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Efficient and rapid deployment of maritime search and rescue(MSAR) resources is

a prerequisite for maritime emergency search and rescue, in order to improve the

efficiency and accuracy of MSAR. This paper proposes an integrated approach for

emergency resource allocation. The approach encompasses three main steps:

identifying accident black spots, assessing high-risk areas, and optimizing the

outcomes through a synergistic combination of an optimization algorithm and

reinforcement learning. In the initial step, the paper introduces the iterative self-

organizing data analysis technology (ISODATA) for identifying accident spots at

sea. A comparative analysis is conducted with other clustering algorithms,

highlighting the superiority of ISODATA in effectively conducting dense

clustering. This can effectively carry out dense clustering, instead of the

situation where the data spots are too dispersed or obvious anomalies that

affect the clustering. Furthermore, this approach incorporates entropy weighting

to reassess the significance of accident spots by considering both the distance

and the frequency of accidents. This integrated approach enhances the

allocation of search and rescue forces, ensuring more efficient resource

utilization. To address the MSAR vessel scheduling problem at sea, the paper

employs the non-dominated sorting genetic algorithm II combined with

reinforcement learning (NSGAII-RL). Comparative evaluations against other

optimization algorithms reveal that the proposed approach can save a

minimum of 7% in search and rescue time, leading to enhanced stability and

improved efficiency in large-scale MSAR operations. Overall, the integrated

approach presented in this paper offers a robust solution to the ship

scheduling problem in maritime search and rescue operations. Its effectiveness

is demonstrated through improved resource allocation, enhanced timeliness,

and higher efficiency in responding to maritime accidents.
KEYWORDS

MSAR resource allocation, iterative self-organizing data analysis algorithm, accident
black spot, entropy weighting method, hybrid non-dominated sorting
genetic algorithm
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1 Introduction

With the rapid growth of global trade, the maritime industry is

flourishing. Given that over 80% of cargo transportation relies on

ships, maritime activities have become increasingly intricate.

Furthermore, they are susceptible to the impact of extreme

weather phenomena, posing significant challenges for the industry

(Rezaee and Pelot, 2016; Li et al., 2023; Zhang et al., 2023).

Therefore, to better cope with maritime emergencies and to

safeguard the service capability of ports, it is essential for ports to

have emergency response capabilities. Effective search and rescue

strategies in the aftermath of maritime accidents are essential to

improving shipping safety and reducing the level of hazard from the

accident (Caunhye et al., 2012; Chen et al., 2024b).In maritime

search and rescue (MSAR), existing studies have focused on

determining the location of accident centers and the dispatch of

search and rescue forces.

The key aspect of MSAR is accurately predicting the potential

location of an accident to effectively concentrate search and rescue

efforts on crucial areas for swift response and rescue operations

(Choi et al., 2020). Since the location of the target at sea fluctuates

due to various factors, it is necessary to anticipate future changes in

the marine environment throughout the process of solving the

response model (Shchekinova et al., 2016; Zhang et al., 2021c). This

model is reactive, meaning that it can accurately dispatch the

resources required for the accident based on the needs. However,

during the implementation process, it often encounters unforeseen

circumstances, such as, shortage of resources, coordination of

personnel, and adverse environmental conditions. Meanwhile, the

design of an MSAR program is often viewed as a complex

unstructured multi-criteria decision problem. Researchers focus

on search planning decision support systems and intelligent

algorithms to solve the resource scheduling problem during

MSAR (Agbissoh Otote et al., 2019; Chen Z. et al., 2020).

However, evaluating MSAR scheduling programs relies more on

the experience of experts than on quantitative indicators, which

makes it difficult to guarantee its efficiency and reliability (Xiong

et al., 2020a).

This study presents a novel contingency resource optimization

model to address the aforementioned challenges, which proposes an

optimization model for allocating emergency resources in the

deployment of maritime search and rescue vessels, taking into

account multiple accident black spots and rescue bases.

Specifically, initially, the iterative self-organizing data analysis

technology algorithm (ISODATA) is initially employed to cluster

historical accident locations and identify black spots, while the

entropy weight method is used to evaluate and classify the

significance of each accident black spot. Subsequently, the non-

dominated sorting genetic algorithm II combined with

reinforcement learning (NSGAII-RL) is utilized to solve the

mathematical model and obtain the optimal strategy for

emergency resource allocation. The remainder of the paper is

organized as follows: Section 2 provides a summary of related

research, while Section 3 presents a detailed description of the

problem and constructs the overall framework of this study. In
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Section 4, the validity of the overall framework is verified using the

actual case of Shanghai Port, and the experimental results are

presented. The concluding section summarizes the findings and

discusses future research directions.
2 Literature review

The identification of accident black spots is crucial in

identifying high-risk areas deserving special attention. Historical

accident data serves as a valuable resource in this endeavor. By

considering variables such as the marine environment, historical

accident data, and search and rescue conditions, clustering models

can be established to identify locations with a high incidence of

marine accidents. These accident black spots provide valuable

insights for developing effective risk control measures and

optimizing the allocation of emergency response resources,

particularly when resources are scarce.

With the emergence of new techniques and theories, the

identification of accident black spots has been extensively studied

(Xu et al., 2023), such as through the Poisson-Tweedie model to

identify accident black spots (Debrabant et al., 2018), kernel density

estimation (Davis et al., 2011), K-Means clustering algorithm

(Zhang et al., 2021b) and density-based spatial clustering of

applications with noise (DBSCAN) (Szénási and Jankó, 2017), as

well as the combination of advanced algorithms such as machine

learning neural networks (Fan et al., 2019; Jang, 2020; Szénási et al.,

2021). Among them, the K-Means method is popular in road and

water traffic accident analysis due to its simplicity of

implementation and significant clustering effect. It operates by

minimizing the similarity within each cluster and maximizing the

sum of squares of distances between different clusters (Ghadi et al.,

2018). Furthermore, some researchers have optimized maritime

search and rescue systems by incorporating accident black spots.

For example, Ma et al. proposed an optimization model for

emergency resource allocation that considers multiple accident

black spot regions, various rescue bases, different accident types,

and numerous emergency resource types. This model demonstrates

considerable potential in enhancing resource allocation efficiency in

disaster relief operations (Ma et al., 2022). Overall, the identification

of accident black spots and their integration into search and rescue

systems can greatly improve response capabilities and optimize

resource allocation in maritime accidents.

Maritime search and rescue resource scheduling is a complex

problem that requires efficient algorithms to find optimal solutions.

