla et al., 2010). Yin et al. (2017) utilized a coupled

ADCIRC and SWANmodel to investigate the impact of sea-level rise

and typhoon intensification on storm surge and coastal inundation in

the Pearl River Estuary, China. Li et al. (2022) employed the FVCOM

model, revealing that during Typhoon Chan-hom, storm surge in

Hangzhou Bay, China, was primarily influenced by astronomical

tides, with wind fields playing a secondary role. These dynamic

numerical models require detailed data on seawall characteristics,

land elevation, and land block properties, which are challenging to

obtain accurately. Moreover, running high-resolution numerical

models demands significant research resources and computational

time (Pachev et al., 2023; Xie et al., 2023).

Machine learning has significant advantages over traditional

numerical models, including flexibility, accuracy, and execution

speed (Dobbelaere et al., 2021). Machine learning is ideally placed to

identify salient features in the data that are comprehensible to the

human brain. With this approach, it could significantly facilitate a

generalization beyond the limits of data, letting data reveal possible

structural errors in theory (Sonnewald et al., 2021). Moreover

Machine learning offer a clear advantage in capturing the

nonlinear interactions between typhoon influencing factors and

storm surge magnitude. These models necessitate a one-time

investment in training time, enabling swift forecasting using the

pre-trained model, thus promoting widespread adoption (Tadesse

et al., 2020; Ayinde et al., 2023; Ku and Liu, 2023; Li et al., 2023;

Mulia et al., 2023). Ayyad et al. (2022a) employed a coupled

ADCIRC and SWAN model to generate a dataset comprising

10,300 typhoon-induced storm surge events. Subsequently, they

evaluated predictions using various machine learning (ML) models,

including Ridge Regression (RR), Support Vector Machines (SVM),

Decision Tree (DT), Random Forest (RF), Extra Trees (ET),
Frontiers in Marine Science
 02
Gradient Boosted Decision Tree (GBDT), and Adaptive Boost

(AdaBoost). Sun and Pan (2023) innovatively integrated three ML

algorithms, RF, GBDT, and XGBoost (XGB), to predict storm surge

heights at four tide gauge stations along the coast of Hong Kong,

achieving higher accuracy and stability. Al Kajbaf and Bensi (2020)

compared the performance of storm surge prediction using artificial

neural networks (ANN) based on DL, Gaussian process regression

(GPR), and SVM based on ML. Results favored ANN for its

superior accuracy in storm surge prediction. Hence, Ayyad et al.

(2022b) combined ADCIRC and ANN models for storm surge

prediction, revealing that the ANN model notably reduces

prediction time while maintaining accuracy.

However, when dealing with long time-series data, the ANN

model may face issues like vanishing or exploding gradients.

Consequently, many researchers have turned to the LSTM model.

For instance, Chen et al. (2022) used LSTM to forecast storm surges

at the Lusi tidal station in the East China Sea. Ian et al. (2023)

further improved storm surge prediction accuracy by integrating

attention mechanisms into the LSTM model. While achieving

satisfactory forecasting results, integrating two-dimensional input

variables into one dimension leaves room for improvement. CNN

offer a powerful solution and are increasingly utilized for predicting

typhoon intensity and storm surges (Wimmers et al., 2019; Zhang

et al., 2019; Wang R. Z. et al., 2021). Wang K. et al. (2021) assessed

storm surge predictions using 11 years of sea level and wind data,

finding that the combined LSTM-CNN and CNN-LSTM models

outperformed individual CNN and LSTM models. Lee et al. (2021)

proposed an improved CNN model that can rapidly forecast the

peak storm surge in coastal areas based on the typhoon’s trajectory.

While LSTM and CNN excel in characterizing time series

features, their serial computation may reduce efficiency and

struggle to capture exceptionally long-term dependencies in

sequences (Guo et al., 2021; Massaoudi et al., 2021; Cao et al.,

2023). Zhou et al. (2020) introduced the Informer model, an

algorithmic improvement based on the Transformer model. The

model’s optimizations effectively reduce computational complexity

and enhance efficiency, enabling it to capture long-term correlations

between sequence inputs and outputs more efficiently (Vaswani

et al., 2017; Gong et al., 2023). Despite the successful predictive

performance of various enhanced models, their complex nonlinear

structures pose challenges in interpreting prediction results,

hindering the application of DL models (Montavon et al., 2018;

McGovern et al., 2019).

