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In maritime logistics optimization, considerable research efforts are focused on

the extraction of deep behavioral characteristics from comprehensive shipping

data to discern patterns in maritime vessel behavior. The effective linkage of

these characteristics withmaritime infrastructure, such as berths, is critical for the

enhancement of ship navigation systems. This endeavor is paramount not only as

a research focus within maritime information science but also for the progression

of intelligent maritime systems. Traditional methodologies have primarily

emphasized the analysis of navigational paths of vessels without an extensive

consideration of the geographical dynamics between ships and port

infrastructure. However, the introduction of knowledge graphs has enabled the

integration of disparate data sources, facilitating new insights that propel the

development of intelligent maritime systems. This manuscript presents a novel

framework using knowledge graph technology for profound analysis of maritime

data. Utilizing automatic identification system (AIS) data alongside spatial

information from port facilities, the framework forms semantic triplet

connections among ships, anchorages, berths, and waterways. This enables

the semantic modeling of maritime behaviors, offering precise identification of

ships through their diverse semantic information. Moreover, by exploiting the

semantic relations between ships and berths, a reverse semantic knowledge

graph for berths is constructed, which is specifically tailored to ship type, size,

and category. The manuscript critically evaluates a range of graph embedding

techniques, dimensionality reduction methods, and classification strategies

through experimental frameworks to determine the most efficacious

methodologies. The findings reveal that the maritime knowledge graph

significantly enhances the semantic understanding of unmanned maritime

equipment, thereby improving decision-making capabilities. Additionally, it

establishes a semantic foundation for the development of expansive maritime

models, illustrating the potential of knowledge graph technology in advancing

intelligent maritime systems.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1390931/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1390931/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1390931/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1390931/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1390931/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1390931&domain=pdf&date_stamp=2024-06-05
mailto:meiqiang@jmu.edu.cn
mailto:wangp@ict.ac.cn
https://doi.org/10.3389/fmars.2024.1390931
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1390931
https://www.frontiersin.org/journals/marine-science


Li et al. 10.3389/fmars.2024.1390931

Frontiers in Marine Science
KEYWORDS

knowledge graph, graph embedding, intelligent maritime, ship classification, similar
berth recommendation
1 Introduction
The advent of smart maritime systems was marked by the

integration of distributed devices and the application of artificial

intelligence (AI) and machine learning (ML) technologies. These

systems extensively utilize sensors, including GPS, radar, and

meteorological sensors, to capture real-time positioning and vital

status information of vessels. However, the maritime domain is

characterized by intricate spatiotemporal relationships, influenced

by factors such as ship trajectories, weather variations, and port

activities. Traditional AI and ML techniques face challenges in

accurately modeling these relationships due to their limited

knowledge representation capabilities, which fail to generalize the

dynamic and multidimensional nature of the maritime

environment. Additionally, the heterogeneity of maritime data,

arising from disparate sources and formats, poses significant

challenges in data standardization and interoperability in initial

smart maritime systems.

To address these limitations, this study introduces knowledge

graphs as a sophisticated method for exploring complex

spatiotemporal relationships within the maritime domain. By

defining entities and their interconnections, knowledge graphs

offer a robust mechanism for semantic consistency, facilitating the

resolution of semantic discrepancies during the information fusion

process and ensuring data standardization and consistency. This

knowledge graph-based approach, which transcends traditional

distributed device and ML methods, enables advanced intelligent

queries and reasoning with its graph data representation. Moreover,

it exhibits remarkable scalability, allowing for the seamless

integration of new entities and relationships (Fensel et al., 2020).

Within the maritime sector, this methodology enables

comprehensive analyses through the rules and relationships

defined in the knowledge graph, thereby offering flexible

adaptation to the evolving informational landscape and

supporting a wider array of application scenarios.

A knowledge graph constitutes a network of interconnected

entities and their relationships, where each entity and its attributes

represent distinct knowledge points, and the relationships describe

the associations among these points. Formally, a knowledge graph

G is represented as G ∈ (E,  R,   S), where E = e1, e2,…, en  f g
denotes the entity set in the knowledge base, encompassing Ej j
distinct entities; R = r1, r2,…, rnf g signifies the relationship set,

comprising Rj j different relationships; and S⊆ E � R� E

encapsulates the triple set within the knowledge base. A triplet,

the fundamental unit of this representation, is denoted as s =

(h,   r,   t), where h,   t ∈ E represent the head and tail entities in

the triplet, and r ∈ R denotes the relationship connecting these two
02
entities. For instance, in the triplet (Paris, the Capital of, France), the

head “Paris“ and the tail “France“ are real-world entities connected

through the relationship “the Capital of”. Graph data in knowledge

graphs, characterized by numerous nodes and edges, represent a

high-dimensional data structure. However, processing such data

can introduce computational complexity, the curse of

dimensionality, and challenges in interpretability and

visualization. Graph embedding techniques, therefore, are crucial

for transforming high-dimensional graph data into manageable,

lower-dimensional vector representations, capturing the intrinsic

relationships, similarities, and structural characteristics among

graph nodes (Wang et al., 2017). Prominent embedding

methodologies like TransE (Bordes et al., 2013), TransD (Wang

et al., 2014), and RESCAL (Nickel et al., 2011), among others,

facilitate dimensionality reduction and vectorization of graphs

through diverse principles. Knowledge graphs and graph

embedding techniques have found application across intelligent

transportation and maritime sectors (Ahmed et al., 2022; Liu et al.,

2023a; Wang et al., 2023a; Liu et al., 2023b; Li et al., 2024) for

functions such as traffic anomaly detection, marine environmental

monitoring, and maritime geographic analysis, presenting their

versatility and utility in addressing industry-specific challenges.

In shipping, ships form similar geographical relationships with

geographic elements such as waterways, anchorages, and berths.

Meanwhile, berths also consider the size and cargo type of ships in

order to accommodate them, forming a relationship with the

attributes of the ships. However, traditional recommendation

methods are manual and cannot empower decision-making

machines to meet the requirements of shipping. Therefore, the

following two problems need to be addressed in research: (1) How

to characterize the behavior of ships and the profile of berths using

an understandable semantic pattern; (2) How to assist unmanned

devices in making accurate decisions based on this pattern, thereby

ensuring the safety of jurisdictional waters and efficiency of the port.

This study introduces the “Maritime Heterogeneous Knowledge

Graph Brain”, a concept based on the heterogeneous knowledge

graph’s construction. This system capitalizes on the heterogeneous

knowledge graph data to autonomously perform tasks such as node

classification, clustering, link prediction, and multimodal fusion,

which integrates node and edge features, graph structure, and

contextual characteristics. The “Maritime Heterogeneous

Knowledge Graph Brain” employs diverse maritime graph data to

enhance ship dispatch efficiency, optimize maritime decision-

making, and improve the utilization of shore-based facilities,

thereby boosting emergency response capabilities in ports and

maritime environments. As depicted in Figure 1, the maritime

heterogeneous knowledge graph is stored across multiple

distributed databases. Information is then transmitted to various
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task-specific terminals, such as ships and shore-based facilities, via

servers dedicated to different tasks. This arrangement facilitates

real-time processing and response, advancing the development of

maritime intelligence. The study conducts experiments and

analyzes the effects based on the previously constructed maritime

heterogeneous knowledge graph, focusing on typical applications

such as ship classification and similar berth recommendation.

This manuscript combines knowledge graphs with maritime

domain expertise to introduce a pioneering intelligent maritime

application framework predicated on knowledge graph technology.

The principal contributions of this manuscript are shown below:
Fron
1. The manuscript proposes pragmatic solutions to real-world

challenges within the maritime industry. By using

knowledge graph embedding technology, it addresses the

uncertainties inherent in ship type prediction and the

complexities surrounding similar berth recommendations

for these two pivotal business scenarios. These solutions

significantly contribute to enhancing the operational

efficiency of shipping companies, optimizing berth

allocations, and minimizing waiting times.