Traditional heuristic algorithms have been widely used in resource

scheduling, but researchers have begun exploring the combination

of multiple algorithms to improve the scheduling process. For

instance, Xiong et al. used two intelligent algorithms, Differential

Evolutionary Algorithm (DE) and Non-dominated sorting genetic

algorithm II (NSGAII), to find a suitable MSAR scheme and aid in

resource scheduling (Xiong et al., 2020a). Cai et al. proposed a

model solved using the Particle Swarm Optimization (PSO)

algorithm and Genetic Algorithm (GA) algorithm. A two-stage

mixed integer programming (MIP) model was used to determine
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the type and number of maritime search and rescue (MSAR)

equipment to be assigned to the activation station based on

historical accidents and existing equipment information (Cai et

al., 2020). In addition to these approaches, researchers have also

introduced innovative algorithms for resource scheduling. Cho et al.

proposed a heuristic crossover search and rescue optimization

algorithm (HC-SAR) (Cho et al., 2021), and Ansari et al.

proposed a new Competency-Based Maintenance Planning

(CBMP) methodology (Ansari et al., 2023). Chu et al. proposed a

particle swarm genetic hybrid algorithm (Chu et al., 2022).

Aminzadegan et al. proposed two meta-heuristic solutions based

on Adaptive Genetic Algorithm (AGA) and Tabu Search Algorithm

(TS) (Aminzadegan et al., 2021). These efforts have demonstrated

the significant potential of optimization algorithms in solving

resource scheduling problems in MSAR operations. By combining

different algorithms or developing new ones, researchers aim to

improve the efficiency and effectiveness of resource allocation in

emergency situations.

In recent years, with the rapid development of technology in the

field of artificial intelligence, reinforcement learning has been

continuously introduced into various fields. Compared to

traditional optimization algorithms, Chen et al. found that

optimization algorithms combined with reinforcement learning

exhibit significant advantages in the field of path optimization

(Chen et al., 2024a). By analyzing the internal structure of the

population, these algorithms can select appropriate parameters,

thereby avoiding the trap of traditional optimization algorithms

converging to local optimal solutions, thereby improving search and

rescue efficiency. For instance, Müller-Zhang et al. applied deep

Q-learning to integrated process planning and scheduling,

demonstrating that this deep reinforcement learning algorithm

can rapidly identify the optimal solution in complex

environments. By adjusting parameters in real-time, search and

rescue algorithms can better adapt to changes in the MSAR

environment, thus enhancing search and rescue effectiveness

(Müller-Zhang et al., 2023). Li et al. creatively proposed genetic

algorithm based on reinforcement learning (GSAA-RL), which

enhances the search capability of the algorithm by transforms

dynamic parameters into a Markov decision process, effectively

defining the states, actions, and reward functions within GSAA-RL

(Li et al., 2022a). These combined studies demonstrate the immense

potential of reinforcement learning in the field of optimization

scheduling. By adaptively adjusting the parameters of optimization

algorithms, search and rescue processes can continuously learn and

optimize algorithms to make them more suitable for practical

application scenarios.

While reinforcement learning has been employed for tuning

and optimizing the parameters of heuristic algorithms in various

areas, such as shop floor scheduling, product manufacturing, and

power systems, improving the performance of optimization

algorithms and the quality of problem-solving. There is limited

evidence indicating that reinforcement learning has been utilized to

optimize the scheduling of ships during maritime search and rescue

missions. The ability to adaptively adjust the parameters of

optimization algorithms through reinforcement learning enables

them to better handle the dynamic and complex nature of search
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and rescue missions, leading to improved efficiency and

effectiveness of maritime operations (Xiao et al., 2024). Therefore,

further research is needed to explore the potential of reinforcement

learning in ship scheduling during maritime search and

rescue missions.
3 Methods

3.1 Model overview

To take proactive and effective measures against possible future

maritime accidents, the relationship between existing search and

rescue bases and accident-prone locations should be fully

considered in advance. To do this, it is necessary to identify the

most suitable accident locations and to ensure that rapid and

systematic assistance is provided at each location at the first sign

of an accident. Therefore, in addressing this problem, this section is

divided into the following three steps for consideration, which are

identifying the location of accident black areas, to evaluate the

importance of each accident-prone place to reduce the unnecessary

waste of resources, and to dispatch each accident black spot

accordingly through the optimization algorithm.

Figure 1 illustrates the general organizational framework of this

study, which is divided into four modules. The first module is the

dataset section, which contains information on recorded maritime

accidents. This dataset is cleaned and organized to obtain a dataset

that includes information on the latitude, longitude, and number of

accidents. The second module adopts the ISODATA algorithm,

which inputs historical accident data and selects appropriate

algorithm parameters to cluster historical accidents and identify

accident black spots. The third module evaluates the black spots

generated in the second step by using the entropy weight method,

which considers the location of the black spots from the MSAR base

and the number of accidents in each black spot. This helps to assess

each blackspot’s importance and rank them in order of importance,

with priority scheduling for key areas. The last module uses

NSGAII-RL for optimization to find the optimal scheduling plan

for each accident black spot by building a mathematical model and

setting the corresponding parameters. The mathematical model

focuses on formulate a resource allocation problem, considering

factors such as response time, the distance between the MSAR base

and the accident black spot, resource availability, and the

importance of the accident black spot. Finally, the corresponding

ship dispatching plan is provided according to the dispatching

arrangement of different accident black spots.
3.1.1 Clustering of accident data
Accident black spots are locations where accidents occur more

frequently than in other areas of the water (Zhang et al., 2021a). In

this study, an accident black spot is defined as a specific spot, rather

than an entire area, and the location of an accident black spot serves

as a proxy for surrounding accidents. Emergency Response

Resources refer to the total materials, funds, and other resources

required by the Emergency Management System (EMS) to
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effectively execute emergency response activities and ensure the

efficiency of the maritime transportation system during MSAR.

The ISODATA algorithm is an improved method based on the

popular unsupervised classification machine learning technique, the

K-Means algorithm. It overcomes some of the limitations of the

traditional K-means algorithm by automating the determination of

clustering result K. The ISODATA algorithm sets a threshold

parameter and iteratively merges or splits classes based on specific

criteria. This dynamic adaptation of classes allows for optimal

division of sample data into clusters, improving overall clustering

performance. By adjusting the number of clusters K, the algorithm

can adapt to different datasets and achieve better clustering results.

Overall, the ISODATA algorithm provides a more flexible and

accurate approach for clustering analysis compared to the

traditional K-means algorithm (Shan and Zhang, 2019). In the

context of this study, the ISODATA algorithm will be used

alongside three other algorithms to compare their performance

and verify the applicability of the ISODATA algorithm in the field

of maritime accidents. This comparison will help evaluate the

effectiveness of the ISODATA algorithm in clustering historical

accident locations and identifying accident black spots.

