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A high-precision interpretable
framework for marine dissolved
oxygen concentration inversion
Xin Li1, Zhenyi Liu1, Zongchi Yang1, Fan Meng2 and Tao Song1*

1College of Computer and Communication Engineering, China University of Petroleum,
Qingdao, China, 2School of Artificial Intelligence, Nanjing University of Information Science
andTechnology, Nanjing, China
Variations in Marine Dissolved Oxygen Concentrations (MDOC) play a critical role

in the study of marine ecosystems and global climate evolution. Although artificial

intelligence methods, represented by deep learning, can enhance the precision of

MDOC inversion, the uninterpretability of the operational mechanism involved in

the “black-box” often make the process difficult to interpret. To address this issue,

this paper proposes a high-precision interpretable framework (CDRP) for

intelligent MDOC inversion, including Causal Discovery, Drift Detection, RuleFit

Model, and Post Hoc Analysis. The entire process of the proposed framework is

fully interpretable: (i) The causal relationships between various elements are further

clarified. (ii) During the phase of concept drift analysis, the potential factors

contributing to changes in marine data are extracted. (iii) The operational rules

of RuleFit ensure computational transparency. (iv) Post hoc analysis provides a

quantitative interpretation from both global and local perspectives. Furthermore,

we have derived quantitative conclusions about the impacts of various marine

elements, and our analysis maintains consistency with conclusions in marine

literature on MDOC. Meanwhile, CDRP also ensures the precision of MDOC

inversion: (i) PCMCI causal discovery eliminates the interference of weakly

associated elements. (ii) Concept drift detection takes more representative key

frames. (iii) RuleFit achieves higher precision than other models. Experiments

demonstrate that CDRP has reached the optimal level in single point buoy data

inversion task. Overall, CDRP can enhance the interpretability of the intelligent

MDOC inversion process while ensuring high precision.
KEYWORDS

interpretability, high-precision, dissolved oxygen, causal discovery, drift detection,
RuleFit, SHAP, LIME
1 Introduction

Marine Dissolved Oxygen Concentration (MDOC) serves as an essential indicator for

evaluating seawater conditions and plays a significant role in the regulation of the global

climate. The decrease in MDOC, also known as marine hypoxia, can significantly affect

marine ecosystems, potentially leading to extensive marine biota mortality events
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(Karadurmus and Sari, 2022; Brock et al., 2023; Wang et al., 2023b).

This phenomenon directly impacts 10% to 12% of the global

population reliant on coastal ecosystems for sustenance

(Breitburg et al., 2018; Li et al., 2023b). On the other hand, the

production of nitrous oxide (N2O) shows obvious sensitivity to

variations in MDOC. Particularly in conditions of reduced MDOC,

there is a notable rise in N2O production (Suntharalingam et al.,

2000; Jin and Gruber, 2003; Hutchins and Capone, 2022). Despite

the importance of MDOC research within the field of marine

science, the accessibility of MDOC data remains relatively

constrained in comparison to data on temperature and salinity.

This limitation hinders comprehensive research efforts in this area

(Wang et al., 2020). Currently, widely used marine data include

buoy measurements of MDOC and other marine elements from the

World’s Oceans Real-time Network Plan (ARGO)1, as well as the

World Ocean Database (WOD)2, which compiles datasets from

various countries and organizations. However, initial deployments

primarily focused on measuring temperature and salinity,

meanwhile modern buoys face challenges related to calibration

and drift (Johnson et al., 2017). Consequently, utilizing data such

as temperature and salinity to infer MDOC holds great significance,

making MDOC inversion highly meaningful.

The development of MDOC inversion methodologies has

primarily undergone three stages: numerical computation,

machine learning, and deep learning (Figure 1): Initially,

numerical computation was employed for inversion calculations,

but the associated computational costs were found to be excessively

high; Nonetheless, the introduction of machine learning

methodologies within the domain of artificial intelligence

significantly reduced computational costs (Figure 1A); More

recently, the deployment of deep learning models has further

elevated computational precision, but the uninterpretable working

mechanism of the “black-box” has led to the low interpretaiblity of

these models (Figure 1B); After conducting research, we found that

rule-based methods such as RuleFit, excelling in both precision and

interpretability, have not been widely applied in oceanography, thus

their adoption could effectively ensure high precision and inherent

interpretability in marine intelligent inversion models (Figure 1C).

At present, there have been multiple approaches to address the

MDOC inversion. Traditionally, using climate system models and

low-order marine biogeochemical models for MDOC inversion has

been a common practice (Matear and Hirst, 2003), while

mathematical modeling is also a prevalent method for MDOC

inversion (Naik and Manjappa, 2011). However, these traditional

models have some limitations, such as slow computational speed,

demanding equipment requirements, and high operational costs,

making it difficult to implement streamlined inversion for MDOC.

Nowadays with the rapid expansion of marine datasets,

machine learning has supassed traditional methods in robustness

and has shown excellent performance in uncovering the complex

nonlinear relationships between variables (Jiang et al., 2017),
1 https://archimer.ifremer.fr/doc/00187/29825/

2 https://www.ncei.noaa.gov/products/world-ocean-database
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because of its faster computational speeds and lower dependence

on data assumptions. And multiple machine learning algorithms

have been emplyed to investigate the association between dissolved

oxygen concentration and other elements. Ji et al. (2017) utilized

eleven hydrochemical variables from the Wen-Rui Tang River to

assess the accuracy of dissolved oxygen concentration inversion

using Support Vector Regression (SVR). Giglio et al. (2018)

attempted to use Random Forest Regression (RFR) to reproduce

the dissolved oxygen concentration fields from the Southern Ocean

State Estimate (SOSE), and explored the precision effects in specific

boundary areas. Ross and Stock (2019) applied Multilayer

Perceptron (MLP) to explore the relationship between monthly

marine elements and dissolved oxygen concentration in Chesapeake

Bay, analyzing stratification phenomena on a sub-seasonal scale.

However, the structure of machine learning is relatively simple,

leaving considerable room for the further boosting of the

fitting precision.