2. An innovative intelligent maritime application framework,

grounded in knowledge graphs and graph embedding

technology, is proposed. This framework not only

integrates complex data pertaining to ships and

infrastructure but also elucidates deep semantic

relationships between entities via graph embedding

algorithms. Designed with the maritime industry’s

specific requisites in mind, its modular architecture

ensures both sca lab i l i ty and adaptab i l i ty for

prospective applications.

3. The paper investigates the utilization of this framework in

facilitating specific downstream tasks, specifically ship type

prediction and similar berth recommendation. Through

the optimization of embedding models, classification

models, and other components, significant enhancements
tiers in Marine Science 03
in task accuracy were achieved. Moreover, experimental

validation of the influence of varied weight distributions

within the combined model on the performance of the

berth recommendation system provides novel insights for

the intelligent recommendation system design.
The structure of this manuscript is methodically organized as

follows: Section 1 introduces the prevailing challenges in the

intelligent maritime domain and advocates for the integration of

knowledge graph methodologies. Section 2 delves into related works

concerning knowledge graphs and the analysis of ship behaviors.

Section 3 introduces the proposed intelligent maritime application

framework that leverages knowledge graphs and graph embedding

techniques. Section 4 validates the framework’s efficacy and optimal

performance for various downstream tasks through comparative

experiments. Section 5 discusses the framework’s applicability

scope, alongside its algorithmic constraints. Section 6 concludes

the manuscript, outlining future research trajectories.
2 Related work

2.1 Overview of related work on
knowledge graphs

Knowledge graphs have become instrumental in the realm of

knowledge storage and representation, exerting a significant

influence across diverse domains. The emergence of big data

coupled with advancements in AI technologies has propelled the

exploration and application of knowledge graphs into a prominent

position within various disciplines. These fields include computer

science, natural language processing, information retrieval, ML, and

human-computer interaction (Fensel op. cit.; Wang op. cit.).

In exploring algorithms related to knowledge graphs, current

research trends focus primarily on enhancing the performance of

downstream tasks and refining the accuracy of knowledge graph
FIGURE 1

Illustration of the “Maritime Heterogeneous Knowledge Graph Brain” concept.
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embeddings. While traditional embedding models have shown

commendable results in tasks like knowledge graph completion,

they often overlook temporal dynamics and the integration of

background knowledge. Li et al. (2023a) put forward an

innovative rule-based embedding technique that extracts

attributes from entities, employing logical rules to augment

datasets, which in turn enhances the precision of knowledge

graph completion endeavors. Jiang et al. (2024) unveiled a

cutting-edge link prediction framework that leverages a multi-

source hierarchical neural network based on knowledge graph

embeddings, aimed at overcoming challenges in extracting

intricate graph information and fostering the fusion of multiple

feature knowledge semantics.

Owing to their robust knowledge representation capabilities,

knowledge graphs have found applications in diverse fields,

including recommendation systems (Bertram et al., 2023),

intelligent healthcare (Yang et al., 2024), and industrial

production (Zhengyu et al., 2022). For instance, Chen et al.

(2022) utilized migration data from official provincial and city

websites to craft a knowledge graph that maps the activities of

COVID-19 patients, facilitating tracking, visualization, and

reporting efforts in managing the pandemic. In the maritime

sphere, Liu et al. (2023c) developed a Transformer-based model

employing multi-convolution bidirectional encoders for extracting

essential information from maritime pollution prevention

regulations and laws, aiding in port state control inspections to

minimize ship pollution. Furthermore, Gan et al. (2023) analyzed

ship collision investigation reports issued by the China Maritime

Safety Administration, proposing a novel approach for constructing

knowledge graphs to elucidate the underlying factors of maritime

accidents, thereby aiming to improve maritime traffic safety.

Despite the extensive utility of knowledge graphs across various

sectors, challenges remain in the domain of geographical

information, especially concerning maritime transportation. One

primary issue is the need for real-time updates; maritime data, such

as ship positions and weather conditions, are subject to rapid

changes, necessitating knowledge graphs that can accommodate

immediate updates to mirror the current realities. Additionally, the

integration of disparate data sources to achieve data consistency and

connectivity for a comprehensive knowledge graph poses significant

hurdles. The diversity in data standards and formats across sources

calls for the development of robust data integration and cleansing

methodologies to ensure seamless knowledge graph construction.
2.2 Overview of related work on ship
behavior mining

The advent of deep neural networks, computer vision, and

natural language processing has spotlighted ship behavior mining as

a key area within the intelligent maritime domain. Focused research

endeavors in this area include ship trajectory detection (Deng et al.,

2023; Zhang et al., 2023), intention prediction (Gao and Shi, 2020;

Murray and Perera, 2021), and classification (Zhou et al., 2019),

employing advanced computational models like convolutional

neural networks (CNNs) (Chen et al., 2020, 2024) and generative
Frontiers in Marine Science 04
adversarial networks (GANs) (Jia et al., 2023). Wang et al. (2023b)

proposed a ship trajectory prediction model based on a sparse

multi-graph convolutional hybrid network. This model simulates

the dynamics and movement patterns of ships across spatial and

temporal dimensions, incorporating features of ship trajectories

that are sensitive to time into the prediction framework. Ma et al.

(2021), by conducting statistical analysis on recorded ship

movement trajectories, discovered that ship movements

frequently show a strong correlation with their long-term

historical trajectories. Consequently, they proposed an augmented

long short-term memory network (ALSTM), which incorporates

skip connections and adaptive memory modules into the traditional

LSTM structure. This enhancement enables current memory units

to engage with past data, facilitating a more sophisticated

representation of the uncertainty and varied movements of

individual ships. Zheng et al. (2022) introduced a proximal policy

optimization and route guidance (PPORG) algorithm for

autonomous ship navigation, focusing on collision avoidance and

route optimization.

Ship classification research has also seen significant

advancements. Escorcia-Gutierrez et al. (2022) employed masked

convolutional neural networks for the detection of small ships and

used a collision body optimization algorithm alongside a weighted

regularized extreme learning machine method for the efficient

classification of the detected ships. Similarly, Liang et al. (2021)

introduced a multi-view feature fusion network (MVFFNet) for

ship classification in the context of imbalanced data. This approach

begins by extracting various multi-view features from automatic

identification system (AIS)-based ship trajectories, followed by the

application of a bidirectional gated recurrent unit network to

amalgamate these multi-view features, thereby producing the ship

classification results.

Multimodal approaches represent a prominent method for

mining ship behavior by extracting features from various sensing

modes and integrating these features to gain a more thorough

understanding and enhanced data mining capabilities. Guo et al.

(2023) developed a multimodal ship trajectory prediction approach

through pattern distribution modeling. This approach utilizes a

vector, randomly sampled from a multivariate Gaussian

distribution, as the representation of trajectory patterns to

generate multiple predicted trajectories. It employs adversarial

learning to allow this Gaussian distribution to effectively capture

ship trajectory patterns. Xiao et al. (2023) introduced an adaptive

data fusion model that leverages multi-source AIS data for ship

trajectory prediction. This model merges maritime mobile service

identifiers and timestamps with multi-source AIS data, utilizing

deep learning techniques for feature extraction and to enhance

adaptability. Wang et al. (2023c) introduced a ship trajectory

prediction model utilizing a sparse multi-graph convolutional

hybrid network (SMCHN), which simulates interactions and

movement trends among ships across temporal and spatial

dimensions. This model enhances its predictive capability by

integrating multi-source information and adjusting weights, and

incorporates a temporal convolutional network with a gating

mechanism for future trajectory predictions. Concurrently, Wang

et al. (2023d) proposed a propagation trajectory interval prediction
frontiersin.org
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framework that employs upper and lower bound estimation and

attention-modified long short-term memory (LSTM) networks

optimized through Bayesian techniques. This framework adopts

dual optimization strategies tailored to interval prediction of ship

trajectories, focusing on differentiated interval widths for longitude

and latitude and a hyperparameter optimization to minimize

coverage width criterion. Wang et al. (2024) presented an

approach that merges spatial and temporal models to extract

high-level features of ships from historical trajectory data.