ISODATA mainly consists of three parts: the main algorithm,

the splitting operation, and the merging operation, and each part is

briefly introduced. The main algorithm of ISODATA includes the

following 3 steps:

(1) Initial value setting

a) Randomly select K0 samples from the data set as the initial

clustering center C = c1, c2,…, ck0f g; b) Based on the distance of

each sample xi to the center of all clusters, assign the samples to the

class with the smallest distance; c) Discard the class if the elements
Frontiers in Marine Science 04
within the class are less than Nmin, so that K  =  K − 1, and reassign

the samples within the class according to step; d) Recalculate the

cluster centers for each class as Equation (1).

Ci  ¼  
1
cij j Sx∈ciX   (1)

e) Where K< k0
2 , a merge operation is performed; f) Where K< 2

K0, it means that the current number of categories is too small, and

split operation is performed; g) Where the maximum number of

iterations is reached, terminate the algorithm, otherwise go back to

step b) to continue execution.

(2) Merge operation

The merge operation of ISODATA consists of the following two

steps: a) Calculate the current distance between the clustering

centers of each category, denoted by the matrix D, where D(i,j) =

0; b) Combine the two categories with D(i,j) < dmin into a new class,

which has a cluster center position as Equation (2).

mnew   ¼  
1

ni+nj
(nimi+njmj) (2)

Where ni and nj denote the number of samples in these

two categories.

(3) Splitting operation

The split operation of ISODATA consists of the following four

steps: a) Calculate the variance of all samples under each category

for each dimension; b) Calculate the largest variance in each

category smax;c) If smax > s for a class and the number of

samples within the class ni ≥ 2 nmin, then proceed to step d),and

exit the splitting operation if the condition is not satisfied; d) Split

the class that satisfies the condition into two subcategories and

make K=K+1. Which m(+)
i = mi + smax, m

(−)
i = mi − smax.
3.1.2 Evaluation of each black spots based
The Entropy Weight Method is a multi-indicator decision-

making approach rooted in information entropy concept, which

quantifies the degree of change in evaluation indices. A higher

information entropy value suggests that an index provides more

information, making it more crucial in the evaluation process.

Conversely, a lower information entropy implies a reduced weight

for the index in the final decision-making process. By leveraging

information entropy, the Entropy Weight Method enables a

comprehensive and nuanced assessment of multiple indicators,

facilitating informed and weighted decision-making based on the

significance of each index in the overall evaluation (Chen et al.,

2022; Wen et al., 2022).

Given the irregular distribution of accidents at sea, the entropy

weighting method lays the groundwork for ship scheduling by

assessing the importance of each accident black spot. This

assessment takes into account both the number of accidents

occurring at the black spot and the proximity of the black spot to

the MSAR base (Shu et al., 2023). By adopting the entropy weight

method, the importance of each accident black spot can be assessed

so that effective decisions can be made in ship scheduling This

method ensures the rational allocation of resources by prioritizing
FIGURE 1

Overall framework of this paper.
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areas where accidents are more concentrated and farther away from

search and rescue bases.

Assume that there are m evaluation objects and n evaluation

indicators, constituting a judgment matrix R = rijm ∗ n. The steps

for determining the weights using the weight entropy method are as

follows: the entropy weight method used in this paper is divided

into the following four main steps.

In this study Equation 3 Euclidean distance formula was used to

calculate the distance between each clustering center and MSAR.

D(p,q)  ¼  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(q1−p1)2+(q2−p2)2

q
(3)

Where, p= (p1, p2) and q= (q1, q2) represent the coordinates of

the accident spot.

(1) The entropy method was used to calculate the ratio of one

indicator to the sum of the values of the same indicator for each

program as Equation (4):

pij  ¼  
xij

Sm
i=1xij

(4)

Where pij is the weight of the ith sample in the j-

indicator. i = 1, 2…, m; j = 1, 2,…, n;

(2) As shown in Equation 5 for the jth evaluation indicator, the

entropy value of the evaluation indicator is calculated using the data

corresponding to that evaluation indicator.

ej  ¼   −
1

lnm

� �
∗Sm

j=1pijlnpij(j  ¼  1,2,···,m) (5)

Where, only when pij = 0 or pij = 1, pijln = 0.

(3) This indicates that the weight coefficients of the attribute

values are determined by the discrepancy between the schemes.

Hence, let’s define dj as the degree of consistency between the

contribution of the next scheme and attribute J. With dj = 1 − ej the

weight Wj for each attribute can be calculated as Equation (6):

wj  ¼  
dj

Sn
j=1dj

(6)

Where dj = 0, the jth attribute can be eliminated with a weight

equal to 0.

(4) Calculate the composite score for each accident black spot as

Equation (7), where zij denotes the value of the jth.

si  ¼  o
n

i=1
wj∗zij (7)

3.1.3 Multi-objective optimization model
Ship scheduling is a continuous aspect of the maritime search and

rescue process. A safe and feasible scheduling program can reduce

resource consumption and ensure the safety of rescue vessels. The

ship scheduling problem falls under the category of complex discrete

combinatorial optimization problems. It is challenging to enumerate

all possible solutions using the enumeration method, making it

necessary to adopt an optimization algorithm that offers high

computational efficiency for finding the optimal solution. To

address this issue NSGAII is employed as the base algorithm. It
Frontiers in Marine Science 05
retains the individuals with the highest fitness, effectively avoiding the

loss or destruction of the best genes during the optimization process.

The NSGAII algorithm adopts a non-dominated sorting genetic

algorithm with an elite strategy, which is widely used in various

fields of combinatorial optimization.

However, this algorithm has the obvious disadvantage of being

extremely sensitive to parameter configurations, a property that

makes many evolutionary algorithms dependent on specific

problems and scenarios. When the problem or scenario changes,

the parameters need to be adjusted or reset. The parameter tuning

process is very time-consuming. Based on the characteristics of

evolutionary algorithms and reinforcement learning methods, a

non-dominated sorting genetic algorithm based on reinforcement

learning is designed for the search and rescue scheduling problem,

NSGAII-RL uses NSGAII as the basic algorithm for population

iteration and selection and uses the Q-learning algorithm to

compute the reward value of the corresponding cross variant,

which guides the population to evolve in the direction of a more

optimal direction. However, NSGAII has a drawback—it is highly

sensitive to parameter configurations. This means that parameter

adjustments or resets are necessary when the problem or scenario

changes. Unfortunately, parameter tuning can be time-consuming.

To address this limitation, a novel approach called NSGAII-RL,

based on evolutionary algorithms and reinforcement learning, has

been developed for the search and rescue scheduling problem.

