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Deep learning, a data-driven technology, has attracted widespread attention

from various disciplines due to the rapid advancements in the Internet of Things

(IoT) big data, machine learning algorithms and computational hardware in

recent years. It proves to achieve comparable or even more accurate results

than traditional methods in a more flexible manner in existing applications in

various fields. In the field of physical oceanography, an important scientific field

of oceanography, the abundance of ocean surface data and high dynamic

complexity pave the way for an extensive application of deep learning.

Moreover, researchers have already conducted a great deal of work to

innovate traditional approaches in ocean circulation, ocean dynamics, ocean

climate, ocean remote sensing and ocean geophysics, leading oceanographic

studies into the “AI ocean era”. In our study, we categorize numerous research

topics in physical oceanography into four aspects: surface elements, subsurface

elements, typical ocean phenomena, and typical weather and climate

phenomena. We review the cutting-edge applications of deep learning in

physical oceanography over the past three years to provide comprehensive

insights into its development. From the perspective of three application

scenarios, namely spatial data, temporal data and data generation, three

corresponding deep learning model types are introduced, which are

convolutional neural networks (CNNs), recurrent neural networks (RNNs) and

generative adversarial networks (GANs), and also their principal application tasks.

Furthermore, this study discusses the current bottlenecks and future innovative

prospects of deep learning in oceanography. Through summarizing and

analyzing the existing research, our aim is to delve into the potential and

challenges of deep learning in physical oceanography, providing reference and

inspiration for researchers in future oceanographic studies.
KEYWORDS

deep learning, physical oceanography, data mining, application tasks, status
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1 Introduction

Marine science is holistic and involves the comprehensive study

of the ocean, as well as complex interactions of various natural

processes related to the ocean. The purpose of marine science

research is to reveal the structure and function of the marine

system through observation, experiment, comparison, analysis,

synthesis, induction, deduction and scientific abstraction, to

understand the natural laws of various phenomena and processes

in the ocean and further use these laws to serve humans. Physical

oceanography, as an important branch of ocean science, is

dedicated to studying the physical processes and dynamic

characteristics of the ocean, as well as its interactions with factors

such as climate and environment. It encompasses a wide range of

research areas, including ocean circulation, ocean dynamics, ocean

climate, ocean remote sensing and ocean geophysics. Research on

physical oceanography is closely related to human survival, life and

economic activities. Traditional physical oceanographic models,

while capable of simulating and predicting the behavior of ocean

systems to some extent, are constrained by the limitations of

numerical methods and the simplification of physical-process

parameterization, making it difficult to accurately capture

complex ocean dynamics and climate change mechanisms. The

complexity of the ocean environment and regional differences also

lead to a huge amount of computation, slow processing times and

poor generalizability of traditional methods (Sonnewald

et al., 2021).

With the rapid development of the Internet of Things (IoT)

devices, such as underwater sensors, and satellite communication

systems, and the continuous advancement of ocean observational

technologies, IoT devices play a crucial role in collecting and

transmitting oceanographic data. This integration allows for real-

time monitoring of parameters like temperature, salinity, and

currents, leading to an exponential growth of oceanographic data

to petabyte sizes (Lou et al., 2023). The three-dimensional, diversified,

multiscale, and spatiotemporal characteristics of ocean data signify

the emergence of ocean big data. This paradigm shift enables marine

science research to increasingly integrate and analyze vast amounts of

heterogeneous data. Consequently, researchers can uncover new

patterns and insights that were previously hidden, moving beyond

the traditional reliance on theoretical physical models and

simulations to a more data-centric approach that leverages

advanced analytics, machine learning, and artificial intelligence,

which also means promoting marine science research to the data

traction stage (Qian and Chen, 2018) and bring challenges to

traditional research methods and approaches. For example, in

physical oceanography, the most typical feature of ocean big data is

its spatio-temporal characteristics. It means that each category of

ocean big data has a time series dimension, such as satellite remote

sensing with repeated regular sampling, which assists with various

applications of long-time period sequences. The interdependence of

data, the diversity of influencing factors on each time scale and

regional and temporal biases of data make it difficult for traditional

numerical modelling methods to fit the relevant development

patterns. In addition, ocean data are distinct in different

geographical locations, and the data are associated with complex
Frontiers in Marine Science 02
factors, such as the marine environment, continental environment,

and even geographical location in neighboring regions. It is so

complicated and uncertain that the results obtained from these

data are not universal. Therefore, it is necessary to develop a

methodological technique that can adequately integrate a large

amount of characteristic data, conform to natural development

patterns as much as possible, and be as universal as possible in

oceanographic research.