Employing a spatio-temporal graph convolutional network (ST-

GCN) followed by RT-CNN, this method captures temporal

dependencies of spatial interaction features, yielding refined

spatio-temporal trajectory predictions. Shin et al. (2024)

developed the AIS-ACNet, a deep learning framework for

predicting AIS data that utilizes auxiliary tasks and a

convolutional encoder. This model leverages diverse AIS data

features and effectively integrates ship dynamics to enhance

trajectory prediction accuracy. Zhang et al. (2024) introduced

TrajBERT-DSSM, a novel method for ship destination prediction

that analyzes AIS records to compare navigational trajectories of

vessels with historical data, focusing on spatio-temporal

correlations, geometric properties, and motion patterns. This

method integrates a hierarchical geospatial coding system,

geohash, with TrajBERT and the deep structured semantic model

(DSSM) to assess trajectory similarity and predict destinations. Liu

H et al. (2023) proposed a mechanism for monitoring and detecting

abnormal ship behavior using a graph attention predictive and

reconstructive network. This mechanism employs a sliding window

technique for consistent data input and utilizes the peak over

threshold (POT) method to dynamically adjust anomaly detection

thresholds based on environmental changes in marine settings.

Similarly, Li et al. (2022) presented a method for the semantic

recognition of ship entry and exit movements based on a

probabilistic topic model. This method is capable of uncovering

ship movement patterns from vast amounts of trajectory data in an

unsupervised way, thereby rendering the results more interpretable.

Furthermore, some studies have extended intelligent systems to

other aspects of the maritime domain. Li X et al. (2023) introduced

the temporal fusion transformer (TFT), a forecasting model based

on attention mechanisms, taking the Tianjin Port maritime area as a

case study to achieve multi-period, multi-feature forecasts of

pollutant emissions, providing data references for management

decisions of relevant departments. Xie et al. (2023) utilized the

TFT, a deep learning model for time series forecasting based on

attention mechanisms, to predict the spatiotemporal characteristics

of ship emissions over multiple periods, achieving fine-grained

traceability of ship emissions.

Our maritime prediction framework distinguishes itself from

existing research by its foundation on a heterogeneous knowledge

graph, which incorporates various data processing methods tailored

to different downstream tasks. This design not only enhances the

framework’s scalability but also improves its reusability across

diverse tasks.
Frontiers in Marine Science 05
3 Technical framework and dataset

3.1 Technical framework

This paper introduces an application framework leveraging the

versatility of knowledge graphs within the maritime domain. The

framework is designed around two key application scenarios: ship

classification and similar berth recommendations. It integrates

knowledge graph embeddings using comprehensive AIS data

from ports and ships, utilizing the resulting vectors for specific

downstream tasks. Additionally, the framework includes a

visualization component, facilitating the graphical representation

of maritime knowledge graphs derived from the dataset.

3.1.1 Process flowchart
The operational flow of this framework is illustrated in Figure 2.

The initial phase involves constructing ship and berth knowledge

graphs from triplet data. Following this, a knowledge graph

embedding model trains on this data to learn the representative

vectors for ships and berths. To improve computational efficiency,

these learned vectors undergo dimensionality reduction. The

dimensionally reduced vectors are then employed in data analysis

for downstream tasks, specifically focusing on ship classification

models and similar berth recommendation strategies.
3.1.2 Graph embedding model
The data within knowledge graphs consist of an extensive array

of nodes and edges, embodying a form of high-dimensional data.

While processing such data is plausible, it often incurs challenges

including computational complexity, the curse of dimensionality,

and impediments in interpretability and visualization. To address

these challenges, graph embedding methods are employed to

transform high-dimensional graph data into more manageable,

lower-dimensional vector representations. This process entails

converting nodes and edges within knowledge graphs into vectors

within a vector space, enabling these vectors to encapsulate the

relationships, similarities, and structural characteristics among

nodes. Such transformation facilitates the application of

knowledge graphs across diverse data analysis and ML endeavors.

In our framework, we adopt various graph embedding models

including TransE (Bordes op. cit.), TransD (Wang op. cit.),

TransH (Lin et al., 2015), TransR (Ji et al., 2017), Analogy (Liu

et al., 2017), ComplEx (Trouillon et al., 2016), and DistMult (Yang

et al., 2014) to capture and elucidate the latent features inherent in

the relationships and entities associated with berths. This

methodology allows for encoding each berth into vectors of

uniform dimensionality, thereby furnishing a quantifiable and

analyzable feature representation for berths. Here is a brief

overview of the graph embedding model implemented in this study.

TransE is a seminal approach to knowledge graph embedding.

Central to TransE is the notion of transforming entities and their

interrelations into vectors within a unified, low-dimensional vector
frontiersin.org
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space, effectively capturing the relational semantics between them.

For each fact triple (h, r, t) in the knowledge graph, TransE treats

this as a translational operation where the vector of the head entity

h, through the action of the relation vector r, aligns with the vector

of the tail entity t. Figure 3A illustrates the TransE model schematic.

The model is trained to minimize the translational distance for

positive sample embeddings while maximizing it for negative ones.

This approach not only enhances the model’s efficacy in tasks like

link prediction but also enhances computational efficiency.

However, TransE has limitations in addressing complex

relationships, such as one-to-many, many-to-one, and many-to-

many scenarios.
Frontiers in Marine Science 06
To overcome these limitations, the TransD model extends the

capabilities of TransE. Illustrated in Figure 3B, TransD introduces a

dynamic mapping matrix for each entity-relation pair, which

facilitates the generation of new embeddings for head and tail

entities. This matrix, derived from the original embedding vectors

of the entities and relations, allows TransD to flexibly model a

variety of relationship types. Given a fact triple (h, r, t), In TransD,

the mapped head and tail entity vectors are denoted as h 0 = h +Mrh

and t 0 = t +Mrt, respectively, with Mr being the mapping matrix

calculated based on relation r. Like TransE, TransD employs

translational operations to link the head and tail entities, but its

introduction of a dynamic mapping matrix significantly augments
B

C

D

A

FIGURE 3

(A–D) Schematic diagram of the graph embedding model based on vector decomposition.
FIGURE 2

Framework flowchart.
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the model’s ability to handle complex relational structures, building

upon the foundational principles established by TransE.

The TransH model builds upon the foundations of the TransE

model by introducing a novel approach that models each relation as

a hyperplane. In this setup, entities are projected onto this

hyperplane using relation-specific projection vectors, followed by

a translational operation similar to TransE. Figure 3C illustrates the

schematic diagram of the TransH model. For a given fact triplet

(h, r, t), TransH first computes the projection vectors h⊥  and t⊥ of

the head and tail entities onto the hyperplane corresponding to

relation r. Then, on this hyperplane, it ensures that h⊥ is brought

close to t⊥ through the translation of relation r, i.e., h⊥ + r   ≈   t⊥.

TransH utilizes two principal mapping functions: the projection

function that maps entities from the original space onto the

hyperplane, and a translation function that carries out the

translational operation within the hyperplane. This dual-function

approach allows TransH to model various types of relations with

enhanced flexibility.

Similarly, the TransR model evolves from TransE to address

more complex relational structures within knowledge graphs.