Therefore, this study focuses on the Greater Bay Area of

Guangdong Province and proposes an alternative storm surge

prediction model that combines mechanistic and data-driven

approaches. The main tasks are as follows: (1) Using the dynamic

numerical model ADCIRC, construct storm surge data for 16

historical typhoons for training, validation, and testing the data-

driven model; (2) Employ LSTM, CNN, and Informer data-driven

models to identify the optimal lead time, providing short-term

forecasts (1h, 3h, 6h, 12h, 18h) for storm surge at Sanzao (SZ) and

Denglongshan (DLS) stations; (3) Utilize SHAP values for

interpretability analysis of the input factors’ impact on different

models. The framework of the paper is illustrated in Figure 1.
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2 Research area and data

2.1 Research area

The Guangdong-Hong Kong-Macao Greater Bay Area, located at

the southern end of mainland China and bordered by the South

China Sea, boasts a well-developed river network (see Figure 2). Its

unique geographical location and climate contribute to a heightened

susceptibility to frequent typhoon-induced storm surge disasters. On

average, the region experiences 1.08 tropical cyclones making direct

landfall each year (Ye et al., 2020), with some of their paths depicted

in Figure 2. The resulting casualties and substantial economic losses

pose a significant challenge to both the quality of life for residents and

the high-quality development of the national economy.
2.2 Data sources

Selecting 16 typhoons that made landfall in Guangdong Province

from 2003 to 2020 (see Table 1), the input factor data is sourced from

the “China Meteorological Administration Typhoon Network,”

including the time, latitude and longitude, central pressure, maximum

wind speed, wind radius, and maximum storm surge data from the

“China Historical Materials Collection on Storm Surge Disasters.” Since

observed water levels at tide gauge stations were a combination of

astronomical tide and storm surge, this study used data from tidal tables

for astronomical tide values. Storm surge elevation was derived by

subtracting astronomical tide data from real-time water level data.
Frontiers in Marine Science 03
3 Method

3.1 ADCIRC

3.1.1 Governing equation
The ADCIRC model used in this study is a finite element

hydrodynamic model with a non-structured grid (Luettich et al.,

1992; Pringle et al., 2021). The non-structured grid ensures higher

resolution in areas with drastic changes in water depth and complex

coastlines, optimizing computational efficiency (Smith et al., 2010;

Zhao et al., 2014; Yin et al., 2017).

Since the two-dimensional model adequately simulates storm

surge effects, this study utilized the ADCIRC two-dimensional

model. In Cartesian coordinates, the ADCIRC model employs the

following integrated two-dimensional continuity and momentum

equations (Luettich et al., 1992) along the water depth (Equation 1).

∂z
∂ t

+
1

R cosj
∂UH
∂ l

+
1
R
∂VH
∂j

−
VH tanj

R
= 0 (1)

In the spherical coordinate system, the original momentum

equation for seawater is as follows (Equations 2, 3):
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FIGURE 1

The flowchart of this paper.
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wherein H = z + h; f = 2W sinj
z : Free surface height above mean sea level (m); t: Time (s); R:

Earth’s radius (6378135 m); (l, f): Longitude and latitude; (l0, f0):
Center point coordinates; (U,V): Depth-averaged horizontal

seawater velocity (m/s); H: Total water depth (m); f: Coriolis

parameter (s⁻¹); ps: Atmospheric pressure at the free surface

(N/m²); r0 Seawater density (1025 kg/m³); g: Gravity acceleration
Frontiers in Marine Science 04
(m/s²); h: Newtonian tidal potential (m); (tsl , tsf): Sea surface stress
components (N); (tbl , tbf): Bottom frictional force components

(N); W: Earth’s angular rotation velocity.