Recently, deep learning has been employed to increase the

precision of MDOC inversion based on single point buoy data.

Wang et al. (2020) used DJINN and its improved version, M-

DJINN, to clarify the relationship between dissolved oxygen

concentration and other variables such as temperature and

salinity, utilizing data from the World Ocean Database.

Experimental evidence shows that the precision of deep learning

networks significantly outperforms traditional machine learning

algorithms. However, the interpretability of deep learning networks

is limited by their hidden layers, which extensively abstract and

transform input data nonlinearly, and involve large number of

parameter. This complexity makes it difficult to understand how the

model operates. As a result, current high-precision MDOC

inversion methods encounter difficulties in gaining full trust from

decision-makers in marine ecology, posing substantial risks in

decision-making processes. Therefore, developing a fully

interpretable, high-precision intelligent inversion framework for

MDOC becomes a significant challenge to overcome.

Rule-based methodologies offer a practical solution for achieving

interpretable computations with high precision. Friedman and Popescu

(2008) introduced RuleFit, a model consisting of a linear combination

of rules and linear components, where each rule is expressed through

straightforward evaluative statements about the input variables’ values.

This collection of rules can achieve predictive precision comparable to

the best methods, with the added benefit of being easily interpretable.

In recent years, RuleFit has seen widespread use in fields that

emphasize the interpretability of artificial intelligence, such as

intelligent healthcare. For instance, Carrazana-Escalona et al. (2022)

used RuleFit to predict the characteristics of blood pressure parameters

among 8 adolescent volunteers during dynamic pressure-bearing

processes, and Luo et al. (2022) applied it to diagnose

nasopharyngeal carcinoma in 1706 patients. These studies illustrate

that RuleFit can provide operational rules for models with high

precision, thus enhancing their inherent interpretability. Although

rule-based methods have the advantages of high precision and

interpretability, these methods still have certain limitations. Bénard

et al. (2021) introduced SIRUS, which enhances the precision and

stability of rule extraction by restricting decision tree node splits to

empirical quantile positions. However, the conclusions provided by this
frontiersin.org
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method are too specific and verbose, making it difficult to analyze the

rules. Additionally, Mollas et al. (2022) proposed LionForests, which is

valued for its “conclusiveness”, demonstrating improved stability and

interpretability. Nonetheless, this method still has shortcomings in

terms of its coverage of the decision-making process. Zhang et al.

(2023) introduced OptExplain, an algorithm that utilizes particle

swarm optimization for the optimization process, but it is currently

applicable only to classification tasks, which does not align with the

MDOC inversion task. By contrast, RuleFit, with its broad application

base and superior performance, excels in rule generation and offers ease

of interpretation. Therefore, RuleFit is ultimately selected as the

inversion model in this work.

In this paper, we introduce a framework that offers both high

precision and interpretability for the intelligent inversion of MDOC.

We have named this framework CDRP because it comprises Causal

Discovery, Drift Detection, RuleFit Model, and Post Hoc Analysis. To

clarify the causal relationships between marine elements, we adopt

the PCMCI causal discovery method, which helps to remove weakly

correlated relationships and elucidate the associations between

MDOC and other relevant elements, thereby enhancing the

effectiveness and interpretability of model learning. In addition, the

concept drift detection technique is also used to further improve

the precision of the intelligent model and to help users understand

the key features of the data. This technique helps users select more

representative data, known as key frame data, for training the

intelligent inversion model. Additionally, to realize high-precision

interpretable intelligent inversion at the computational aspect of the

model, we utilize the rule-based RuleFit algorithm. This algorithm

not only achieves high-precision inversion of MDOC but also aids in

clarifying the internal mechanisms of intelligent computation by

analyzing the extracted rules. Upon completion of training, we utilize
Frontiers in Marine Science 03
post-hoc analysis techniques like SHAP and LIME to investigate the

model’s operational mechanisms. Our focus is on obtaining

quantitative insights into how different marine elements influence

the climatological normals of MDOC, both in terms of magnitude

and direction. The analysis shows that our framework CDRP

produces results that align well with conclusions in marine

literature. In summary, our contributions are mainly in the

following five aspects: (i) We propose an interpretable artificial

intelligence framework CDRP for achieving high-precision

interpretability in the MDOC intelligent inversion process; (ii) The

introduction of PCMCI enhances the interpretability of CDRP by

elucidating the relationships between MDOC and other elements

while eliminating the interference of weakly correlated elements; (iii)

By utilizing concept drift detection, this paper ensures a more

representative selection of training data and model tuning, thereby

effectively elevating the model’s precision and interpretability based

on data reduction; (iv) This study pioneers the application of the rule-

based RuleFit model to marine ecology, enhancing both the inversion

precision and the interpretability of the operational mechanism; (v)

The validation of CDRP through causal discovery, rule analysis,

SHAP, and LIME, and its consistency with conclusions in marine

literature on MDOC, effectively ensures interpretability in the

inversion process.
2 Materials and methods

2.1 Study area and dataset

After reviewing extensive literature and datasets, we have

preliminarily identified several marine elements related to MDOC
FIGURE 1

Precision and interpretability in MDOC inversion tasks. (A) Machine Learning; (B) Deep Learning; (C) Rule-based.
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inversion, including temperature, salinity, pH, chlorophyll

concentration, turbidity, CO2 concentration, water column level,

and sediment phosphorus. In further selection of these elements, we

have considered the following aspects: Since both pH and CO2

concentration are key indicators of ocean acidification, which

creates redundancy in their impact mechanisms on MDOC, we

have abandoned the CO2 concentration in our study. Additionally,

as the oceanographic data involved in the inversion task are two-

dimensional, while water column level are inherently three-

dimensional, we will not consider the water column level for

MDOC inversion. Moreover, because turbidity already reflects

certain changes in sediment phosphorus, and data on sediment

phosphorus are difficult to obtain, we have decided to exclude the

utilization of sediment phosphorus. Finally, we selected the

following 5 marine elements for further exploration: temperature

(OTMP), salinity (SAL), chlorophyll concentration (CLCON),

turbidity (TURB), and pH.