TransR segregates entity and relation embeddings into separate

vector spaces, transforming entity vectors from their native entity

space to the relation-specific space using a dedicated transformation

matrix. The model’s schematic diagram is shown in Figure 3D. For

a fact triplet (h, r, t), TransR first transforms the entities h and r into

the relation space using the corresponding transformation matrix

Mr, yielding transformed head entity hr and tail entity tr. In this

relation space, TransR’s goal is to align the transformed head entity

hr closely with the transformed tail entity tr through the translation

of relation r, i.e., hr + r ≈ tr . While TransR substantially enhances

the handling of complex relationships by utilizing separate spaces,

the requisite transformation matrices add computational and

relational complexity, resulting in increased parameterization and

certain operational constraints.

Analogy is a graph embedding model that emphasizes linear

structures to enhance the representation of semantic information in

knowledge graphs. This model strives to maintain the linear structure

of entity and relation embeddings. For a fact triplet (h, r, t), Analogy

approximates the tail entity t by computing the Hadamard product

of the head entity h with the relation r, denoted as h ∘ r ≈ t, where ∘
represents the Hadamard product between vectors. One of the

notable advantages of Analogy is its simplicity and computational

efficiency. With its streamlined architecture, Analogy can be trained

at a lower computational cost, yet it still manages to learn high-

quality embedding vectors. Additionally, by preserving the linear

structure of embeddings, Analogy effectively captures the complex

semantic relationships inherent in knowledge graphs, making it a

robust model for understanding and processing graph-based data.

The ComplEx model leverages the properties of complex

numbers to enhance the representation of entities and relations in

knowledge graphs, particularly focusing on symmetric and anti-

symmetric relationships. In this model, each entity and relation is

depicted as a vector in the complex space. For a triplet (h, r, t) in the

knowledge graph, ComplEx represents the entities h and t, and the

relation r, as complex vectors h, r, t ∈ Cd . A distinctive scoring

function is employed by ComplEx to assess the validity of a triplet,
Frontiers in Marine Science 07
defined as score(h, r, t) = Re(od
i=1hi · ri ·�ti), where Re(·) denotes

taking the real part of the complex number and �ti represents the

conjugate of ti. One of the primary strengths of ComplEx is its

adeptness at articulating symmetrical and anti-symmetrical

relationships via the utilization of complex spaces. For example,

within an anti-symmetrical relation r, if (h, r, t) is valid, then (t, r, h)

is typically not valid, highlighting the model’s capacity to discern

and represent such relational nuances effectively. Additionally, the

ComplEx model is noted for its simplicity and streamlined

parameter set, which contributes to greater efficiency during

training, especially advantageous when handling large-scale

knowledge graphs.

The DistMult graph embedding model utilizes a simplified

matrix factorization approach to learn representations of entities

and relations. In this model, relations are modeled as diagonal

matrices, which significantly reduces the number of parameters and

boosts computational efficiency compared to other matrix

factorization-based graph embedding models. DistMult employs a

direct scoring function to evaluate the validity of a triplet. For a

given triplet (h, r, t), the score is computed by score(h, r, t) =

h⊺diag(r)t, where diag(r) transforms the relation vector r into a

diagonal matrix, and ⊺ denotes the vector transpose. The primary

advantage of the DistMult model is its simplicity and operational

efficiency. By modeling relations as diagonal matrices, DistMult

reduces its parameter load, thereby enhancing its efficiency for

training on large-scale knowledge graphs. However, this simplicity

comes with certain drawbacks. The reliance on diagonal matrices to

represent relations limits DistMult’s ability to capture complex

relational patterns, particularly asymmetric relations.

Consequently, DistMult may underperform in tasks that require

modeling of intricate relationship dynamics compared to more

complex models.
3.1.3 Dimensionality reduction model
Despite the initial transformation of graph data into vector

representations via the aforementioned graph embedding models,

further refinement is crucial to enhance computational efficiency

and focus on the pivotal features of each berth representation

vector. This refinement process aims to filter out noise and

redundant information, thereby sharpening the subsequent

analyses. To achieve this, our framework incorporates established

dimensionality reduction techniques, namely principal component

analysis (PCA) and t-distributed stochastic neighbor embedding (t-

SNE). These methods are adept at condensing the representation

vectors while preserving essential information, thus facilitating

more precise analyses. Here is a brief acknowledgment of the

dimensionality reduction techniques applied in this study.

PCA reduces the dimensionality of data by identifying the

directions that maximize variance within the data. The process

begins with standardizing the data features, followed by calculating

the covariance matrix to analyze correlations between these

features. This analysis helps identify the principal directions of

variance, known as principal components. The original data are

then projected onto the new space defined by these principal

components, effectively reducing its dimensionality.
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t-SNE is an ML-based dimensionality reduction algorithm that

maps high-dimensional data points into a two-dimensional or

three-dimensional space. It simulates the distribution of

similarities among high-dimensional data points in the low-

dimensional space. t-SNE maintains proximity between similar

points and ensures distances between dissimilar ones through an

optimization process, thus preserving both the local and global

structures of the data in the low-dimensional space.

3.1.4 Classification model
Leveraging the dimensionally reduced ship representation vectors,

the framework employs multiple classification models to categorize

ships effectively. This array includes K-nearest neighbor (KNN),

decision tree, random forest, support vector machine (SVM), and

Gaussian naive Bayes, among others. The diversity of ML classification

models enriches the analysis by providing multiple analytical

perspectives and employing varied classification strategies. This

approach ensures the identification of the most effective model for

the intended downstream tasks, optimizing the classification process.

3.1.5 Similarity calculation
For the purpose of similarity analysis, particularly in discerning

the similarity between berths, the framework adopts the cosine

similarity metric. The calculation method of cosine similarity is

shown in Equation (1):

similarity = cos(q) =  
A · B

jjAjj  jjBjj (1)

where A and B denote the vectors under comparison, with the

denominator representing the product of their magnitudes and the

numerator being the dot product of the vectors. This metric’s

independence from vector dimensionality and insensitivity to
Frontiers in Marine Science 08
vector scale render the similarity results straightforward

and interpretable.
3.2 Dataset

The dataset used in this study consists of two primary

components: the vessel entry and departure dataset and the berth

statistics dataset. The vessel entry and departure data were gathered

from the AIS records of ships entering and exiting Tianjin Port,

China, from January to May 2022, as depicted in Figure 4. Tianjin

Port was selected as the focus of this research due to its extensive

navigational channels, anchorages, and berth resources, which offer

a wealth of data and a variety of scenarios for analysis. This selection

enables a thorough examination of vessel behavior and berth

utilization across diverse conditions.

To determine whether the AIS data collected encompassed ship

berthing activities and to eliminate noise data, this study performed

a behavioral analysis on the gathered AIS data. Within this dataset,

each docked ship was identified and cataloged by its Maritime

Mobile Service Identity (MMSI), which facilitated the construction

of a behavioral sequence for the ships based on their MMSI.

Notably, berthing events displayed unique behavioral patterns,

such as a reduction in the ship’s speed to nearly zero during

docking and adherence to the International Maritime

Organization (IMO) standards regarding the ship’s minimum

queue length. Utilizing a sliding window algorithm, as illustrated

in Figure 5, this study grouped points that exhibited latitude and

longitude differences below a specified threshold within a certain

timeframe into single trajectory points. By linking these trajectory

points, the ship’s AIS trajectory was accurately reconstructed to

reflect its behavioral patterns. From the extensive AIS dataset, a
FIGURE 4

The scope of the Tianjin Port vessel entry and departure dataset is shown in the figure, where the orange represents the anchorage area. The green
indicates the entry and departure channels, and the red represents the berthing areas.
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total of 45,648 entries of vessel entry and departure data that

conformed to the study’s criteria were successfully filtered.

The berth statistics dataset was collected based on the utilization

of berths at Shanghai Port and the surrounding port areas

throughout 2021, with the detailed scope of berth data collection

depicted in Figure 6. The Yangtze River Delta region, recognized as

one of China’s most critical economic zones, features an extensive

array of berths within a dynamic maritime transportation

environment. Selecting this region for the study offers a more

comprehensive insight into the complexities and distinctive

challenges of berth management and vessel transportation within

major port clusters.