NSGAII-RL combines the population iteration and selection

mechanisms of NSGAII with the Q-learning algorithm. The Q-

learning algorithm computes the reward value for each crossover

variant, guiding the population towards more optimal solutions. By

integrating reinforcement learning into NSGAII, NSGAII-RL

overcomes the parameter sensitivity issue and enables the

algorithm to adapt to changing problem scenarios more

effectively. This approach enhances the efficiency and effectiveness

of ship scheduling in maritime search and rescue operations.

(1) Chromosome representation and population initialization

The process of generating chromosomes is considered to be the

initialization of chromosomes. In this paper, a two-layer

chromosome coding format is used to specify a 7-bit

chromosome coding format, where the first layer is binary coded

to represent different vessel information, and the second layer of

coding is really coded to represent vessel performance information.

Figure 2 shows an example of a chromosome that randomly

initializes the population according to the population size.

(2) Optimization of NSGAII-RL algorithm

When the initial individuals are generated, the population will

continuously select the non-dominated individuals according to

the non-dominance rank and crowding distance, where the

crowding distance is calculated as shown in Equation (8).

Di  ¼  (f i+1,1−f i−1,1)+(f i−1,2−f i+1,2) (8)

Where Dii represents the congestion at the ith spot and f

represents the value of the corresponding objective function.

This selection strategy employs a stochastic universal selection

method, which randomly selects a subset of parents with higher

fitness values as the progeny probability. Upon completion of the
frontiersin.org
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selection process, the selected outstanding individuals are paired

and undergo cross-mutation. For the crossover operation, we utilize

the single-spot crossover technique. Reinforcement learning excels

at dynamically selecting appropriate parameters, which is why it is

introduced to tune crossover (Pc) and mutation (Pm) probabilities,

in this study. after several iterations, the reinforcement learning

process is activated, and Pc and Pm selection is optimized based on

past and current learning experiences. This iterative process ensures

that the genetic algorithm converges efficiently and generates

promising new individuals, ultimately leading to improved

solution quality and faster computation times. This approach

enables the solution effect to better align with actual circumstances.

During each iteration, the agent dynamically selects unique

actions to achieve the optimal crossover and mutation probabilities.

For the crossover probability, values typically range from 0.4 to 0.9,

divided into 10 intervals with an interval value of 0.05 in this study.

Similarly, the mutation probability ranges from 0.01 to 0.21 and is

divided into 10 intervals, each with an interval value of 0.02, as

detailed in Table 1. For example, when selecting action a2 from the

action set Pc, Pm is randomly selected from the range of 0.01 to 0.21.

It may also be excluded from consideration based on the

optimization of the objective function, conversely, the same.

(3) Iteration of the Q-learning algorithm

By employing reinforcement learning, the adjustment of the

two main parameters in the algorithm can be divided into four

steps. (a) At time step t during the iteration of the non-dominated

sorting genetic algorithm, the agent acquires the state. (b) the agent

executes a corresponding action according to a pre-specified action

selection policy. This is followed by genetic, congestion, and non-

dominated sorting operations. (c) The state of the non-dominated

sorting genetic algorithm shifts to step+1, and feedback is provided

to the agent. (d) The agent proceeds to the next action step +1.

During the learning process, the agent guides the iterations of

the population by recording the current state and selecting

appropriate crossover and mutation operators. Simultaneously,

the agent updates a Q-table based on this information shown in
Frontiers in Marine Science 06
Figure 3, where highlighted cells represent actions taken in previous

iterations. In particular, the agent employs a greedy policy to select

actions for the population’s evolution, leveraging past experiences

to identify optimal action sequences. The outcomes of the

population’s iterations are fed back into the Q-table to inform

subsequent iterations. Throughout the algorithm’s iterations, the

agent explores various combinations of strategies, including

crossover-only, mutation-only, and combined crossover-mutation

operations, to continuously enhance the population’s fitness. The

agent’s exploration of the environment is assessed by a reward

function, with reward values closely tied to improvements in fitness.

This framework enables the agent to utilize past experiences to

determine optimal action sequences, meeting the demand for fast,

robust, and high-quality solutions. Over time, the agent’s

performance is improved through this iterative process.

Next, it is crucial to design reward functions for the crossover

and mutation probabilities to assess whether the chosen values are

rational. Different reward functions under the same algorithm may

lead to distinct outcomes, and the selection of the reward function

determines the convergence speed and efficiency of the algorithm

(Chen R. et al., 2020). The following reward functions are

established to evaluate the crossover and mutation probabilities in

each iteration, with each function defined separately as Equation (9)

and Equation (10):

Rcossover   ¼  
f itbest (x

t
i )−f itbest (x

t−1
i )

f itbest (xt−1i )
(9)

Rmutation  ¼  
SN
i=1f it(x

t
i )−SN

i=1f it(x
t−1
i )

SN
i=1f it(x

t−1
i )

(10)

Where, the value representing the minimum fitness value

during the search for the goal state, not only fitbest(x
t
i)< fitbest(x

t−1
i )

  and SN
i=1fit(x

t
i )=N< SN

i=1fit(x
t−1
i )=N,but also, in this case, fitbest(x

t
i ) ≥

fitbest(x
t−1
i ) and SN

i=1fit(x
t
i)=N ≥ SN

i=1fit(x
t−1
i )=N occurring in each

iteration must be considered. If   fitbest(x
t
i ) ≥ fitbest(x

t−1
i ) and SN

i=1

fit(xti)=N ≥ SN
i=1fit(x

t−1
i )=N, the agent must reward a negative value

as a penalty forcing its state to change towards a good trend.

The e-greedy strategy from reinforcement learning is employed

as the action selection method. This strategy strikes a balance

between exploitation and exploration, utilizing the maximum

action value function while still allowing for the possibility of

searching non-optimal actions. The e-greedy policy can be

expressed using Equation (11), where e represents the greedy rate

and is a random number between 0 and 1. When e is greater than or

equal to r, the probability of selecting the crossover and mutation

with the highest Q-value is chosen. However, when e is less than r,

the probability of picking the crossover and mutation is

randomized. Based on the above description, the algorithm

flowchart of NSGAII-RL in Figure 4 is as follows four steps: First,

we need to initialize the population and obtain the current state st,

of the population. Then, based on the e-greedy strategy, we select

the corresponding actions and calculate the respective objective

function values. We filter the population using the NSGAII

algorithm. At this spot, the state of the NSGAII algorithm

transitions to st+1, and the feedback is provided to the agent. The
FIGURE 2

Chromosome coding forms.
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agent takes action at st+1, records the learning process based on the

current state, action, and received feedback, and updates the Q-

table. If the reward value is positive, the action selection of NSGAII

will be strengthened; if the reward is negative, the action will be

weakened accordingly. The continuous process of obtaining states,

taking action, receiving feedback, and adjusting the strategy

constitutes the entire reinforcement learning process.