3.1.2 Typhoon wind field model
Typhoon structures are highly complex, and the pressure and

wind fields continuously change during the typhoon’s genesis,

development, maturation, and dissipation. Commonly used models

for describing the pressure field distribution of typhoons include the

Jelesnianski, Myers, Takahashi, Holland, and Fujita models

(Jelesnianski, 1965; Xu et al., 2014). Accurate wind field models are

crucial for calculating storm surge results, and the Holland Typhoon
TABLE 1 Basic information of typhoons.

No. Name Login time Central pressure Maximum wind
speed at the center

Classification

0308 Imbudo 2003.7.24 960 hPa 38 m/s Super Typhoon

0313 Dujuan 2003.9.2 960 hPa 40 m/s Typhoon

0801 Neoguri 2008.4.19 998 hPa 18 m/s Tropical Storm

0814 Hagupit 2008.9.24 950 hPa 45 m/s Super Typhoon

0817 Higos 2008.10.4 1002 hPa 12 m/s Tropical Depression

1003 Chanthu 2010.7.22 970 hPa 35 m/s Typhoon

1208 Vicente 2012.7.24 960 hPa 45 m/s Super Typhoon

1213 Kai-tak 2012.8.17 970 hPa 35 m/s Typhoon

1311 Utor 2013.8.14 955 hPa 42 m/s Super Typhoon

1319 Usagi 2013.9.22 935 hPa 45 m/s Super Typhoon

1409 Rammasun 2014.7.18 910 hPa 60 m/s Super Typhoon

1604 Nida 2016.8.2 970 hPa 35 m/s Typhoon

1622 Haima 2016.10.21 970 hPa 35 m/s Typhoon

1714 Pakhar 2017.8.27 980 hPa 30 m/s Severe Tropical Storm

1822 Mangkhut 2018.9.16 960 hPa 42 m/s Typhoon

2220 Nesat 2022.10.16 965 hPa 38 m/s Typhoon
FIGURE 2

Research area and site distribution.
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model, known for its high accuracy, is widely applied in the coastal

regions of China. Therefore, this study employed the typhoon wind

field model proposed by Holland (1980). The pressure equation and

wind field formula are as follows (Equations 4, 5):

Ps(r) = Pc + (Pn − Pc) · ( −
Rmax

r
)B (4)

Wg(r) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pn − Pc)

B
ra

(
Rmax

r
)B exp ( −

Rmax

r
)B + (

rf
2
)2

s
−
rf
2

(5)

Where, Pc represents the typhoon’s central pressure, Pn is the

peripheral pressure, Rmax is the maximum wind radius, r is the

distance from the typhoon center, and B determines the typhoon’s

peak and intensity. Increasing B leads to higher wind speeds at the

maximum radius and weaker winds at more distant locations. The B

parameter typically falls within the range of 1 to 2.5. The formula

for calculating the B parameter is as follows (Equation 6):

B = 1:5 + (980 − Pc)=120 (6)

The maximum wind radius is determined using the formula

introduced by Willoughby and Rahn (2004) (Equation 7):

Rmax = 51:6 exp ( − 0:0223 ⁎Wmax + 0:0281 ⁎ Lat) (7)

Where,Wmax represents the maximum wind speed, Lat denotes

latitude. The inflow angle was set at 25°.
3.2 Time series prediction model

3.2.1 LSTM
The LSTM addresses challenges in traditional models during

long-time sequence training, overcoming issues such as gradient

explosions, vanishing gradients, and difficulties in preserving

historical data over extended periods (Hochreiter and

Schmidhuber, 1997; Liu et al., 2019; Gauch et al., 2021; Tian et al.,

2023). LSTM’s self-connected hidden layer captures both cell state

and hidden layer state from the previous time step, utilizing ‘forget

gates,’ ‘input gates,’ and ‘output gates’ to control information

transmission and updating. The LSTM hidden layer structure, as
Frontiers in Marine Science
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depicted in Figure 3A, involvesCt-1 andCt for cell state information at

time steps t-1 and t. ~Ct represents the candidate update information

at time step t, ht-1 and ht denote the hidden layer state information at

time steps t-1 and t, Xt is the input value at time step t, s is the

sigmoid function, and ft, it, and ot are the control coefficients for the

‘forget gate’, ‘input gate’, and ‘output gate’, respectively.