The statistics compiled include the service duration and the

vessels served at each berth. However, during the data collection

process, instances were noted where multiple ships were docked at

the same berth simultaneously. This could occur either because the

berth is sufficiently large to accommodate several smaller ships at

once, or due to larger vessels at adjacent berths overlapping into the

berth under study, thus influencing the recorded docking data. To

accurately assess berth usage while preserving the diversity of data
Frontiers in Marine Science 09
across different ship types, this study implemented a specialized

statistical method for berth data. Initially, each berth was treated as

an individual research unit, with its operational duration calculated

based on the arrival and departure times of all ships that docked

there. During this period, the docking of each type of ship was

recorded separately to explore the docking characteristics specific to

the berth. This approach resulted in a comprehensive dataset

comprising 151,682 ship berthing records.

In the process of forming triplets, the connections between

vessels and infrastructure are precisely articulated utilizing two

entities (for instance, a vessel and a berth) and a relation (such as

“docks at”). For the Tianjin Port vessel entry and departure statistics

dataset, a triadic relationship among the ship’s MMSI, navigation

channel, anchorage, and berth was established based on the vessel’s

entry and departure data. A total of 21,374 triadic data entries were

compiled, including relationships such as (MMSI, channel, channel

number), (MMSI, berth, berth number), and (MMSI, anchorage,

anchorage number). For the Shanghai Port berth statistics dataset, a

triadic relationship was also delineated between different berths and

their territorial belonging, as well as the characteristics of the vessels

serviced by these berths. A total of 12,885 triadic data entries were

constructed, covering relationship types such as (berth ID,

affiliation, port), (berth ID, affiliation, port area), (berth ID, type

of docked ship, ship type), (berth ID, affiliated, berth office), (berth

ID, purpose of berth, purpose), and (berth ID, tonnage of berth

ship, tonnage type). The dataset categorizes ship’s tonnage into four

types: small-medium (0–5,000 t), medium (5,000–20,000 t), large

(20,000–50,000 t), and extra-large (over 50,000 t).

Tables 1 and 2 provide a comprehensive enumeration of

different types of vessels included in the port-related dataset and

the specific data types utilized in this study, respectively.

The triplets, including those associated with vessels and berths,

are identified and listed in Table 3. A knowledge graph was

constructed utilizing these identified triplets.

Figure 7 illustrates a schematic of the maritime knowledge

graph, constructed using triadic relationships derived from the

Tianjin Port entry and exit data, along with the Shanghai Port
FIGURE 5

Methods for mining berthing statuses through AIS trajectory analysis.
FIGURE 6

The scope of the berth statistics dataset, with red marked points
indicating the locations of the berths being analyzed.
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berth statistics data. This knowledge graph’s triadic construction

method effectively captures the relational features between ships

and port maritime facilities. By extracting analyzable relational

semantics, it lays a solid foundation for subsequent tasks, such as

maritime shipping feature analysis, enabling a deeper

understanding of the dynamics and interactions within

port operations.

In this study, Figures 7A–C, depict homogeneous relationship

graphs representing ships at anchorages, berths, and in navigation

channels, respectively. These figures highlight the relationship

characteristics between ships and specific categories of maritime

facilities. By analyzing these relational and connective patterns

among the maritime entities, the extracted features can be

leveraged for various downstream analytical tasks. Figures 7D, E

illustrate the relationship graphs of individual ships and berths with
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associated maritime entities, respectively. Through these focused

entity relationship graphs, features of particular entities are more

effectively extracted and modeled, enhancing the precision of the

analysis. Figures 7F, G are heterogeneous maritime information

knowledge graphs, constructed using the datasets from ship entries

and exits at Tianjin Port and berth statistics from Shanghai Port,

respectively. These graphs vividly display the connections and

interactions among a range of maritime entities. In these

heterogeneous graphs, not only are relationships between entities

described, but concepts such as meta-paths are also employed.

These meta-paths facilitate the consideration of structural and

semantic connections between entities, thus enabling a more

profound understanding of the complex relationships inherent in
TABLE 1 Number of ships in each category in the port-related dataset.

Ship Category Quantity

Dry bulk carrier 2610

Product oil tanker 600

Container vessel 365

Fishing boat 510

Roll-on-roll-off ship 115

LNG/LPG carrier 105

Total 4305
TABLE 2 Data types included in this study’s dataset.

Data Data Type Data Description

AIS Data

MMSI
A unique nine-digit numerical code used to identify vessels, maritime mobile communication

satellite service stations, and other radio stations within the maritime mobile
communication system.

Tunnel
Designated routes in waterways for vessel navigation, typically marked to ensure safe and

efficient passage.

Anchorage
Designated areas in the waters near ports, provided for vessels to temporarily anchor while

waiting or to conduct other activities.

Berth
Specific areas near ports or coastlines, designated for vessels to dock and for loading or unloading

cargo or passengers.

Maritime
Shipping Data

Port
A waterfront facility that provides services for docking, loading and unloading cargo, and

embarking or disembarking passengers.

Port Area
A larger administrative or management area that includes one or more ports along with their

surrounding land facilities and related infrastructure.

Berth Office
An institution or organization responsible for managing and maintaining a specific berth or a
group of berths, tasked with arranging vessel docking, maintaining berth facilities, and ensuring

the safety and efficiency of berth operations.

Vessel Data

Vessel Type
Different types of vessels are crucial for understanding aspects such as the function of the ship,

shipping routes, types of cargo transportation, and the adaptability of port facilities.

Vessel Usage
Determines the design and operational mode of a vessel, the required port facilities, and its

compatibility with specific types of cargo and routes.

Vessel Tonnage
Affects the cargo carrying capacity of a vessel, suitable shipping routes, required berth depth and

port facilities, as well as its decisive impact on shipping costs and efficiency.
TABLE 3 Triplet extraction in this paper.

Type of Triplets Triplet Expression

Vessels

<Vessel_i, Moor at, Berth_i>

<Vessel_i, Anchor at, Anchorage_i>

<Vessel_i, Sail, Channel_i>

Berths

<Berth_j, Usage, Berth Usage>

<Berth i, Port_Subjection, Port i>

<Berth i, Harbor_Subjection, Harbor District i>

<Berth i, Berth Office_Subjection, Berth Office i>

<Berth i, Berthed, Ship Type>

<Berth i, Berthed Ship’s Tonnage, Tonnage Type >
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the data. This comprehensive approach supports enhanced data

mining and analytical tasks by providing a deeper insight into the

multifaceted features of maritime data.
3.3 Introduction to application scenarios of
the framework

Scenario 1 - Ship Type Prediction: Ship type prediction stands

as a pivotal technology within the intelligent maritime domain,

essential for enhancing ship traffic monitoring, port management,
Frontiers in Marine Science 11
cargo tracking, and coastal patrol and border security measures.

This study leverages knowledge graph embedding models to distill

features from multiple dimensions, generating comprehensive

feature vectors. Through subsequent dimensionality reduction

and classification processes, ships under test are accurately

classified into their respective predefined types, showcasing the

application’s potential in operational optimization. As illustrated in

Figure 8, from a micro-perspective, ships routinely exhibit

behaviors such as anchoring, sailing, and berthing while

navigating within harbors. Their trajectories intersect with specific

geographic spaces like fairways, anchorages, and berths. Rather than
B

C

D E

F

G

A

FIGURE 7

(A–G) Examples of graph visualization results.
FIGURE 8

The scenario of ship type prediction.
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relying solely on numerical data represented by latitude and

longitude, ship captains focus more on the semantic information

concerning “where the ship is navigating”, “where it is anchoring”,

and “where it is berthing” during their voyage. Upon receiving

lookout information (such as passing a lighthouse or traversing a

waterway) and multisource perception data, captains also abstract

these ship behaviors into semantic networks and engage in

contemplation. This process results in the formation of a “small

network” that has the characteristic features of ship navigation.