p (st , at)
maxaQ(st ,at);e≥g

random value;e<g

(
(11)

(4) Optimization Objectives

In this paper, the mean square deviation of the minimum sailing

time of the MSAR vessel, and the minimum response time of the

MSAR vessel are chosen as the objective functions. To address the

allocation optimization of maritime emergency resources, a multi-

objective optimization model is established. The objective function

and constraints are expressed in Equations (12–19).

min Obj1  ¼  min(SJSk∈KDj=Sk) (12)
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min Obj 2 ¼  min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((

1
Nk

)∗S(ti−m2))

r
(13)

Constraints:

Sj∈JSi∈INij≥1 (14)

R∗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi−aj)

2−(yi−bj)
2

q
≤Dk=2 (15)

Ni jjdij≤Mk

� �
(16)

2Dj≤Dk (17)

Nk≤Ni (18)

yi ∈  0,1f g (19)

Where, Sk is the speed of each vessel; Nk is the total number of

rescue vessels dispatched; Ni is the set of all candidate rescue vessels

within the response time of MSAR site i; ti denotes the response

time of the ith MSAR vessel; dij represents the distance between

black spot j and candidate rescue site i;m denotes the mean value of

the response time, and. is taken as 1 when the rescue site i is

selected, and 0 otherwise;

There are many complex factors affecting the scheduling of

maritime MSAR vessels and the following assumptions are made

for the convenience of modeling and solving:
1) Simplify the base of call for search and rescue vessels, and

the annual operational availability of each rescue vessel is

365 days;

2) Assume that each vessel carries a corresponding sufficient of

supplies and has the ability to conduct search and rescue at

the corresponding accident spot;

3) It is assumed that the probability of the existence of the

search and rescue target at each location in the surrounding

sea area within the accident spot to be searched is equal, i.e.,

the search and rescue target is uniformly distributed in the

sea area to be searched;
TABLE 1 Crossover & Mutation probabilistic action sets.

Cross-
probability
action set

Range of
parameter

Pc

Mutation-
probability
action set

Range of
parameter

Pm

a1 0.4≤ Pc ≤0.45 b1 0.01≤ Pm ≤0.03

a2 0.45≤ Pc ≤0.5 b2 0.03≤ Pm ≤0.05

a3 0.5≤ Pc ≤0.55 b3 0.05≤ Pm ≤0.07

a4 0.55≤ Pc ≤0.6 b4 0.07≤ Pm ≤0.09

a5 0.6≤ Pc ≤0.65 b5 0.09≤ Pm ≤0.11

a6 0.65≤ Pc ≤0.7 b6 0.11≤ Pm ≤0.13

a7 0.7≤ Pc ≤0.75 b7 0.13≤ Pm ≤0.15

a8 0.75≤ Pc ≤0.8 b8 0.15≤ Pm ≤0.17

a9 0.8≤ Pc ≤0.85 b9 0.17≤ Pm ≤0.19

a10 0.85≤ Pc ≤0.9 b10 0.19≤ Pm ≤0.21
FIGURE 3

Q-table data flow.
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Fron
4) Each search and rescue vessel sails at its maximum speed

when performing the search and rescue mission;

5) At least 8 ships are assigned to each accident clustering

center spot for corresponding guarding and each ship can

only correspond to one accident center.
Equation (12) is the objective function 1, which indicates that

the total time cost is minimized, where the total time cost is the sum

of the time for each MSAR vessel to arrive at the accident center.

Equation (13) represents the minimization of the root mean square

error of the response time of the MSAR vessels, i.e., the MSAR

vessel is able to arrive at the accident center with as little fluctuation

of the arrival time as possible. The combination of objective

functions 1 and 2 can ensure that the MSAR vessel arrives at each

accident spot at the fastest speed possible Equations (14) ~ (19) are

the constraints: Equations (14) and (15) denote that the demand of

each accident spot is satisfied and there exists at least one

corresponding MSAR vessel to realize the full coverage of the

whole accident water; Equation (16) denotes that the set of all

candidate rescue sites j within the emergency response time of the

accident spot; Equations (17) and (18) denote that the distance of

search and rescue and the number of search and rescue vessels are

not higher than the upper limit of the vessel, respectively; Equation

(19) denotes whether the ship is selected or not.
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3.2 Clustering algorithm
evaluation parameters

Silhouette Coefficient is used as a clustering evaluation metric

which measures the tightness of the cluster in which each sample is

located and its separation from other clusters. In terms of the

observed values of the silhouette coefficient, higher values indicate

better separation of the clustering results, indicating that the

samples are more similar within the clusters to which they belong

and are more differentiated from other clusters. The range of values

is -1 to 1. The formula is derived as Equation (20) where a denotes

the average distance of a given sample from other samples within

the cluster to which it belongs and b denotes the average distance of

a given sample from samples in other clusters.

S  ¼  
b−a

Max(a,b)
(20)

The total profile coefficients SC for clustering are Equation (21).

SC  ¼  o
N
i=1si
N

(21)

The Calinski-Harabasz Index (CHI) assesses the quality of

clustering by comparing the mean-variance within clusters with

the mean-variance between clusters. Higher values of the Calinski-
FIGURE 4

Flow chart of NSGAII-RL algorithm.
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Harabasz Index indicate better clustering results, i.e., less variance

within clusters and more variance between clusters. The formula for

the index is Equation (22).

CHI  ¼  
tr(Bk)(N−K)
tr(Wk)(K−1)

(22)

Where Bk is the covariance matrix between each class andWk is

the covariance matrix of the data within each class

The Davies-Bouldin Index (DBI) calculates two pieces of

information: the closeness of the distance between the samples

within each cluster and the separation of the distances between

different clusters. A smaller Davies-Bouldin Index indicates better

clustering results, i.e., higher closeness of samples within clusters

and greater separation of distances between different clusters.

Si calculates the average distance from the data within a class to

the center of mass of the cluster, which is calculated as in Equation

(23). It represents the degree of dispersion of each time series in the

cluster class i, in which Xj represents the jth data spot in the cluster

class i, Ai is the center of mass of the cluster class i, Ti is the number

of data in the cluster class i, and p is taken to be 2 in the usual case,

which makes it possible to compute the Euclidean distance between

the independent data spots and the center of mass.