3.2.2 CNN
CNN, equipped with powerful data processing capabilities,

consists of convolutional layers and pooling layers responsible for

convolution calculations, feature extraction, and parameter

sampling and compression (Pradhan et al., 2018; Lee et al., 2019;

Mitiche et al., 2020). Utilizing weight sharing and local connectivity,

the CNN model maps and processes the initial dataset, extracting

relevant features to reduce parameter dimensions and improve

computational speed. The principle involves employing multiple

filters for feature extraction through layer-by-layer convolution and

pooling operations on input data. These features are then converged

in fully connected layers, addressing regression problems through

activation functions, as depicted in Figure 3B.

3.2.3 Informer
The Informer model, an enhanced version of the Transformer

model, is a lightweight deep learning model based on attention

mechanisms. It effectively captures dependencies in long sequences,

offering a novel solution to address prolonged sequence challenges

(Zhou et al., 2020). The Informer model comprises an encoder and

a decoder, as depicted in Figure 4.

The calculation of the attention mechanism primarily involves

three vectors: the Query vector matrix (Q), the Key vector matrix

(K), and the Value vector matrix (V). Here, LQ represents the

sequence dimension of the query vector matrix, LK is the sequence

dimension of the key vector matrix, LV is the sequence dimension of

the value vector matrix, and d is the input dimension. The

probability form A of the attention coefficients for the i-th query

is expressed as follows (Equation 8):

A(qi,K ,V) =o
j

k(qi, kj)

o
i
k(qi, ki)

vj = Ep(kjjqi)½Vj� (8)
A B

FIGURE 3

Model schematic diagram: (A) LSTM model; (B) CNN model.
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The sparsity scoreM for the i-th Query is expressed as (Equation 9):

M(qi,K) = lno
LK

j=1
e
qik

T
jffiffi
d

p
−

1
LK
o
LK

j=1
e
qik

T
jffiffi
d

p
(9)

The final sparse self-attention formula is as follows (Equation 10):

A(Q,K ,V) = softmax
QKTffiffiffi

d
p

� �
V (10)

Where, the Q matrix is obtained by probabilistic sparsification

of the query vector matrix Q.

The Encoder captures long-range dependencies in sequences

through a multi-head sparse self-attention module. A distillation layer

is utilized to reduce network parameters and emphasize features, and

the distillation principle can be expressed as follows (Equation 11):

Xj+1 = MaxPool s ½Conv1d(½Xj�AB)�
� �

(11)

Where, MaxPool denotes the maximum pooling operation; s is

the activation function, and Conv1d represents one-dimensional

convolution operation along the sequence.

The Decoder computes forward and predicts long sequence

outputs efficiently in the generative structure of Informer. Its input

format is as follows (Equation 12):

Xfeed _ de = Concat(Xtoken,X0) ∈ R(Ltoken+Ly)�d (12)

Where, Xtoken represents the start character, X0 is a placeholder,

and Concat signifies their concatenation.
3.3 Evaluation indicators

To compare the predictive accuracy of various models, this

study employs Root Mean Square Error (RMSE), Mean Absolute

Error (MAE), and the coefficient of determination (R2), as well as

the Maximum Relative Error (MRE), as evaluation metrics for

model performance. As shown in Table 2, yobs represents the

observed values, yf represents the predicted values, yobs represents
Frontiers in Marine Science 06
the mean of the observed values, and n is the number of

observed values.
3.4 Interpretability analysis

SHAP, a game theory-based interpretable machine learning

method, addresses the challenge of limited interpretability in

machine learning models (Štrumbelj and Kononenko, 2014;

Wang R. Z. et al., 2021; Wang et al., 2022). It quantifies the

specific contributions of each feature to model results by

comparing the average changes in output through the

construction of combinations of different input variables. The

SHAP value for each input variable represents its weighted

average marginal contribution (Equation 13):

Fi =oS⊆N(i)
Sj j ! (n − Sj j − 1) !

n !
½F(S ∪ if g) − F(S)� (13)