Scenario 2 - Similar Berth Recommendation: Similar berth

recommendation represents a practical application within the

intelligent maritime domain, utilizing advanced information

technology to recommend optimal docking locations for ships.

This scenario facilitates port resource optimization, shipping

company route planning, and the efficiency of cargo handling

processes. By establishing a berth knowledge graph and applying

similarity calculations and recommendations, the study identifies

and suggests berths with similar characteristics, enhancing

operational efficiency and decision-making processes. As shown

in Figure 9, berths demonstrate specific berthing preferences for

different vessels, influenced by their infrastructure attributes, such

as ship size and capacity, as well as commercial attributes like port

ownership and port area. These factors necessitate their integration

into the autonomous berthing decision-making process. To

accommodate this, a multidimensional berth similarity model has

been developed, which effectively recommends berths by

comprehensively considering these diverse factors.
4 Experimental results and analysis

This section presents a comprehensive evaluation of the

proposed model across various datasets and application scenarios,

focusing on downstream tasks including similar berth

recommendation and ship type prediction. Utilizing a custom-

built port-related dataset, the study embarks on a multi-faceted
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examination: Initially, the semantic construction of ships and port

infrastructure through the knowledge graph is outlined, setting the

stage for in-depth analysis. Evaluation metrics specific to each

dataset are introduced, providing a benchmark for assessing

model performance. The efficacy of individual graph embedding

models is scrutinized across different datasets, highlighting their

capabilities and limitations. The performance of combined models

on the datasets is evaluated, with ablation experiments and internal

analyses conducted to ascertain the contribution of each

framework module.
4.1 Ship type prediction

4.1.1 Evaluation metrics
For ship type prediction, a supervised classification approach

was employed, necessitating the use of conventional evaluation

metrics to determine the effectiveness of the classification models.

These metrics include:

Accuracy: Measures the ratio of correctly classified ship

samples within the test set.

Precision: Indicates the ratio of correctly identified ship

samples to all samples classified by the model.

Recall: Represents the ratio of correctly identified samples

within each ship type category of the test set.

F1 Score: Calculates the harmonic mean between Precision and

Recall, providing a balance between the two metrics.

Macro Average: Computes the arithmetic mean of the metrics

for each ship type category, treating each category with equal

importance. This metric, however, may be affected by categories

with fewer samples.

Weighted Average:Determines the weighted mean of each ship

type category’s metrics, according to the proportion of samples in

each category relative to the total sample set. This approach

accounts for sample imbalances across categories.
FIGURE 9

Schematic diagram of the similar berth recommendation scenario.
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4.1.2 Experimental setup
The experiment utilized a series of relational triplets from the

port-related dataset, derived from ships’ entry and exit records.

Introduce the OpenKE graph embedding model framework (Han

et al., 2018) using PyTorch and Sci-kit Learn libraries. Configure

embedding vectors for entities within the graph to dimensions of 50,

100, and 200 using graph embedding and supervised ML

classification models. Comparative analysis across several

classification models, including KNN, decision tree, random

forest, SVM, and Gaussian naive Bayes, aimed to categorize ships

into six distinct classes: dry bulk carriers, product oil tankers,

container vessels, fishing boats, roll-on-roll-off ships, and LNG/

LPG carriers. The dataset underwent a random split, allocating 80%

for training and 20% for testing, with this division repeated five

times to compute the average metric scores.

4.1.3 Experimental results
To evaluate the experimental effectiveness of the framework

proposed in this study for ship classification tasks using port-related

datasets, and to determine the optimal model combination, various

graph embedding models and embedding dimensions were

explored in the classification experiments. Figures 10A–C display

the Precision, Recall, and F1 Scores for various graph embedding

models and dimensions within the dataset, incorporating all

dimensionality reduction techniques and classification methods in

the analysis. Significantly, the TransR model demonstrated superior

average performance across all evaluated metrics with an

embedding dimension of 50. It achieved precision, recall, and F1

scores of 0.744, 0.749, and 0.737, respectively. Meanwhile, the

ComplEx and DistMult models also showed commendable

performance across various metrics and dimensions, highlighting

the effectiveness of these embedding models in classifying

ship types.

To ascertain the most effective dimensionality reduction

technique and optimal embedding dimensions, we focused on the
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TransR, ComplEx, and DistMult models due to their superior

average performance in preliminary experiments. Figures 11–13

illustrate the average Precision (Figures 11A, 12A, and 13A), Recall

(Figures 11B, 12B, and 13B), and F1 Scores (Figures 11C, 12C, and

13C) for the ship classification tasks within the port-related dataset

across different embedding dimensions. They highlight results

across various dimensionality reduction methods and embedding

dimensions, utilizing all classification approaches within our

framework. The TransR model, with an embedding dimension of

50 and utilizing t-SNE for dimensionality reduction, emerged as the

most effective configuration for ship classification. Notably, its

performance remained superior when reduced to either 2 or 3

dimensions, outperforming other model combinations. Specifically,

when reduced to 2 dimensions, the model achieved an accuracy of

0.811, a recall of 0.812, and an F1 score of 0.808. Similarly, when the

classification was reduced to 3 dimensions, it recorded an accuracy

of 0.800, a recall of 0.802, and an F1 score of 0.798.

Building upon the identified optimal combination of the

embedding model and dimensionality reduction method—

specifically, the TransR model at an embedding dimension of 50

with t-SNE—further investigations were conducted to explore the

effects of different ML classification methods on ship classification

results. Figures 14 and 15 visualize the classification results for each

ship in the test set, employing the TransR model reduced to either

two or three dimensions via t-SNE, across various classification

methods. Figures 14A–E and 15A–E present the classification

results when using KNN, decision tree, random forest, SVM, and

Gaussian naive Bayes methods, respectively, with reductions to two

and three dimensions.

The visualization results highlight that various classification

models are effective at distinguishing different categories of ships

when all ship vectors are projected onto the same coordinate

system. Particularly in regions where features are prominent and

distinguishable, most models excel in this differentiation. Notably,

the TransR model, at an embedding dimension of 50 and using t-
B CA

FIGURE 10

(A–C) Average classification results for the port-related dataset classification task using different embedding models.
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SNE for reducing dimensionality to 2D, demonstrated relatively

optimal classification results when paired with classification

methods such as KNN or Random Forest. These combinations

achieved accuracies of 0.825 and 0.823, respectively, underscoring

their effectiveness in accurately classifying ship types.

To enhance the accuracy of experimental results, the dataset

was partitioned randomly into the same ratio five times, with each

division undergoing t-SNE dimensionality reduction to 2D and 3D

for classification experiments. Figures 16A–C illustrate the average

Precision, Recall, and F1 Scores for various ship categories under

2D dimensionality reduction. Conversely, Figures 16D–F display

these metrics under 3D dimensionality reduction. Figures 17A, B

provide a comparison of Macro Average results for overall test data

Precision, Recall, and F1 Scores across different levels of

dimensionality reduction, while Figures 17C, D contrast the

weighted average results for these metrics. The experimental

findings reveal that c lass ificat ion outcomes with 2D

dimensionality reduction generally surpass those with 3D

reduction. Notably, bulk cargo ships exhibit the best classification

results, achieving an accuracy of 0.890, a recall of 0.905, and an F1

score of 0.891. The substantial variation in classification results
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across different ship categories can primarily be attributed to the

differing volumes of data in the dataset. The dataset contains the

smallest amount of data for LNG/LPG ships, which significantly

impacts the extraction of semantic information from their

embedding vectors, leading to lower classification accuracy. In

contrast, bulk cargo ships, which are represented with a larger

volume of data, show higher classification accuracy.