Si  ¼  (
1
Ti
oTi

j=1 Xj−Ai

�� ��p)1 p= (23)

Where, ak,i represents the Kth value of the center of the mass

spot of cluster class i, and Mij is the distance between cluster class i

and the center of mass of cluster class j, which is calculated as

Equation (24):

Mi,j   ¼  (on
k=1 ak,i−ak,j

�� ��p)1 p= (24)
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DBI defines a value Rij that measures similarity, calculated as

Equation (25):

Ri,j  ¼  
Si+Sj
Mi,j

(25)

For each cluster class i calculate the maximum value of Rij,

denoted as Di which is calculated as Equation (26):

Di=maxj≠iRi,j (26)

That is, the maximum similarity value of cluster class i with

other classes, that is, the worst result is taken out. Then the

maximum similarity of all classes is averaged to get the DBI

index, which is calculated as Equation (27):

DBI  ¼  
1
no

N

i=1
Di (27)
4 Experiment

We collated and filtered the collected historical accident data

pertaining to the target sea area. The experimental procedure in this

section is as follows: Firstly, the ISODATA algorithm is used to

cluster the historical data of the target sea area, find out the

corresponding accident centers, and record the distance of the

accident centers from the MSAR bases as well as the number of

accidents contained in each accident center. Secondly, the entropy

weight method is used to evaluate the importance of each accident

center, taking into account the size of the accident center and its

distance from the MSAR base. The accident centers are then sorted
FIGURE 5

Schematic diagram of Shanghai harbor.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1395614
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2024.1395614
according to their importance level. Subsequently, the collection of

ships from the five MSAR bases was collated. It was assumed that all

ships were in their respective ports during the dispatch. The

NSGAII-RL algorithm is used to dispatch according to the

corresponding scheduling order, and eight vessels are assigned to

each accident center without repeated use of the vessels. The

changes in the objective function are recorded.
4.1 Experimental settings

The model selected for this study utilizes maritime accident data

spanning four years (2019-2022) recorded at five MSAR bases

within the Shanghai port, and all the MSAR vessels that can be

mobilized from the five MSAR bases. The configuration of the

experiment in this paper is Core I9-12900 5 GHz CPU, 16 GB

memory, Windows 11 operating system desktop computer, coding

is performed using Python 3.11. All algorithms are executed under

the same system configuration.
4.2 Experimental description

In 2022, Shanghai Port’s container throughput will reach 47.330

million, ranking first in the world for 13 consecutive years. The

substantial cargo volume and the multitude of ships navigating near

port waters contribute to a high traffic density. For instance, the

Shanghai Maritime Search and Rescue Center handled 2,542

various types of accidents and near-miss accidents within its

responsibility area from 2018 to 2022.

To evaluate the effectiveness of the proposed model, we

conducted a case study on the sea area surrounding the Shanghai

port. We collected maritime accident data samples from the

Shanghai Maritime Administration, and the time span ranged

from January 2019 to December 2022. Five MSAR bases were

selected as the starting spot for the departure of MSAR vessels in

this paper. Figure 5 depicts the approximate range of waters selected

for this experiment. Among them, A~E represents the five selected

MSAR bases. While these bases are derived from data provided by

the maritime department, their specific names are not disclosed due
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to data sensitivity. Therefore, they are referred to as A~E in

this paper.
4.3 Identification of black spots in
maritime accidents

In traditional maritime accident clustering, the large

discrepancy in the size of clusters often arises due to the uneven

distribution of maritime accident data across different regions.

Therefore, in this study, the ISODATA algorithm is compared

with K-Means, DBSCAN, and grid clustering algorithms. The

minimum and maximum number of accident spots in a cluster is

set to 10 and 100, respectively. Based on experience, this range can

effectively capture potential clusters in the data. Smaller clusters

might not provide sufficient information about accident hot spots,

while larger clusters could lead to oversimplification.

The threshold parameter in the ISODATA algorithm is crucial

in determining the distance between cluster centers. To substantiate

the appropriateness of the threshold parameter, a series of

experiments were conducted. As depicted in Figure 6, the

threshold’s common value space from 0.05 to 0.5 was divided

into ten intervals, and the clustering effect was assessed under

each threshold value. Three clustering quality metrics, including SC,

DBI, and CHI, were employed for evaluation. The results indicated

that the optimal SC and CHI, coupled with the minimized DBI,

were attained at a threshold of 0.2. Consequently, 0.2 was selected as

the algorithm’s parameter. Additionally, 500 iterations were set, and

the number of clusters was defined as 6 as a reference value.

However, the execution of the ISODATA algorithm yielded 16

clusters, contrary to the expected number. Thus, further

experimentation with the K-means algorithm implementing 16

parameters for clustering was deemed necessary.

The clustering performance of four algorithms for maritime

accidents in the Shanghai Port is depicted in Figure 7. It is apparent

that both DBSCAN and Grid-based Clustering display suboptimal

performance in effectively clustering and identifying accident

locations. Grid-based clustering offers only a rudimentary

categorization of accidents, with numerous accident centers

mistakenly identified on land. Similarly, DBSCAN struggles to

accurately depict the distribution of accident spots, a limitation

attributed to the non-uniform distribution of accident data across

various regions, causing certain clustering algorithms to overlook

underlying data patterns. Conversely, both the ISODATA

algorithm and the KMEANS algorithm demonstrate the ability to

identify areas with high accident rates. However, upon closer

inspection of the magnified section of the Yangtze River estuary

in the figure, it becomes evident that the K-means algorithm’s

clustering results exhibit significant variance and do not neatly align

with a predetermined number of clusters. In contrast, the adaptive

nature of the ISODATA algorithm allows it to effectively handle

varying densities and irregular cluster shapes, thereby capturing the

nuances and complexity inherent in the accident data more adeptly.

From an algorithmic stand spot, the ISODATA algorithm’s

superiority over KMEANS lies in its capability to dynamically

adjust the number of clusters based on the data distribution,
FIGURE 6

Impact of ISODATA algorithm parameter changes on
three indicators.
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proficiently addressing issues such as varying density and irregular

cluster shapes. This adaptability enables the ISODATA algorithm to

more accurately capture the complex and non-linear structures

evident in the accident data, resulting in more effective

clustering outcomes.
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This is well verified by the evaluation indicators in the following

Table 2 ISODATA algorithm has a balanced performance in all

aspects. ISODATA algorithm has the highest CHI value, indicating

that the dissimilarity between clusters is greater than the

dissimilarity within clusters, resulting in a superior clustering
TABLE 2 Evaluation metrics for different algorithms.

K-Means(6) K-Means(16) DBSCAN Grid-based Clustering ISODATA

SC 0.3610 0.4140 0.1270 -0.0650 0.4582

CHI 985.5170 777.8680 45.6970 118.0800 1233.5110

DBI 0.7750 0.8980 2.1490 1.0220 0.7260
A

B

D

E

C

FIGURE 7

Comparison of four clustering algorithms (A–E).
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effect. In other words, by combining Table 2; Figure 7, it is evident

that a smaller CHI value means that relatively similar data spots are

assigned to the same cluster, while dissimilar data spots are

allocated to different clusters. For instance, the small CHI values

of the DBSCAN and Grid-based Clustering algorithms indicate

their failure to identify specific outlier spots. Additionally, the

higher SC and lower DBI values respectively denote a higher

dissimilarity between the data within and nearest clusters, as well

as a more compact distribution of data spots within the clusters.