Where, Fi denotes the SHAP value of input variable i, where a

positive (negative) value indicates a positive (negative) contribution

of variable i to the predicted result. n is the number of input

variables, N is the complete set of input variables, S represents the

set excluding variable i, which is a subset of N, and F(S) represents

the predicted result based on the input S.
4 Results

4.1 ADCIRC numerical simulation

4.1.1 Calculation area and grid division
The storm surge model’s calculation region significantly

influences the results. If the domain is too small, it may miss

distant sea fluctuations, leading to large errors. Conversely, if it’s too

large, computational efficiency is impacted. To enhance accuracy

while maintaining efficiency, this study covered parts of the

northwestern Pacific, central and northern South China Sea,
FIGURE 4

Model schematic of Informer.
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Beibu Gulf, Qiongzhou Strait, and other regions, specifically 105°-

132°E, 7°-32°N. The model employed a non-structured triangular

mesh created by OceanMesh2D, with a minimum coastal resolution

of 2000m and a maximum resolution of 30000m. For regions of less

concern, the minimum resolution was set at 3000m. The entire

computational domain comprised 160,551 grids and 91,158 nodes,

as illustrated in Figure 5. The storm surge model for the Pearl River

Estuary utilized GEBCO_2020 global bathymetric data with a

resolution of 15″×15″. The typhoon wind fields were generated

using the Holland model with input from the China Typhoon

Network. The pressure and wind speed results were interpolated

onto the model grid points. The model began with a cold start,

setting initial water levels and flow fields to zero. In shallow areas,

dynamic boundary dry-wet grid technology was applied with a

0.02m threshold for determining dry-wet grids. Grid points with a

total water depth below 0.02m were considered dry. Each typhoon

model was simulated for 3.5 days with a 10-second time step.
4.1.2 Verification of typical storm surge
Due to space constraints, this model validated storm surge

numerical simulations using data from Typhoon “Mangkhut”

(1822) and Typhoon “ Nesat “ (2220). As the SZ and DLS stations

are located at the entrance of the Modaomen Waterway, they are
Frontiers in Marine Science 07
typically the first to be impacted by typhoons landing near the Pearl

River Estuary. Therefore, hourly surge data from these stations were

used for verification, as depicted in Figure 6. Typhoon Mangkhut

landed around 17:00 on September 16, coinciding with an

astronomical neap tide. SZ station experienced a maximum surge

of 3.39m at 17:00 on the 16th, with a simulated surge of 3.31m. The

absolute water level error for the maximum surge was 0.08m, with a

phase error within 1 hour. DLS station recorded a maximum surge of

2.81m at 17:00 on the 16th, while the simulated surge was 2.83m. The

absolute water level error for the maximum surge was 0.02m, with a

phase error within 1 hour. Due to the close timing of the astronomical

tide’s highest level to the typhoon’s landfall, the combination of

astronomical tide and storm surge increased the surge and destructive

power. The maximum storm surge occurred before or during the

typhoon’s landfall for typhoons directly affecting Zhuhai. Affected by

Typhoon Nesat, the SZ station experienced a maximum surge of

0.69m around 7:00 on October 18. The simulated maximum surge

was 0.67m, resulting in an absolute water level error of 0.02m, with a

phase error within 1 hour. The DLS station had its maximum surge of

0.66m around 6:00 on the 18th. The simulated maximum surge was

0.71m, resulting in an absolute water level error of 0.05m, with a

phase error within 1 hour.

In conclusion, the simulation closely matched the observed water

level changes, particularly in accurately predicting the maximum

surge. The model’s results are reasonable, demonstrating its ability to

simulate the storm surge process in the Pearl River Estuary effectively.

This lays the groundwork for further analysis of storm surge impact

mechanisms in the region.