The dataset used in this study was provided by the National

Data Buoy Center (NDBC)3, which is part of the National Oceanic

and Atmospheric Administration (NOAA). It includes data

collected from about 100 moored buoys and Coastal-Marine

Automated Network (C-MAN) stations. Additionally, it includes

data from 55 Tropical Atmosphere Ocean (TAO) buoys that are

deployed and maintained in the equatorial Pacific, covering a range

from 9°N to 8°S and from 95°W to 165°E. This buoy network

system automatically captures and transmits real-time

meteorological and oceanographic data to the National Ocean

Service (NOS), located in Maryland.

(

2.2 Description of the proposed framework

In this research, we introduce a high-precision interpretable

framework aimed at resolving the MDOC inversion challenge. This

framework (Figure 2) is principally segmented into four phases:

Causal Discovery, Drift Detection, RuleFit Model, and Post Hoc

Analysis. All interpretive actions are supported by validation from

marine-related research literature, ensuring the professional

integrity and logical consistency of the interpretive results. The

details are outlined as follows:

Causal Discovery: In this stage, we utilize the causal discovery

algorithm PCMCI to learn the causal relationship among the

marine elements. By removing elements with weakly correlated

relationship, we eliminate the interference with the model learning

process. Subsequently, we analyze the associations between MDOC

and relevant elements, enhancing the overall interpretability of

the framework.

Drift Detection: This phase involves calculating the drift degree

in continuously batched stream data to identify the timing (When)

and specific data distribution (Where) of concept drift occurrences.

It also includes an analysis of the underlying reasons related to

marine observation processes (Why). The data collected when
3 https://www.ndbc.noaa.gov/historicaldata.shtml
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concept drift occurs are marked as key frame data for the

intelligent model’s training.

RuleFit Model: Training the RuleFit model with the dataset

refined by key frame selection in the previous phase, elevates the

precision of inversion and allows for the extraction of the model’s

internal operational rules. Analyzing these rules offers a preliminary

explanation of the model’s operational mechanism.

Post Hoc Analysis: Employing global-level SHAP analysis and

local-level LIME analysis offers more detailed explanations of the

RuleFit model’s operational mechanism. The insights derived from

causal discovery, RuleFit’s rules, along with these analyses,

demonstrate excellent consistency with conclusions in marine

literature, thus greatly enhancing the interpretability of

intelligent computations.
2.3 Causal discovery

To elucidate the causal relationships between each marine

element and MDOC, we introduced the PCMCI algorithm for

causal discovery. This method was proposed by Runge et al.

(2019) and consists of two main stages:
(i) PC Algorithm: Used for causal relationship discovery in

time series data. It iteratively employs independence testing

to remove unrelated causal associations, converging to a

small number of key causal relationships and constructing

an initial causal relationship graph.

ii) MCI Algorithm: Used for instantaneous conditional

independence testing. It suppresses false positives for

highly interdependent time series.
Given a dynamic system Xt = X1
t ,…,XN

t

� �
of N representing

marine elements considered at t time points, the following equation

holds true (Equation 1):

Xj
t = fj(P(X

j
t),h

j
t) (1)

where fj represents some potential nonlinear functional

dependencies, and njt denotes mutually independent dynamic

noise P(Xj
t) represents the causal parents of variable X

j
t among all

N elements in the past. This causal discovery method is based on the

concept of conditional independence. By estimating the strength

and direction of causal relationships between highly interdependent

time series of multiple marine elements, it effectively removes the

interference of weakly correlated marine elements in model

learning. Furthermore, by classifying each marine element based

on its association with MDOC, the interpretability of the overall

framework can be effectively enhanced.
2.4 Drift detection

The dissolved oxygen station data utilized in this paper is

presented as a continuous data stream. As time progresses, the

distribution of input data may undergo significant changes, which

may adversely affect the performance of the intelligent inversion
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model trained on historical data. This phenomenon is known as

concept drift (Lu et al., 2018). Detecting concept drift enables

adjustments to the intelligent inversion model to improve its

precision. It also allows for explanations of changes in data

distribution, linking these changes to variations in marine elements.

The methodology employed in this paper utilizes incremental

Gaussian Mixture Model (GMM) clustering for each data batch.

This process calculates the drift degree between the current batch and

historical marine data. It selects the most representative data

exceeding a predefined threshold to compile a dataset, designated

as key frame data, for training the inversion task (Yang et al., 2020).

The formula for drift degree is defined as follows (Equation 2):

Dt =o
i

Xi
t

�� ��

Xtj j d(X
i
t , X̂

i) (2)

In this context, |·| represents the number of marine data samples,

and d(·) denotes the energy distance between marine data samples. Xt

represents all the data of the current batch. Xi
t and X̂ i respectively

represent the current batch data and the historical data for the i-th

cluster. The formula for energy distance is defined as follows

(Equation 3):

d(X,Y)  =  (2A − B − C)=2A (3)

Here, A = 1
mnon

i=1om
j=1 xi − yik k represents the average

Euclidean distance between elements of marine features in two

sets of marine data samples X and Y. B = 1
n2 on

i=1on
j=1 xi − xj
�� �� and

C = 1
m2 om

i=1om
j=1 yi − yj
�� �� respectively represent the average

Euclidean distance between elements within marine data samples

X and Y.
2.5 Model computation

To elevate the computational precision and clarify the intrinsic

operational mechanisms of the intelligent inversion model for

MDOC, a rule-based ensemble method, RuleFit, has been adopted.