These findings collectively indicate that the ISODATA algorithm

outperforms other algorithms in terms of clustering effectiveness.

According to the clustering results obtained by the ISODATA

algorithm, illustrated in the heat map distribution in Figure 8, with

the asterisk representing the location of the MSAR base and the light

blue indicating the accident clustering center, it is evident that the

accident clustering center is densely concentrated near the mouth of

the Huangpu River in the figure. This phenomenon can be attributed

to the complex hydrological conditions in and around the Huangpu

River inlet. The convergence of ship traffic from the Wusongkou

anchorage area results in numerous ship traffic flows with frequent

interchanges. This situation is further compounded by the

narrowness of the waterways and the high number of anchorages

in the area, contributing to a heightened potential for accidents.
4.4 Entropy weighting method to prioritize
search and rescue resource scheduling

In this experiment, the distance from each accident black spot

to the MSAR base and the size of each accident black spot were

chosen as inputs to comprehensively assess the priority of

dispatching MSAR forces. Cluster centers with a high frequency

of accidents and long distances from each maritime MSAR center
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should be prioritized for centralized dispatching. As shown in

Figure 9, the horizontal axis represents the accident point

number. The dashed line on each bar indicates the entropy

weight score of the five maritime MSAR centers to the sixteen

accident centers, with the blue bar representing the frequency of

each accident black spot and the green bar representing the distance

weight of each accident black spot. It is apparent that the twelfth

accident black spot should be given priority due to its distance from

the MSAR bases and the number of accidents in the cluster.

Conversely, accident center No.3, which experiences a higher

frequency of accidents, is placed behind accident center No.12

due to its proximity to the major MSAR bases. The subsequent

Table 3 displays the scheduling order of the MSAR bases and the

corresponding index scores.
4.5 NSGAII-RL resource optimization

Based on the above conclusions the NSGAII-RL algorithm

developed in this paper will be compared with three well-known

methods: PSO, MOEAD and NSGAII.

Using each algorithm, select ships from all available vessels based

on the priority of accident black spots. The selected ships will be

removed from the pool of available vessels and the other vessels used

for the next black spot, and this process will continue for the

comparison of sixteen accident black spots. Each algorithm cycles

10 times and is considered has a set of parameters that remain

constant during the search process. The parameters associated with

the NSGAII-RL algorithm are set as follows: learning rate a = 0.1,

discount factor g = 0.9, greedy rate e = 0.5 (Li et al., 2022a), crossover

and mutation probabilities, and an initial Q value of 0. Parameters

associated with the MOEAD and the NSGAII algorithm are set as

follows: the maximum number of iterations MAXGEN = 400,
FIGURE 8

Heatmap of ISODATA algorithm.
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crossover probability Pc = 0.85, and mutation probability Pm = 0.21.

The PSO algorithm has an acceleration constant of 2, an inertia

weight of 0.5, a chromosome length of 7, and a population size of 8

(Song et al., 2023).

Figure 10 illustrates the fluctuations of parameters Pc and Pm
over multiple iterations. The blue line represents the crossover

probability, while the red line indicates the mutation probability.

Initially, Pc and Pm exhibit substantial oscillations between their

maximum and minimum values. However, as the algorithm

continues to iterate, Pc and Pm gradually converge within a
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narrow range. Obviously, Pc and Pm, as the actions that can be

selected from the Q-table, are always exploring and obtaining the

execution results of the actions through the greedy strategy, and

updating the Q-value according to each obtained result to achieve

the optimal objective function.

Figure 11 depicts the results of four optimization algorithms

(NSGAII-RL, NSGAII, MOEAD, and PSO) after iterating through

the 16 black spots. As seen in the figure, the optimization solution

obtained by the NSGAII-RL algorithm exhibits a significantly

broader population distribution, indicating that the algorithm
TABLE 3 Dispatch order of accident black spots and scoring.

Scheduling
order

Number
of accidents

Distance
weight

MSAR
base 1

MSAR
base 2

MSAR
base 3

MSAR
base 4

MSAR
base 5

Overall
assessment

12 58 0.3841 0.8130 0.7437 0.7194 0.7703 0.5396 0.7172

11 64 0.3855 0.7783 0.7047 0.6860 0.7356 0.6026 0.7015

15 82 0.3847 0.6988 0.6374 0.6064 0.6573 0.5476 0.6295

14 65 0.3850 0.6727 0.6043 0.5792 0.6301 0.5111 0.5995

1 81 0.3856 0.6066 0.5496 0.5156 0.5658 0.5724 0.5620

3 95 0.3665 0.5496 0.4889 0.4541 0.5065 0.7335 0.5465

13 34 0.3669 0.5394 0.5018 0.4598 0.5046 0.1272 0.4266

16 24 0.3858 0.3722 0.3014 0.2793 0.3295 0.3365 0.3238

9 57 0.2701 0.1398 0.2268 0.2427 0.1829 0.7275 0.3039

4 53 0.3239 0.2813 0.2137 0.1788 0.2345 0.5933 0.3003

2 28 0.3826 0.3129 0.2424 0.2195 0.2700 0.3812 0.2852

10 38 0.3229 0.1569 0.1783 0.2195 0.1738 0.6898 0.2837

7 54 0.2530 0.1731 0.1553 0.1849 0.1376 0.7018 0.2706

8 46 0.2780 0.1230 0.1757 0.2036 0.1450 0.6962 0.2687

5 53 0.2644 0.2178 0.1509 0.1374 0.1667 0.6491 0.2644

6 19 0.3316 0.1413 0.0613 0.0912 0.1064 0.5236 0.1848
FIGURE 9

Degree of importance of each accident spot.
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excels in maintaining population diversity. This diversity allows for

thorough exploration of all facets of the solution space, considerably

increasing the likelihood of discovering the optimal solution.

Furthermore, data from Table 4 reveals that the NSGAII-RL

algorithm achieves an improvement of over 7% in Obj 1

optimization, suggesting that the algorithm can save at least 7%

of the time spent scheduling ships in the ship scheduling problem.