Based on the simulations during Typhoon 1822 and Typhoon

2220, the maximum storm surge in the Pearl River Estuary were

summarized, revealing a spatial distribution (see Figure 7). During

Typhoons Mangkhut and Nesat, the surge gradually increased from

outside the estuary to the entrance, ranging from 1.5-4.0 meters and

0.4-0.8 meters, respectively. This is attributed to their westward

landfall, causing prolonged onshore winds and significant surge in

the Pearl River network, influenced by the trumpet-shaped

topography of Estuary and upstream runoff.
A B

FIGURE 5

Grid meshing and water depth in the research area. (A) Regional division; (B) Water depth distribution.
TABLE 2 Formulas of evaluation indicators.
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4.2 Data-driven model

Astronomical tides exhibit predictable periodicity, allowing for

relatively straightforward near-term forecasts, supported by mature

forecasting methods. In contrast, storm surge prediction is more

challenging as it involves not only the influence of previous time

sequences but also numerous uncertain factors such as air pressure,

wind speed, wind direction, etc (Goff et al., 2019; Bilskie et al.,

2020). Especially during the approach of a typhoon, the low-

pressure suction effect and sustained strong onshore winds can
Frontiers in Marine Science 08
lead to significant seawater surges, particularly impactful when

coinciding with high astronomical tides (Ding et al., 2013; Bilskie

et al., 2014). Therefore, storm surge prediction is essentially a multi-

factor time series forecasting challenge.

The storm surge prediction model in this study considered

multiple factors, including date, latitude, longitude, atmospheric

pressure, wind speed, and preceding water level. It’s a multi-factor

input, single-output model. To objectively evaluate the model’s

performance in forecasting tasks across various time sequences, the

dataset was chronologically partitioned. Out of 1344 samples
A B

FIGURE 7

The spatial distribution of maximum storm surge in the Pearl River Estuary, (A) 1822, (B) 2220.
A B

DC

FIGURE 6

Fitting plots comparing the numerical simulations from the ADCIRC model with the observed value. (A) 1822-SZ station; (B) 1822-DLS station; (C)
2220-SZ station; (D) 2220-DLS station.
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generated by the ADCIRC numerical model simulating 16

typhoons, 70% comprised the training set, 10% served as the

validation set, and the remaining 20% constituted the test set.

Model parameter selection significantly impacts prediction

outcomes. In this study, parameters were chosen using a

controlled variable approach to prevent overfitting of the training

set and enhance the generalization ability of the test set. Optimal

parameters within predefined ranges are presented in Table 3.

4.2.1 The influence of the preceding time step
To optimize the model’s accuracy, various factors at preceding

time steps (6, 12, 18, 24, and 30 hours) were selected as input

conditions for training. The trained model was then used to predict

storm surge at the SZ and DLS stations for the next 1, 3, 6, 12, and

18 hours. The forecast error results for storm surge at the SZ station

are shown in Figure 8. For the best model predicting the next 1

hour, the LSTM model with a preceding time step of 6 hours

achieved an RMSE of 0.11m andMAE of 0.07m. The best model for

predicting the next 3 hours was the CNN model with a preceding

time step of 12 hours, resulting in an RMSE of 0.22m and MAE of

0.12m. The best model for predicting the next 6 hours was the

Informer model with a preceding time step of 18 hours, resulting in

an RMSE of 0.30m and MAE of 0.15m. For the next 12 hours, the

best model was the Informer model with a preceding time step of 24

hours, resulting in an RMSE of 0.40m and MAE of 0.19m. Finally,

for the next 18 hours, the best model was the Informer model with a
Frontiers in Marine Science 09
preceding time step of 30 hours, resulting in an RMSE of 0.47m and

MAE of 0.24m. The storm surge forecast error results for the DLS

station were shown in Figure 9. Consistent with the forecast results

for the SZ station, the optimal models and their respective

preceding time steps for different forecast periods were as follows:

1-hour forecast: LSTM model with a 6-hour preceding

time step.

3-hour forecast: CNN model with a 12-hour preceding

time step.

6-hour, 12-hour, and 18-hour forecasts: Informer model with

preceding time steps of 18, 24, and 30 hours, respectively.

4.2.2 Forecast results
Based on the above analysis, optimal models and corresponding

lead times were selected to forecast storm surge at SZ and DLS

stations. As depicted in Figure 10, the model’s accuracy diminishes

with longer forecast extension. Meanwhile, occasional significant

deviations are noted in optimal model predictions across various

forecast extension. While these deviations don’t affect overall

predictions, they can impact the objectivity of evaluating model

performance using MRE. Hence, when assessing overall

performance using MRE, deviations at individual points

were disregarded.

Table 4 shows the performance of different models in predicting

storm surges at SZ and DLS stations across various forecast extension.