Figure 18 examines classification accuracy across varying

dimensionality reductions. The findings suggest that employing the

TransR model with a 50-dimensional embedding and reducing it to

2D using t-SNE, in conjunction with the KNN model, yields a more

accurate classification performance for most ship categories in the

task of ship classification on a port-related dataset. The superior

performance of this experimental combination could be attributed to

the dataset’s particular compatibility with the TransR model’s ability

to capture relationships and hierarchies, where the 50-dimensional

embeddings retain adequate semantic information without leading to

overfitting. The integration of 2D t-SNE reduction with the KNN

classification model capitalizes on t-SNE’s strength in preserving local

data features, with the 2D space enhancing KNN’s effectiveness in

applying its distance-based classification principle.
B CA

FIGURE 12

(A–C) Classification results of ComplEx using different dimensionality reduction methods and dimensions.
B CA

FIGURE 11

(A–C) Classification results of TransR using different dimensionality reduction methods and dimensions.
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FIGURE 14

(A–E) Classification results using different methods with 50-dimensional TransR model embedded and t-SNE reduced to two dimensions.
B CA

FIGURE 13

(A–C) Classification results of DistMult using different dimensionality reduction methods and dimensions.
Frontiers in Marine Science frontiersin.org15

https://doi.org/10.3389/fmars.2024.1390931
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1390931
4.1.4 Ablation study
An ablation study was conducted to discern the impact of each

component within our framework on the classification task,

specifically examining the effect of omitting the dimensionality

reduction module (DRM). Model variants tested included

configurations with and without DRM, focusing on the

classification of ships using 50-dimensional embeddings from the

TransR model paired with the KNN method.

Figures 19A–C present the Precision, Recall, and F1 Scores for

ship classification within the port-related dataset, comparing

performances with and without t-SNE reduction to 2D.

Compared to the classification results prior to dimensionality
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reduction, the performance in categories with a larger sample size

improved following the application of t-SNE reduction. The

Precision, Recall, and F1 Scores across the board also enhanced

post t-SNE reduction, underscoring the effectiveness of the

dimensionality reduction module in ship classification endeavors.

For instance, the classification accuracy for bulk carriers improved

from 0.856 to 0.877. The application of dimensionality reduction

techniques plays a crucial role in eliminating noise and primarily

preserving key semantic features, which aids the classification

model in focusing on distinctive attributes, thus enhancing

classification accuracy. Additionally, dimensionality reduction

often results in a more uniform distribution of vectors in the
B
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A

FIGURE 15

(A–E) Classification results using different methods with 50-dimensional TransR model embedded and t-SNE reduced to three dimensions.
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space, with similar vectors becoming more clustered. This clustering

is advantageous for distance-based classifiers such as KNN, as it

supports more precise classification results.
4.2 Similar berth recommendation

4.2.1 Evaluation metrics
For the development of a similar berth recommendation

system, six key dimensions were identified for analysis: affiliated

port, belonging harbor district, affiliated berth office, berth usage,

type of ships berthed at the berth, and tonnage of ships berthed at

the berth. These dimensions serve as the basis for evaluating and

determining the similarity between two berths. The evaluation

accuracy pa for a given berth a within this system can be

mathematically defined as Equation (2):

pa   =   rat     (0 ≤ r ≤ 6) (2)

where t denotes the total number of similar berths identified for a

given berth under comparison, ra represents the count of identical

relationships between each suggested similar berth and the berth being

compared a. When extending this calculation across the entire dataset,
Frontiers in Marine Science 17
the model’s overall evaluation accuracy, or the total count of identical

relationships PFull, can be expressed as Equation (3):

PFull =  on
i=1pi =on

i=1rit   (0 ≤ ri ≤ 6)   (3)

where n is the total number of berths within the dataset. The

model’s performance is better indicated by the higher number of

identical relationships found between similar berths across the entire

dataset and the corresponding berths they are compared with.

Moreover, to further assess the model’s recommendation

capabilities, we introduced two additional metrics: the average

count of identical relationships for top t recommended berths

PTopt and the average count of identical relationships per

recommended berth Psingle. The calculation methods are shown in

Equation (5) and Equation (6) respectively. These metrics aim to

capture the model’s general recommendation effectiveness for a

single compared berth and the precision of the model’s

recommendations for each similar berth, respectively:

PTopt =  
PFull

n
=  o

n
i=1pi
n

=  o
n
i=1rit

n
  (0 ≤ ri ≤ 6) (4)

PSingle =  
PTopt

t
=  

PFull

nt
=  o

n
i=1pi
nt

=  o
n
i=1ri
n

  (0 ≤ ri ≤ 6) (5)
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FIGURE 16

(A–F) Classification results for each ship category using different dimensionality reduction dimensions and classification methods with 50-
dimensional TransR model combined with t-SNE reduction.
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FIGURE 18

Accuracy using different dimensionality reduction dimensions and classification methods with 50-dimensional TransR model combined with t-
SNE reduction.
B

C D

A

FIGURE 17

(A–D) Macro average and weighted average results using different dimensionality reduction dimensions and classification methods with 50-
dimensional TransR model combined with t-SNE reduction.
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4.2.2 Experimental setup
This experiment employed the port-related dataset, where

relational triplets were pre-constructed for each berth

comparison. The top 20 berths with the highest similarity were

recommended for analysis. Utilizing the PyTorch framework, graph

embedding and berth similarity analysis models were implemented,

with embedding vector dimensions set at 50, 100, and 200.

4.2.3 Experimental results
The proposed framework’s efficacy was evaluated on the port-

related dataset, particularly examining the influence of

dimensionality reduction on similar berth recommendations.

Figures 20A–C display the total count of identical relationships,

the average count of identical relationships for the top 20

recommended berths, and the average count of identical

relationships per recommended berth using different dimensions

of the TransE model after various dimensionality reduction

methods. The findings suggest that omitting dimensionality

reduction results in the most accurate berth recommendations.
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The average count of identical relationships per recommended

berth for embedding vectors with dimensions of 50, 100, and 200

reached 2.420, 3.157, and 3.324, respectively, all surpassing

performances in scenarios where dimensionality reduction was

applied. This indicates that the complex relationship dimensions

within the similar berth knowledge graph, which are more

numerous than those in ship classification, contribute to a richer

set of embedding vector features. Reducing these dimensions could

potentially remove critical features, thereby decreasing the accuracy

of the recommendations.

Figures 21A–C present the total count of identical relationships,

the average count of identical relationships for the top 20

recommended berths, and the average count of identical

relationships per recommended berth, respectively, for tasks

involving similar berth recommendations within the port-related

dataset, utilizing various embedding techniques in our framework.

The findings indicate that the Analogy method outperforms others

in terms of recommendation precision with an embedding

dimension of 50. Given that the port-related dataset encompasses
B CA

FIGURE 20

(A–C) Recommendation accuracy of different dimensionality reduction methods in the port-related dataset.
B CA

FIGURE 19

(A–C) Classification results before and after using t-SNE reduction with 50-dimensional TransR model combined with KNN classification method.
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six types of triplets, this result implies that the berth knowledge

graph encompasses a wide array of relationship types. The Analogy

method’s superior performance, particularly at lower dimensions,

suggests its proficiency in capturing this diversity and effectively

representing these relationships without leading to overfitting. The

Analogy model’s distinct advantage lies in its ability to handle

analogical relationships, which, within the context of the port-

related dataset, could be interpreted as the resemblance in

characteristics or functions among different berths.

Based on the foundation of single base embedding models, this

study further explored a combined model strategy for enhancing the

accuracy of similar berth recommendations. Figures 22A–C present

the comparative results of the total count of identical relationships,

the average count of identical relationships for the top 20

recommended berths, and the average count of identical

relationships per recommended berth in the port-related dataset

for the task of recommending similar berths when the similarity

score weights of the two sub-models in the combined model are set

at a 1:1 ratio. Based on the integrated model approach, the
Frontiers in Marine Science 20
combina t i on o f any two mode l s exh ib i t s supe r io r

recommendation accuracy compared to the performance of either

model independently. This indicates that the combined model

possesses enhanced adaptability and efficacy in the task of

recommending similar berths.