In Obj 2, the algorithm also makes significant improvements,

effectively reducing the time gaps between ships and thereby

enhancing the efficiency of ship scheduling in actual MSAR

operations, thus increasing search and rescue probability

to a certain extent. Compared to other algorithms, these

improvements are primarily attributed to the algorithm’s adaptive

iteration, which enables learning from interactions and further

refining its search strategy. This results in a strong performance

in population diversity and convergence, suggesting that the model

can indeed assist the maritime sector in reducing MSAR scheduling

time and, consequently, improving the operational efficiency of the

search and rescue system.
5 Conclusion

The rapid development of global maritime trade has posed

significant challenges for maritime regulatory authorities,

particularly when considering the occurrence of maritime

accidents. Maritime accidents not only cause serious harm to

personnel and the environment but also result in extensive

damages to vessels, cargo, and trade networks. Therefore, there is

a need for more effective emergency resource allocation strategies to

address this phenomenon. This study presents an integrated

approach to emergency resource allocation, consisting of three

main steps. Firstly, the accident blackspots within the study area

are identified, and the optimal number of clusters is determined

using the ISODATA algorithm, accounting for the inherent

characteristics of the data. This approach removes the subjectivity
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and uncertainty associated with manually setting the number of

clusters. Moreover, the entropy weighting method is employed to

evaluate the accident blackspots, effectively identifying high-risk

areas and establishing a prioritized scheduling order. Subsequently,

the NSGAII-RL algorithm is employed to efficiently schedule each

clustering center. To verify the effectiveness of the proposed

method, an extensive comparison with various algorithms is

conducted. The experimental results demonstrate that the selected

method can reduce the vessel scheduling time by at least 7% and

substantially reduce the volatility of the arrival time of the MSAR

vessels. Furthermore, the framework proposed in this paper was

integrated with actual exercises conducted by the East China Sea

Rescue Bureau and underwent field verification in the vicinity of the

Yangtze River estuary in Shanghai. Compared to the traditional

method, the proposed framework enables faster scheduling of ship

resources and reduces losses.

Here are several limitations in this study. Firstly, due to the

constraints of accident data, the data used in this study is based on

the initial latitude and longitude of the accident report. However, in

reality, the position of the search and rescue target may change due

to the effects of wind and wave currents, which is a factor not

considered in this study. Secondly, the study did not classify

accidents according to severity, and all accidents were considered

with the same weight, potentially leading to inaccurate assessment

results. Additionally, limited by data sensitivity, the consideration of

search and rescue capabilities in this study was relatively narrow,

focusing only on dispatching search and rescue vessels without fully

considering the incorporation of other search and rescue

capabilities such as helicopters, intelligent search and rescue

vessels, and social search and rescue forces like passing ships.

To address the aforementioned limitations, our team’s future

research in the field of MSAR will predominantly concentrate on

three key areas. Firstly, the incorporation of relevant drift prediction

algorithms to forecast the required time for vessels to reach the

scene and subsequently estimate the location of the search and

rescue targets. Secondly, the classification of accidents according to
FIGURE 10

Variation of Pc, Pm with the number of iterations.
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FIGURE 11

Optimal results for each of the four algorithms (A–P).
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TABLE 4 Optimization results and running time of the three algorithms.

MOEAD NSGAII-RL

Gap2 Obj1 Gap1 Obj2 Gap2 Obj1 Gap1 Obj2 Gap2

87.1764 28.8799 65.4518 2.6410 88.2393 9.9775 - 0.3106 -

95.2402 23.4191 42.0093 1.7878 96.9907 13.5809 - 0.0538 –

6.4806 15.9199 41.7308 0.8607 23.7133 9.2764 - 0.6566 -

59.2977 18.5447 55.9313 1.6544 81.0143 8.1724 - 0.3141 -

51.1688 11.3473 41.5509 0.5302 64.1456 6.6324 - 0.1901 -

81.9368 6.0708 19.3747 0.1824 80.2632 4.8946 - 0.0360 -

72.8061 19.2326 47.7013 0.7729 18.4112 10.0584 - 0.6306 –

90.4907 14.6185 30.6837 0.2622 90.4653 10.1330 - 0.0250 -

60.3951 1.5052 59.8924 0.0495 14.9495 0.6037 - 0.0421 –

90.2778 3.6462 53.8204 0.0245 62.8571 1.6838 - 0.0091 -

77.6898 10.5159 53.9393 0.2428 80.2718 4.8437 - 0.0479 -

89.0747 3.6840 51.1645 0.0215 54.4186 1.7991 - 0.0098 –

50.0000 1.5004 9.8707 0.0065 60.0000 1.3523 - 0.0026 -

89.8113 1.8552 31.0856 0.0428 93.6916 1.2785 - 0.0027 –

76.1194 1.3079 21.9589 0.0120 73.3333 1.0207 - 0.0032 -

97.3025 3.6025 74.0514 0.0103 86.4078 0.9348 - 0.0014 -
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NSGAII PSO

Obj1 Gap1 Obj2 Gap2 Obj1 Gap1 Obj2

1 16.1268 38.1309 3.8559 91.9448 28.2323 64.6593 2.4221

2 14.7275 7.7854 1.3165 95.9134 23.4752 42.1479 1.1303

3 10.7365 13.5994 0.7837 16.2179 13.1491 29.4522 0.7021

4 15.9959 48.9094 0.6052 48.0998 20.0493 59.2385 0.7717

5 7.3118 9.2918 0.6183 69.2544 11.7183 43.4013 0.3893

6 6.4022 23.5482 0.2487 85.5247 6.6865 26.7988 0.1993

7 12.7321 20.9997 0.8343 24.4157 18.2806 44.9777 2.3189

8 14.4639 29.9428 0.2629 90.4907 14.4639 29.9428 0.2629

9 1.8088 66.6243 0.0515 18.2524 1.7552 65.6051 0.1063

10 7.4247 77.3216 0.2349 96.1260 3.0641 45.0475 0.0936

11 8.0173 39.5844 0.1058 54.7259 10.9824 55.8958 0.2147

12 2.3722 24.1590 0.1485 93.4007 5.0160 64.1328 0.0897

13 1.4693 7.9630 0.0093 72.0430 1.4835 8.8440 0.0052

14 1.8095 29.3451 0.0362 92.5414 1.8776 31.9078 0.0265

15 1.2128 15.8394 0.0040 20.0000 1.6386 37.7090 0.0134

16 1.2116 22.8458 0.0196 92.8571 4.2647 78.0805 0.0519

Gap1= (Obj1 – Obj1best)/Obj1x100%; Gap2= (Obj2 – Obj2best)/Obj2x100%.
The bolded part shows the optimisation result of the NSGAII-RL algorithm in this paper.
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severity, and the consideration of multiple factors when scheduling

the search and rescue sequence for accident black spots. Thirdly, the

consideration of the involvement of additional search and rescue

resources, such as helicopters and social search and rescue forces,

during the search and rescue process.
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