For the 1-hour forecast, LSTM performed best, with RMSE,MAE, R²,

and phase error indicators around 0.10, 0.07, 0.95, and 0.05 hours,

respectively, and MRE between 13% and 16%. For the 3-hour

forecast, CNN emerged as the top model, with RMSE, MAE, R²,

and phase error indicators approximately 0.22, 0.12, 0.79, and 0.21

hours, respectively, andMRE ranging from 25% to 43%. However, for

longer forecast horizons, neither LSTM nor CNN outperformed the

Informer model. The Informer model showed superior performance

for forecasts spanning 6 to 18 hours, with RMSE, MAE, and R²

ranging between 0.29-0.48, 0.15-0.26, and 0.50-0.70, respectively.

Phase error was maintained within 0.30-0.51 hours, and MRE

ranged from 70% to 75%. This highlights Informer’s superior

adaptability to and proficiency in addressing long-term prediction

needs, attributed to its lightweight Transformer-based design

incorporating robust attention mechanisms for more precise

capturing of dependencies in extended sequences.
4.3 Interpretational analysis

For better interpretability of various predictionmodels, the SHAP

visualization tool was used to investigate the importance and

contribution of input features in predicting results at the two

stations. The average SHAP value for each feature was calculated

based on the mean of absolute SHAP values across all samples.

Figure 11 showed varying importance rankings and global impact

diagrams for input features among the three models at the SZ station.

This discrepancy arises because SHAP value calculation is based on

the model’s structure and specific feature values of each sample.

Therefore, variations in the structure and parameters of different

models lead to differences in their SHAP values for the same feature
TABLE 3 Optimal parameters of the model.

Model Parameters Optimal value

LSTM

Units 50

epochs 200

batch_size 32

CNN

Filters 64

kernel_size 3

pool_size 2

epochs 200

batch_size 32

Informer

e_layers 2

d_layers 1

d_model 512

s_layers 2

n_heads 8

d_ff 2048

learning_rate 0.0001

batch_size 32

train_epochs 6

patience 3

dropout 0.05
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(Ullah et al., 2022; Prendin et al., 2023). In the LSTM model,

longitude had the most significant impact, followed by latitude, and

then atmospheric pressure and wind speed. In the CNNmodel, wind

speed was the most influential, followed by longitude, and then

latitude and atmospheric pressure. In the Informer model, longitude

had the most substantial impact, followed by wind speed, and then

latitude and atmospheric pressure.

In comparing Figure 12, it was evident that the feature

importance rankings at DLS station were identical to those at SZ

station within the same model. While different models exhibited

varying feature importance rankings, longitude consistently hold a

high degree of influence on prediction results. Even when ranked

second, the difference in impact between longitude and the most

influential feature was minimal. This emphasized the crucial role of

longitude in predicting storm surge across different tide gauge

stations. Considering Figures 11, 12, except for atmospheric

pressure exhibiting a negative impact on prediction results in
Frontiers in Marine Science 10
different models at the two stations, both latitude and wind speed

consistently exerted noticeable positive influences on the

prediction outcomes.
5 Discussion

Storm surges, dynamic and intricate systems with a distinct

oceanic lifecycle, face a challenge due to the scarcity of real-time

observational data. The intricate terrain around the Pearl River

Estuary induces phenomena like wave reflection, refraction, and

breaking as waves approach the shore, causing wave accumulation

and subsequent water level rise. The absence of detailed data on

seawall features, land elevation, and block properties has

persistently impeded the development of higher-resolution

numerical models for storm surges (Jia et al., 2016; Contento

et al., 2020; Huang, 2022). Compared to traditional dynamic
FIGURE 9

Forecast error chart at the DLS station.
FIGURE 8

Forecast error chart at the SZ station.
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models, data-driven models have a more streamlined structure.