This method constructs a model through a linear combination of

rules and linear expressions, where each rule includes a concise set

of statements about the individual input variables. Such collection of
Frontiers in Marine Science 05
rules can achieve predictive precision comparable to that of the best

methods. It also enables an initial understanding of the operational

mechanism of the intelligent model through the analysis of principal

rules (Friedman and Popescu, 2008). Specifically, given a marine data

sample x = {x1,x2,…,xn}
T ∈ Rn, the RuleFit model is defined as follows

(Wan et al., 2023) (Equation 4):

FRfit(x) = a0 +o
K

k=1

akrk(x) +o
n

j=1
a*j lj(xj) (4)

H e r e , a0 ∈  R,  ak ∈  R(k = 0, 1,…,K),  a∗
j ∈ R(j = 1,…, n)

represent the MDOC climatological normals, the coefficients for

the rule terms of the intelligent inversion model, and the coefficients

for the linear terms of intelligent inversion model, respectively. The

rule terms are formed by combining judgment clauses for specific

marine elements (rk: R
n→ R), and the linear terms are comprised of

functions related to specific marine elements (lj: R → R).
2.6 Post hoc analysis

2.6.1 SHAP analysis
To provide a more comprehensive and reliable explanation of

the operational mechanisms of the inversion model, we utilized

SHAP (Shapley Additive Explanations) analysis. This approach

quantitatively assesses the impact magnitude and direction that

various marine elements have on the MDOC climatological

normals from a global perspective. SHAP represents a game

theory-based method for interpreting artificial intelligence models

(Štrumbelj and Kononenko, 2014). It facilitates assessing the

negative and positive effects that marine elements have on the

output of the intelligent MDOC inversion model. Given an

intelligent inversion model trained with marine data samples Xi =

{x1,x2,…,xn}
T, an explanation model (EM) is employed by SHAP to

evaluate the contribution of each marine element to the intelligent

inversion model. The details can be described in the following

equation (Equations 5, 6):

EM = j0 +o
n

i=1
jiti (5)
FIGURE 2

Framework of the proposed approach.
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ji(f , x) = o
t⊆ x

tj j ! (n − tj j − 1) !
n !

½f (t) − f (tni)� (6)

Where n is the number of marine elements, ti is the

simplification of marine element i , ti ∈ R denotes the

contribution of variable i to the artificial intelligence model, \

denotes the difference-set notation for set operations, and f

indicates the interpretable artificial intelligence model.

2.6.2 LIME analysis
To better understand how intelligent inversion models work,

especially at critical points like MDOC extrema, we intend to utilize

the Local Interpretable Model-agnostic Explanations (LIME)

analysis. This approach will allow us to examine how various

marine elements influence the output of the intelligent inversion

model. When a new observation is introduced, LIME creates an

extended dataset consisting of perturbed samples and their

corresponding model outputs. A linear explanatory model is then

adjusted based on this dataset, applying weights according to the

closeness of these sampled observations (Ribeiro et al., 2016).

Through this approach, we can apply the interpretable model,

which is tailored for local explanations (Chakraborty et al., 2021),

to estimate the influence of marine elements on the MDOC

extrema. Specifically, the definition of the local interpretable

model g is as follows (Equation 7):

g =  arg min L(f , g, px) + Ω(g) (7)

Here, px measures how close the changed marine data instances

are to each other, usually using a Gaussian kernel. L(f,g,px) shows
how much the interpretable model g differs from the model f we

want to explain, especially at MDOC extrema. Ω(g) measures the

complexity of the interpretable model (such as the number of non-

zero weights in a linear model).
2.7 Implementation and evaluation metrics

In this study, we applied the Python programming language,

widely used in data science, along with key modules such as Numpy,

scikit-learn, SHAP, and LIME. The configuration of our

environment comprised Python 3.7, a 12th Gen Intel(R) Core

(TM) i7–12700H, and Windows 11.

To evaluate the precision of CDRP within the MDOC inversion

task, this study utilizes three widely recognized statistical and

regression metrics to measure its performance: Mean Square

Error (MSE), Accuracy (ACC), and Explained Variance

Score (EVS).

Mean Squared Error (MSE) is defined as follows (Equation 8):

MSE =
1
no

n

i=1
(ŷ i − yi)

2 (8)

In this context, n denotes the total number of observations, with

yi indicating the observed value for the i-th observation, and ŷ i

representing the predicted value for it. A reduction in the MSE value

signifies improved accuracy in the inversions. Consequently, the
Frontiers in Marine Science 06
accuracy of the model is derived from the MSE as defined below

(Equation 9):

ACC = 1 −
1
non

i=1(ŷ i − yi)
2

1
non

i=1yi
(9)

Explained variance score (EVS) is defined as follows (Equation 10):

EVS = 1 −
Var(Y − Ŷ )
Var(Y)

(10)

Here, Ŷ denotes the predicted output, Y is the observed output

in relation to Ŷ , and Var represents variance. Importantly, the

highest possible score is 1, with a lower score reflecting a decrease in

the prediction’s adequacy, as shown by the variance in the

dependent variables.
3 Result

3.1 Inversion performance

In this study, buoy data from various locations along the U.S. West

Coast were employed, with the dataset forMDOC inversion comprising

the first-hour average values of temperature (OTMP), salinity (SAL),

chlorophyll concentration (CLCON), and pH (According to the causal

discovery graph in Section 3.2.1, we excluded turbidity, which showed

weak correlation with MDOC). SVR, RFR, MLP, DJINN, M-DJINN,

and RuleFit were trained and evaluated utilizing this dataset. To validate

the models’ performance in this study, data from January 1, 2016, to

October 18, 2019, making up the initial continuous 80%, was designated

as the training set. Conversely, data ranging from October 19, 2019, to

February 22, 2022, representing the subsequent continuous 20%, was

selected for the test set.

By continuously conducting concept drift detection on marine

element data, organized in batches corresponding to one week’s

duration, variations in drift degree are depicted in Figure 3. By

setting an appropriate threshold, it becomes possible to accurately

identify the dates when drifts occur. Following the identification of

concept drift, data from those dates are merged with the dataset

previously used for model training. The model is then retrained on

this updated dataset. Upon setting the drift degree threshold at 12,

eight specific instances of concept drift were detected. Figure 4

shows the distinct changes in data distribution for each instance of

concept drift, highlighted by red lines. Based on comparisons of

data before and after each detected instance of concept drift,

preliminary analysis of the causative factors is presented as

follows: The first concept drift occurred on March 12, 2016

(Figure 4A), where the pH decreased from 8.6 to 8.0. In contrast,

on January 24, 2019 (Figure 4G), pH showed an increase. These

changes may be attributed to the influence of upwelling and possible

coastal discharge (Kroeker et al., 2020; Li et al., 2023a). On June 10,

2016 (Figure 4B), October 9, 2016 (Figure 4D), and March 28, 2019

(Figure 4H), there were significant increases in chlorophyll

concentration, possibly due to the extensive proliferation of

phytoplankton (Conley et al., 2007). Furthermore, fluctuations in
frontiersin.org
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temperature and salinity influenced by local coastal climate were

effectively detected and corrected (Figures 4C, E, F).