Particularly, the synergistic combination of TransD, Analogy,

and DistMult models outperforms other model pairings in the task

of similar berth recommendation. The TransD and Analogy

models, when combined at an embedding dimension of 100,

showcase the highest efficacy, achieving an average count of

identical relationships per recommended berth of 3.748. This

enhancement can be attributed to TransD’s capability to

encapsulate complex semantic relationship features through

distinct mapping matrices for each entity-relation, coupled with

the Analogy model’s proficiency in handling symmetry and anti-

symmetry in entity relationships. When TransD, known for its

dynamic mapping capabilities, is integrated with Analogy, which

excels in capturing symmetry, the combined model potentially

enhances its ability to understand and represent berth similarities
B CA

FIGURE 22

(A–C) Recommendation accuracy of various combined models in the port-related dataset.
B CA

FIGURE 21

(A–C) Recommendation accuracy of different embedding models in the port-related dataset.
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more comprehensively. The synergy between TransD’s flexibility in

handling complex relationships and Analogy’s efficiency in

recognizing symmetric patterns could offer a more nuanced

representation of berth similarities.

To delve deeper into how weight distribution affects the

similarity results, this study introduces a weight parameter n to

the combined model consisting of TransD, Analogy, and DistMult.

This exploration aims to discern the relative influence of each

model within the trio on the combined model’s results. The

Equation (6) to assess the impact of merging models A and B

with a specific weight value n is conceptualized to quantify their

combined effect on similarity assessments:

Similarityunion = nSimilarityA + (1 − n)SimilarityB (6)

Merging the similarity calculation values from two models

allows the combined model to adopt the recommendation

tendencies and strengths of both constituent models. Figures 23–

25 illustrate the variations in the average count of identical

relationships per recommended berth for the TransD, Analogy,

and DistMult models across different embedding dimensions,

utilizing the port-related dataset for the recommendation of

similar berths. Specifically, Figures 23A–C detail the trends for

the TransD model at embedding dimensions of 50, 100, and 200,

respectively. Figures 24A–C present the trends for the Analogy
Frontiers in Marine Science 21
model at these same dimensions, while Figures 25A–C depict the

trends for the DistMult model.

The data reveal that the introduction of the combined model

markedly improves the performance in recommending similar

berths, with the optimal effects varying at different dimensions

according to the weight value n. The synergy between the TransD

and Analogy models is most effective at n = 0.4, where it achieves an

average count of identical relationships per recommended berth of

3.755. The Analogy model exhibits a high level of proficiency in

identifying similarities between berths for the recommendation task

within the dataset used in this study. Although the weight assigned

to TransD is marginally lower, its contribution to the overall

similarity calculation remains substantial. The structured

relationship recognition facilitated by TransD’s dynamic mapping

mechanism may complement the Analogy model’s capabilities,

addressing aspects of similarity that the Analogy model alone

might overlook.

Using the optimal combination obtained from this experiment,

the actual effect of recommending similar berths was tested, taking

three berths in the Yangshan Port area of Shanghai Port as an

example. The selected comparable berths and the recommended

berths with high similarity are shown in Figure 26, where the red

indicates the selected comparable berths, and the blue indicates the

recommended candidate berths with high similarity.
B CA

FIGURE 24

(A–C) Trend of similar berth recommendation results by the Analogy model at different dimensions with changes in weight value n.
B CA

FIGURE 23

(A–C) Trend of similar berth recommendation results by the TransD model at different dimensions with changes in weight value n.
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5 Discussion

The framework introduced in this study utilizes knowledge

graphs and graph embedding technologies to adeptly navigate the

complexities of multi-source data fusion and its applications within

the maritime sector. Through empirical validation in two distinct

application scenarios—ship type prediction and similar berth

recommendation—this research underscores the framework’s

capacity to amalgamate AIS data with static maritime

information, thereby offering sophisticated intell igent

recommendation and prediction capabilities in the maritime

domain. Nonetheless, the research framework encounters

limitations, notably the static nature of the knowledge graphs and

graph embedding models used. This limitation constrains the

models’ ability to comprehend and incorporate temporal

dynamics, which are critical for capturing more nuanced

semantic relationships. Integrating temporal dimensions into the

framework could significantly enrich its semantic capacity, thereby

enhancing the precision of its recommendations and predictions.

By constructing maritime semantic networks through knowledge
Frontiers in Marine Science 22
graphs, we can effectively profile various entities in the maritime

domain, such as vessels and shore-based facilities. This approach

enables a more intuitive representation of the relationships and

structures among these entities and allows for detailed descriptions

and classifications, presenting the complex systems and

multidimensional characteristics of the maritime domain from

various perspectives and levels. For example, at the application

level, taking vessel traffic services (VTS) as a case study, integrating

this framework can equip vessels with more intelligent and efficient

navigation, traffic monitoring, and decision-making services.

Looking forward to future research based on this study, a key

challenge is how to achieve deeper integration with other multi-

source data, such as remote sensing. Furthermore, with the

continuous emergence and development of large language models

like GPT (Brown et al., 2020) and Gemini (Team G, 2023), there is

an opportunity to gain a deeper understanding of the contextual

and semantic information within maritime knowledge graphs.

Leveraging the maritime and shipping expertise contained in

these graphs can significantly enhance the logical reasoning and

problem-solving capabilities of large language models in the
FIGURE 26

Example of similar berth recommendation effectiveness using the optimal model combination of this framework.
B CA

FIGURE 25

(A–C) Trend of similar berth recommendation results by the DistMult model at different dimensions with changes in weight value n.
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maritime domain. This advancement can lead to the development

of more specialized maritime large language models, offering highly

specialized intelligent analysis and decision-support. Such tools are

applicable to improving navigation management, vessel

monitoring, environmental monitoring, and enhancing

maritime safety.
6 Conclusions and future work

To conclude and propose directions for future research, this

study has established a semantically comprehensible framework

utilizing knowledge graph technology to elucidate ship behaviors

and berth profiles, presenting a pioneering intelligent maritime

application framework. This framework capitalizes on knowledge

graphs and graph embedding techniques to address key challenges

in the maritime industry, such as ship type prediction and berth

recommendation. By constructing an intricate knowledge graph

that encompasses extensive information on ships and

infrastructure, and by exploring various entity relationships

through triplets, this research lays a robust foundation for

translating complex relational data into actionable vector

representations. Through exhaustive comparative analyses, the

efficacy of different graph embedding models within maritime

contexts was evaluated, investigating how variations in

embedding dimensions and model weight distribution influence

overall performance. The results of this investigation not only

validate the utility of knowledge graphs and graph embedding

technologies in maritime applications but also contribute

significant empirical evidence and insights for future research

endeavors. The developed intelligent transportation systems can

aid unmanned devices in making precise decisions based on this

model, thereby ensuring the safety of jurisdictional waters and

dock efficiency.

While this study has made significant contributions, there are

several areas that warrant further exploration. Future research could

focus on advancing model fusion techniques to better integrate

diverse data sources and improve predictive accuracy. Optimizing

real-time data integration and dynamic updates is another critical

area that could enhance the responsiveness and accuracy of the

system in live environments. Additionally, developing and applying

cross-domain knowledge graphs could provide deeper insights by

l inking data across di fferent sectors , enhancing the

comprehensiveness of analyses. Enhancing the scalability and

generalization capabilities of the framework is also crucial, as it

would allow the system to handle larger datasets and apply learned

insights across various maritime contexts. Furthermore, exploring

the integration of this framework with large model domains, such as
Frontiers in Marine Science 23
advanced machine learning and artificial intelligence platforms,

could open up new avenues for more sophisticated analytical tools

and decision-support systems.
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