Even in the absence of boundary conditions, terrain, and runoff

signals, they can still replicate the numerical simulation results,

serving as a reference for operational departments in short-term

forecasting. The opaque nature of DL models complicates the

understanding of neural network behavior, leading to diverse

levels of interpretability across models. For landfalling typhoons,

the landing location and central minimum pressure notably

influence storm surge, aligning with SHAP interpretability

analysis results. The study encountered computational memory

constraints, limiting the expansion of network depth and neuron

count per layer. As a consequence, the research primarily provided

short-term forecasts within 24 hours. For forecasts beyond this

timeframe, dynamical models were deemed more reliable. It’s

crucial to recognize that the predictive performance of neural

network models is closely tied to the representativeness of

selected samples. The data used in this study were from tide

gauges in the Modaomen Waterway of the Pearl River Estuary,

exhibiting localized characteristics. In practical applications,
Frontiers in Marine Science 11
considering the region’s spatiotemporal features, it’s advisable to

leverage reanalysis data, satellite observations, synthetic typhoon

data, etc. Techniques like transfer learning can be used for cross-

space and cross-time data fusion and assimilation among diverse

samples, enhancing the model’s generalization capability.
6 Conclusion

In this study, we employed both the dynamic numerical model

ADCIRC and data-driven models, including LSTM, CNN, and

Informer, to forecast storm surge. Simultaneously, we conducted

interpretability analysis on the various input features of different

models for two tide gauge stations. The key findings of this study are

summarized as follows:
(1) The ADCIRC numerical model effectively simulated storm

surge variations induced by TyphoonMangkhut (1822) and

Typhoon Nesat (2220), displaying excellent consistency
A B

FIGURE 10

Fitting plots comparing the predicted results of data-driven models with the numerical simulations from the ADCIRC model. (A) SZ station; (B)
DLS station.
TABLE 4 Evaluation of predicted results against numerical simulation results on the test set.

Tide
gauge

Forecast
period

Model RMSE (m) MAE (m) R²
MRE
(%)

Maximum surge
occurrence

phase error(h)

SZ

t+1 LSTM 0.11 0.07 0.95 15.73 0.05

t+3 CNN 0.22 0.12 0.80 25.85 0.21

t+6

Informer

0.30 0.15 0.69 70.32 0.31

t+12 0.40 0.19 0.58 73.90 0.42

t+18 0.47 0.24 0.52 77.52 0.48

DLS

t+1 LSTM 0.10 0.08 0.96 13.88 0.05

t+3 CNN 0.23 0.14 0.79 43.27 0.21

t+6

Informer

0.30 0.19 0.70 75.81 0.30

t+12 0.40 0.21 0.59 87.80 0.41

t+18 0.48 0.25 0.49 74.14 0.51
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A1

B1

C1

A2

B2

C2

FIGURE 12

The feature importance and global impact charts for different prediction models at DLS station. (A–C) represent LSTM, CNN and Informer model
respectively, corner mark 1 represents feature importance ranking, corner mark 2 represents global impact map.
A1

B1

C1

A2

B2

C2

FIGURE 11

The feature importance and global impact charts for different prediction models at SZ station. (A–C) represent LSTM, CNN and Informer model
respectively, corner mark 1 represents feature importance ranking, corner mark 2 represents global impact map.
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Fron
with observed data and accurately portraying the storm

surge processes.

(2) Using ADCIRC numerical simulation data as samples,

storm surge predictions were performed with LSTM,

CNN, and Informer models. The optimal models and

their respective preceding time steps for different forecast

periods were as follows:

1-hour forecast: LSTM model with a 6-hour preceding

time step.

3-hour forecast: CNN model with a 12-hour preceding

time step.

6-hour, 12-hour, and 18-hour forecasts: Informer model with

preceding time steps of 18, 24, and 30 hours, respectively.

(3) Utilizing SHAP for interpretable machine learning analysis,

diverse models displayed unique feature importance rankings.

However, within the same model, consistency emerged across

different tidal stations. longitude consistently exhibited a

significant impact on prediction results in models at different

stations. Moreover, apart from atmospheric pressure

negatively affecting predictions, Latitude and wind speed

consistently exerted positive influences.
In summary, the data-driven DL models showed robust

forecasting performance, capturing the actual storm surge

variations effectively. With significantly faster operational speeds

compared to dynamic models, they offer high applicability and

forecasting accuracy, providing valuable scientific support and

references for future storm surge predictions along the Greater

Bay Area coastline.
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