This research selected MDOC data samples from the first 30

days to pre train the inversion model, and then conducted concept

drift detection in batches of 7 days. As shown in Figure 3, eight

distinct instances of concept drift were detected. Together with 30

pre-trained data samples, the final key frame dataset comprised a

total of 86 data samples, which shows a significant reduction

compared to the overall 1080 MDOC training data samples. It is

worth noting that the data reduction reduced the complexity and

redundancy of training data, filtered out more informative features,

and allowed the model to focus more on learning key features,

effectively helping users improve their understanding of the overall

features of the learning process (Atitey et al., 2024). Therefore, while

improving the precision of MDOC inversion, it effectively enhanced

the interpretability of the intelligent inversion process.

To assess the precision superiority of CDRP for MDOC

inversion task, a comparative analysis was conducted between

CDRP and several models currently used in this field, including

SVR, RFR, MLP, DJINN, and M-DJINN. Despite the moderate

novelty of the models compared in the experiment, they adequately

represent the current accuracy level in the field of MDOC inversion.

Therefore, the experimental results can convincingly demonstrate

the superior precision of CDRP. Considering the diversity of

hyperparameters among the models used in our experiment, we

adopted the hyperparameter settings recommended in their

respective studies. The hyperparameter configurations are detailed

in Table 1. It can be observed that the hyperparameters for machine

learning algorithms are relatively simpler, whereas those for deep

learning methodologies are more complex. This preliminary

observation reflects that deep learning needs a large amount of
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data and parameters, leading to higher precision but lower

interpretability (Li et al., 2024b).

To explore the effect of different training strategies on the

precision of MDOC inversion, we trained selected models using

four distinct strategies: direct training, training with causal discovery,

training with concept drift detection, and training with a combination

of causal discovery and concept drift detection. The experimental

results are presented in Table 2. Our analysis reveals that integrating

causal discovery significantly improved the inversion precision across

all participating models, achieving optimal performance in most

cases. This highlights the effect of removing weak-correlation

factors on enhancing precision, with implementation of causal

discovery described in Section 3.2.1. It is speculated that this is due

to the weak correlation between turbidity and MDOC, as well as its

characteristics of large variability and unstable changes, which may

cause negative interference to the inversion model (Schmitt et al.,

2008). Besides, introducing concept drift detection notably benefited

the precision of tree-based algorithms (RuleFit, DJINN, and RFR).

Especially in the training of the RFR model, incorporating concept

drift detection achieved optimal accuracy. This occurred because

when the training and test sets cover different time periods, tree-

based algorithms can better learn generalizable mappings from more

representative training data, which improves their performance on

future tasks. Finally, we attempted to train the model using the

strategy of concept drift detection update after removing the weakly

associated turbidity. After analyzing the experimental results, it was

found that not all models experienced further improvements in

precision. This may be because the combination of causal discovery

and concept drift detection update training strategies does not work

well for all algorithms. Ultimately, it can be found that CDRP, which

integrates causal discovery and concept drift detection within the

RuleFit model, achieved the highest precision among the

implemented methods.

To validate the effectiveness of removing interference from

weakly associated elements and concept drift detection on the

improvement of RuleFit’s precision in the MDOC inversion tasks,

RuleFit was trained using both direct training and training with a

combination of causal discovery and concept drift detection.

Figure 5 shows the variation curves of MSE, ACC, and EVS. It’s

evident that the utilization of causal discovery and concept drift

detection notably reduced MSE, while at the same time increasing

ACC and EVS. Models enhanced with causal discovery and concept

drift detection demonstrated significant early-stage optimization in

MSE and ACC around 15 to 18 weeks, compared to the RuleFit

model that underwent direct training. The EVS also showed an

increase after the final training session was completed. This

convincingly confirms the superiority of CDRP in elevating the

precision for MDOC inversion task.

For an intuitive analysis of CDRP’s fitting effect, the RuleFit

model, trained with a combination of causal discovery and concept

drift detection, was used to process the entire dataset. The

comparison between predicted and observed MDOC values is

presented through overlay plot and scatter plot (Figure 6).

Figure 6A displays a notable consistency between predicted and

observed MDOC values. Meanwhile, Figure 6B reveals that the

predictions for a significant portion of data points lie within the
FIGURE 3

The variation of drift degree over time. (The red line represents the
set drift threshold, and the red solid point is the dates when the
concept drift detection is occurred).
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orange area, which signifies the range of Root Mean Square Error

(RMSE). From the analysis, it can be concluded that CDRP

demonstrates commendable fitting efficacy, rendering it

applicable for real-world MDOC inversion task.
3.2 Interpretation of inversion results

3.2.1 Causal discovery
To analyze the correlation between marine elements from the

causal perspective, we employ the PCMCI causal discovery
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algorithm to conduct causal analysis on the initially selected five

elements (OTMP, SAL, CLCON, PH, and TURB) with the target

element MDOC. Figure 7A shows the causal relationship graph

between marine elements, while Figure 7B displays the causal

relationship graph from the perspective of time series,

highlighting the two-day delay between temperature (OTMP) and

MDOC. In addition to the direct causal influence from pH to

MDOC, chlorophyll concentration (CLCON) indirectly affects

MDOC through OTMP. All of them indicate that pH, OTMP

and CLCON are key elements in MDOC inversion. Additionally, a

notable causal link exists from MDOC to salinity (SAL), which is
B

C D

E F

G H

A

FIGURE 4

(A–H) The data distribution at the date of concept drift. (The date when concept drift occurs is highlighted by a red line).
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supported by the subsequent SHAP analysis. Finally, we can

conclude that turbidity (TURB) has almost no causal relationship

with MDOC. This conclusion is reinforced by the experiments
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described in Section 3.1, which shows that removing weakly

associated turbidity effectively reduces interference in the MDOC

inversion task.

3.2.2 Rulefit rule extraction
RuleFit, composed of a series of readily interpretable IF-THEN

rules and linear adjustments, not only demonstrates significant

precision in inversion tasks but also enables initial insights into the

operational mechanisms of the intelligent inversion. This is achieved

through the extraction and subsequent analysis of critically significant

rules. The primary rules extracted by RuleFit are detailed in Table 3. By

analyzing the judgments on specific elements within the primary rules,

we conclude the following insights: (i) An increase in temperature is

inversely related to MDOC, as shown by rules 3 and 4; (ii) Salinity
TABLE 1 Hyperparameter configurations of the employed models.

Model Hyperparameters

SVR C=0.01, kernel=“RBF”

RFR max depth=2, min samples split=2, n_estimators=100

MLP number of layers=4, epoch=100, learning rate=0.01, batch size=32

DJINN
M-DJINN epoch=100, learning rate=0.01, batch size=32

RuleFit max depth=2, min samples split=2, n_estimators=100
TABLE 2 Performance of the selected models with different training strategies.

Model Training Strategy MSE↓ ACC↑ EVS↑

MLP

Direct training 0.4054 0.9489 -1.0960

Causal discovery 0.2729 0.9656 0.0066

Drift detection 0.5994 0.9244 -2.7017

Causal discovery and
Drift detection

0.3235 0.9592 -4.5760

SVR

Direct training 0.3541 0.9554 -23.9892

Causal discovery 0.2662 0.9664 -5.0639

Drift detection 0.4375 0.9449 -2691.76

Causal discovery and
Drift detection

0.7532 0.9050 -297.1214

RFR

Direct training 0.4838 0.9390 -3.9426

Causal discovery 0.4769 0.9399 -3.4454

Drift detection 0.1791 0.9774 0.3978

Causal discovery and
Drift detection

0.2815 0.9645 -3.8241

DJINN

Direct training 0.2200 0.9723 0.3641

Causal discovery 0.1703 0.9785 0.3908

Drift detection 0.1773 0.9776 0.2555

Causal discovery and
Drift detection

0.2064 0.9740 -1.9480

M-DJINN

Direct training 0.1878 0.9763 0.5014

Causal discovery 0.1554 0.9804 0.3994

Drift detection 0.2269 0.9714 -0.5858

Causal discovery and
Drift detection

0.2132 0.9731 -2.4564

CDRP

Direct training 0.2114 0.9733 0.4764

Causal discovery 0.1920 0.9758 0.5361

Drift detection 0.1560 0.9803 0.5820

Causal discovery and
Drift detection

0.1540 0.9806 0.6019
The results of the optimal training strategy for the corresponding model are underlined. The optimal experimental results for the entire experiment are bolded.
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mostly has a negative impact onMDOC, as depicted by rules 1, 2 and 3;

(iii) A decrease in pH is related with a reduction inMDOC, as specified

by rule 1 and 4; (iv) An elevation in chlorophyll concentration is

positively linked to MDOC, as illustrated by rules 2.

3.2.3 SHAP analysis
To understand the operational mechanisms of the intelligent

inversion model from a global perspective, SHAP analysis was

utilized to quantify the impact magnitude and direction of the

marine elements on the climatological normals of MDOC. We

present a summary plot of the SHAP analysis for selected marine

elements (Figure 8). In this plot, the vertical axis orders the marine

elements by their impact magnitude, and the horizontal axis shows

the change (Shapley value) to the MDOC climatological normals

(7.98 mg/L) based on the values of these marine elements. The color

of the dots is detailed in the legend to the right of the plot, while the

vertical stacking of dots illustrates the frequency of sample points

with specific values. Figure 8 shows that salinity has the largest impact

onMDOC climatological normals, with a trend suggesting that lower
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salinity leads to a higher positive impact on MDOC climatological

normals. This is consistent with the results of RuleFit rule extraction

analysis. The influence of pH on MDOC climatological normals is

secondary, primarily indicating a positive impact at higher pH levels.

Lower temperatures are associated with a greater positive impact on

the MDOC climatological normals. The impact of chlorophyll

concentration on MDOC climatological normals is the smallest,

primarily manifested as a negative effect.

To investigate the interaction between salinity, which contributes

most significantly to the impact on MDOC climatological normals,

and other elements, we conducted SHAP analysis and produced

dependence plots (Figure 9). Preliminary analysis of Figure 9 allows

us to deduce that salinity exerts a positive impact on the MDOC

climatological normals when below approximately 25 psu, and

manifests a negative impact when exceeding this threshold. The

increase in temperature reduces the positive impact of salinity

(Figure 9A), while an increase in pH elevates the positive impact of

salinity (Figure 9B). Conversely, chlorophyll concentration does not

exhibit a significant effect on the impact of salinity (Figures 9C).
B CA

FIGURE 5

Performance of CDRP and directly trained RuleFit. (A)MSE; (B)ACC; (C)EVS. (The blue line represents the metric change of CDRP, while the solid red
line represents the metric of directly trained RuleFit.).
BA

FIGURE 6

Comparison of the predicted and observed MDOC, using overlay plot (A) and scatter plot (B). (Orange line in scatter plot is the fitted linear between
observed and predicted values).
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3.2.4 LIME analysis
Contrary to the SHAP analysis method, which focuses on

assessing the global contributions of marine elements, LIME

analysis can provide local interpretation for the influencing

factors of various marine elements at key climate nodes, and the

critical value range can guide the quantitative judgment of the

impact direction of input elements on the output target element —

MDOC, thereby providing local interpretation schemes and

enhancing the interpretability of the overall framework. We

selected three consecutive dates of MDOC minima (Figures 10A-

C) and three consecutive dates of MDOC maxima (Figures 10D-F)

to analyze the impact direction and magnitude of each marine

elements within their respective value ranges at these critical climate

nodes. We referenced the research by El Bilali et al. (2023) in our

analysis, identifying the critical value ranges at which the direction

of the influence of marine elements on the MDOC climatological

normals changes. The analysis provides the following insights: (i)

Salinity has the most significant impact on MDOC climatological

normals, followed by pH in typical cases, with temperature being

less significant, and chlorophyll concentration having the least

impact; (ii) Salinity below 23.81 psu has a positive impact on the

MDOC climatological normals, while levels above 29.70 psu have a

negative impact; (iii) Temperatures below 12.64°C have a positive

effect on the MDOC climatological normals, whereas temperatures

above it have a negative effect; (iv) pH above 7.80 positively impacts

the MDOC climatological normals, while pH below it has a negative

impact; (v) Chlorophyll concentrations above 5.50 µg/L positively
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affect the MDOC climatological normals, whereas in other

circumstances a negative impact occurs.
4 Discussion

MDOC is one of the primary indicators in the domain of

marine ecology. In this study, we applied a series of artificial

intelligence models to the MDOC inversion task, where our

proposed framework CDRP demonstrated optimal precision. SVR

is sensitive to the characteristics of input data, while RFR is

susceptible to overfitting. Moreover, complex models such as

MLP, DJINN, and its modified version M-DJINN require large

volumes of data for effective training. Conversely, the RuleFit model

creates a broad set of predictive rules tailored for the inversion task.

This method offers deep insights into the computational

mechanisms of inversion and exhibits strong generalization

abilities, as evidenced in (Luo et al., 2022). Overall, CDRP which

utilizes the RuleFit model achieves superior precision in

inversion task.
4.1 Precision influenced by causal
discovery and concept drift

We introduced causal discovery and concept drift detection

during the training process. By analyzing the experimental results

(Table 2), it can be found that causal discovery significantly

improves the inversion performance of all models. It follows that

causal discovery can keenly identify uncorrelated elements, which

can guide the improvement of model training strategies. However,

concept drift detection only achieves a boost in effectiveness in tree-

based algorithms, which demonstrates a kind of compatibility

between them. By expanding to other tree-based algorithms, it is

still possible to improve model performance while extracting key

features of the dataset. Finally, CDRP achieves optimal performance

by simultaneously introducing causal discovery and concept drift
TABLE 3 The main rules extracted through RuleFit.

Rule-ID Rule

1 if(PH<= 7.81&SAL > 9.55) then decrease 0.358

2 if(SAL<= 20.94&CLCON > 1.35) then increase 0.300

3 if(SAL<= 23.65&OTMP<= 13.02) then increase 0.169

4 if(OTMP > 12.06&PH<= 8.02) then decrease 0.377
BA

FIGURE 7

Causal relationships between marine elements. (A) Causal relationship graph; (B) Time series graph.
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detection in training process. However it may be not the optimal

training strategy for all models. Causal discovery involves input

feature-level reduction from the perspective of causal inference,

while concept drift detection involves time series-level reduction

from the perspective of data distribution changes. This could

potential ly lead to excessive reduction and result in

model underfitting.
4.2 Interpretability

In the literature on applying AI models to MDOC inversion

task, there is a lack of exploration on interpretability. This can lead

to risks associated with unknown computational logic. Therefore,

enhancing the interpretability of the MDOC inversion task is of

significant importance. To solve this problem, we constructed an

interpretive process of “causal discovery + rules analysis + post hoc

analysis + literature validation of consistency” to comprehensively

improve the interpretability of the MDOC inversion process.

4.2.1 Causal discovery
To investigate the causal relationships between each marine

element and MDOC, we introduced PCMCI to conduct causal

discovery on temperature, salinity, pH, chlorophyll concentration,

turbidity, and MDOC. By estimating the strength and directionality

of causal relationships among highly interdependent time series of

multiple marine elements, we found that PCMCI can effectively

eliminate the interference of weakly correlated marine elements on

model learning. After causal analysis, the causal graph and time series

causal graph are shown in Figure 7. By analyzing the correlation with
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MDOC, we can classify the marine elements into four categories: direct

causal association (temperature, pH), indirect causal association

(chlorophyll concentration), correlated association (salinity), and

weakly correlated association (turbidity). Among these, temperature

belongs to the category of time lagged causal correlation. Specifically,

the temperature from two days ago has a direct causal effect on the

current MDOC. The global warming and ocean acidification are direct

factors leading to the occurrence of marine hypoxia, which is consistent

with the results of causal graph analysis (Breitburg et al., 2018; George

et al., 2024). The promoting effect of chlorophyll on MDOC is

essentially achieved through biomass influencing temperature, thus

resulting in a positive correlation effect on MDOC (MacPherson et al.,

2007; Li et al., 2024a). Although salinity is not a causal parent of

MDOC, the causal relationship between MDOC and salinity makes

this correlation relationship indispensable in theMDOC inversion task.

Furthermore, the subsequent SHAP analysis further confirms the

importance of salinity. Ultimately, turbidity does not exhibit

significant causal relationship with other marine elements. Therefore,

the presence of this element would bring negative interference to the

MDOC inversion task. The quantitative experiments conducted earlier

demonstrate that removing the interference from the turbidity

significantly contributes to improving the accuracy level of MDOC

inversion. This further elucidates the importance and necessity of

introducing causal discovery method for enhancing interpretability.

4.2.2 Rules analysis
To analyze the influence of marine elements on the MDOC

climatological normals from the model inference perspective, the

RuleFit model was introduced. By establishing a large initial set of

predictive rules and then refining these rules to improve inversion

precision, this method achieves high-precision and also helps

understand how the model works. This understanding comes

from utilizing and interpreting the set of rules. The decrease in

MDOCwith higher temperature is due to increased oxygen demand

and reduced oxygen solubility as temperature rise (Breitburg et al.,

2018; Ye et al., 2021, 2023; Bandara et al., 2024). Silva et al. (2009)

described Equatorial Subsurface Water (ESSW) characteristics,

noting that the highest underwater salinity values are associated

with the lowest MDOC and high nitrate and phosphate levels. This

supports the idea that colder, less saline water can dissolve more

(Kouketsu et al., 2022; Sun et al., 2023), which matches the RuleFit

rule showing an inverse relationship between salinity and MDOC.
FIGURE 8

Summary plot for marine elements.
B CA

FIGURE 9

Dependence plot of the interaction between SAL and other marine elements. (A) OTMP; (B) pH; (C) CLCON.
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The research by Schmitt et al. (2008) shows long-range correlations

between pH and MDOC in their power-law spectrum, particularly

noting that ocean acidification goes along with marine hypoxia

(Gao et al., 2020; George et al., 2024). This supports the RuleFit

finding that a lower pH results in decreased MDOC. The rule that

an increase in chlorophyll concentration leads to higher MDOC is

supported by (MacPherson et al., 2007; Li et al., 2024a), indicating

that higher chlorophyll concentration produce more oxygen

indirectly, thereby increasing MDOC. Therefore, it can be

concluded that the RuleFit model utilized in CDRP extracts rules

that are easily interpretable with high precision, and this approach

is well-supported by a wealth of marine scientific literature.

4.2.3 Post-hoc analysis
SHAP analysis is employed to enhance the understanding of the

MDOC inversion process by examining its results. This analysis,

conducted from a global perspective, explores how marine elements

contribute to the MDOC inversion task. Additionally, a local

interpretability analysis through LIME is utilized to analyze the

model’s computational basis at MDOC extrema. SHAP and LIME

analyses show that marine elements can affect MDOC climatological

normals positively or negatively at different times. Seasonal changes

in MDOC are influenced by sunlight, ice cover, air temperature,

winds, and currents (Kroeker et al., 2020; Xu et al., 2022). Events like

upwelling, which brings colder deep seawater with lower MDOC

content to the surface, also cause short-term MDOC variations

(Booth et al., 2012; Chen et al., 2022; Castrillón-Cifuentes et al.,

2023; Wang et al., 2023a). The conclusion drawn from the SHAP

analysis that salinity is negatively correlated withMDOC is consistent

with RuleFit analysis. Furthermore, the findings about temperature’s

negative impact and pH’s positive impact on salinity contributions

agree with previous analysis based on RuleFit rules. Moreover, LIME

analysis identifies the critical value range for salinity’s impacts as
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23.81–29.70 psu. This range includes zero Shapley value of salinity

from SHAP analysis (around 25 psu, as shown in Figure 9),

confirming the consistency between SHAP and LIME analysis on

salinity. Similarly, LIME provides the direction of impact (positive,

negative, positive) and critical value ranges for pH, temperature and

chlorophyll concentration on the MDOC climatological normals

(7.80, 12.64°C, 5.50 µg/L), respectively.

4.2.4 Insight from interpretability analysis
Post-hoc analysis has led to findings that align with causal

discovery and RuleFit rules, and they also offer specific critical

value ranges. These findings provide marine scientists with

quantitative insights into how various marine elements influence

the magnitude and direction of changes in MDOC climatological

normals. Based on insights from interpretability analysis, we can

propose several strategies to reduce marine hypoxia. The finding that

salinity negatively impacts MDOC indicates that reducing sewage

discharge could help prevent deoxygenation in the ocean, especially

near coastlines. Similarly, limiting greenhouse gas emissions to slow

down global warming and ocean acidification is also an effective

strategy. Moreover, maintaining marine ecological indicators within

reasonable ranges is crucial for controlling dissolved oxygen levels.
5 Conclusion

This paper introduces an interpretable artificial intelligence

framework CDRP designed for high-precision MDOC inversion.

Initially, PCMCI is utilized for causal discovery of marine elements

and to eliminate the interference of weakly associated elements.

Following that, key frame data is selected through concept drift

detection, resulting in the formation of the training dataset.

Subsequently, the dataset is fed into the rule-based RuleFit model for
B C

D E F

A

FIGURE 10

(A–F) The impact of marine elements at the extrema of MDOC. Negative LIME values indicate MDOC below historical median while positive LIME
values indicate MDOC above historical median.
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training. This step is followed by extracting operational rules, which

enables the establishment of an initial interpretation. Afterwards, an

advanced analysis is conducted utilizing post-hoc analysis techniques,

specifically SHAP and LIME. This comprehensive approach offers

insights that are consistent with actual marine observation, especially

in terms of their influence on the MDOC climatological normals. In

comparative tests with SVR, RFR, MLP, DJINN, and M-DJINN, our

framework showed the best performance in precision and

interpretability. The principal findings from the analysis of research

results are as follows: (i) Conducting causal discovery of marine elements

through PCMCI, along with removing weakly associated elements and

analyzing causal relationships, can effectively enhance the effectiveness

and interpretability of model learning. (ii) Using concept drift detection

to capture changes in marine elements effectively enhances the precision

and interpretability based on data reduction of CDRP. (iii) Considering

RuleFit, SHAP, and LIME analysis results together, the ranking of the

influence of marine elements on MDOC climatological normals is:

salinity > pH > temperature > chlorophyll concentration. (iv) The

critical value ranges for the impact on climatological normals are

salinity (23.81-29.70 psu), pH (7.80), temperature (12.64°C) and

chlorophyll concentration (5.50 µg/L). In summary, CDRP

demonstrates high precision and interpretability in single-point

measured MDOC inversion tasks, displaying commendable

consistency with conclusions in marine literature on MDOC.

Currently, considering the expansion of remote sensing data

sources, exploring computational techniques that improve both

precision and interpretability with this data is seen as a promising

field for academic research. Furthermore, a more valuable

interpretation of concept drift phenomena can be achieved

through deep involvement in causal analysis. Therefore,

conducting further analysis at the moment when concept drift

occurs through methods such as causal discovery and causal effect

analysis represents a highly prospective research direction.
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