Data-driven deep learning techniques are focused on using data to

train models, optimize parameters, learn patterns and relationships

from historical observations, and explore intrinsic connections in

feature data through nonlinear mapping approaches for various

purposes, such as maximizing fitted patterns or classification. The

development of GPU parallel computing technology makes it possible

for deep learning to be widely applied. In recent years, many classical

deep learning architectures have been proposed consecutively, such as

the typical CNN, RNN, long short-term memory (LSTM), and GANs,

and deep learning is widely used in various research fields. For

example, in the oceanography field, various processes are studied,

such as variable (sea surface temperature, SST and so on) prediction,

ocean noise classification, ocean wave height determination, typhoon

formation and path prediction. Figure 1 shows the trend in the number

of published articles on the Web of Science with the keywords: ‘ocean’

and ‘deep learning’ over time.

Deep learning as a data-driven technique plays a key role in helping

marine science researchers accelerate their understanding of complex,

interactive, andmultiscale processes in the ocean environment (Yu and

Ma, 2021). The development of aerospace remote sensing technologies

and underwater acquisition equipment has enriched the three-

dimensional, diverse, and multiscale nature of ocean data, thus

propelling ocean science forward significantly. The rapid

development of IoT devices and observational technologies has laid

the data foundation for modern ocean science. On this basis, the

studies reviewed here suggest that the development of deep learning-

related artificial intelligence (AI) technologies will play an increasingly

important role in updating ocean science research methods and

enhancing ocean data analysis within the next 10–20 years.

This paper is arranged as follows: the first part briefly introduces

the shortcomings of traditional numerical methods and statistical

methods used in marine science, as well as the background and

necessity of deep learning applications. The development history

and main categories of deep learning are presented in the second

part, followed by reviews on the applications of deep learning in

various fields of physical oceanography. Finally, several promising

directions for future development and innovation are proposed in

the fourth part.
2 Deep learning

The main knowledge foundation of deep learning is the neural

network (Lippmann, 2023). The idea of a neural network involves

using multiple neuron nodes to combine multi-dimensional feature

data and continuously adjusting the mathematical parameters. It

maps multidimensional input data into optimal nonlinear outputs

to represent specific attribute classes or features for classification,
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regression, etc. A fully connected (FC) neural network is shown in

Figure 2. For more details on the concept of deep learning, please

refer to the paper Deep learning (LeCun et al., 2015) or Kai-Fu Lee’s

explanation in the book Artificial Intelligence (Li and Wang, 2018).
2.1 Developmental history

Up to the present, neural networks have experienced three

waves and one explosion, as shown in Figure 3. The earliest work

can be traced back to 1943 when psychologist McCulloch and

mathematical logician Pitts proposed the first mathematical model

of neurons, the MP model, which roughly simulated the working

principle of human neurons. In 1958, Rosenblatt added a learning

function to the MP model and proposed a single-layer perceptron

model, triggering the first wave of neural network research.

In 1986, Rumelhart et al. published an article in Nature,

proposing a multilayer feedforward network-back propagation
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(BP) network trained by the error BP algorithm (Rumelhart et al.,

1986). It settled the nonlinear classification and learning problem

that the original single-layer perceptron confronted. This strongly

countered the view of Professor Minsky and others that neural

networks are ‘death sentences’, which can only handle linear

classification problems but cannot solve even the simplest

exclusive OR(XOR) problems. It led to a second wave of neural

network research. Subsequently, the Boltzmann machine, CNN,

RNN, and other neural network structural models were developed.

In 2006, Professor Hinton and his team first introduced the

concept of deep learning in Science (Hinton and Salakhutdinov,

2006). Thereupon, ReLU, Dropout, and other deep network

optimization strategies were applied and proposed, and the

development of GPU parallel computing technology helped to

alleviate the problems of local optimum, overfitting, and gradient

diffusion of BP networks caused by increasing the number of layers

of neural networks. Not surprisingly, the wave of research in the

field of neural networks continues to the present day.
FIGURE 2

Sketch of the fully connected network.
FIGURE 1

Trends in the number of papers published on the application of deep learning in oceanography retrieved from the Web of Science each year
since 2012.
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In 2012, Hinton led a team to participate in the ImageNet Large

Scale Visual Recognition Challenge. In 2014, Facebook’s Deep-Face

project, based on deep learning technology, achieved a face

recognition accuracy of over 97%, which was almost the same as

that of humans. In 2016, along with Google’s deep learning-based

AlphaGo defeating the top international Go master Lee Sedol 4-1 and

the AlphaFold (AI algorithm applied to amino acid folding, 2020),

deep learning-related algorithms achieved remarkable results in

many fields, such as healthcare, finance, art, self-driving and so on.

Deep learning algorithms are gradually replacing traditional

statistical machine learning methods in many fields, including

oceanographic fields, as the hottest research area in artificial

intelligence. For example, in oceanography, convolutional neural

network-based algorithms are applied to feature extraction such as

sea ice identification and classification and satellite image feature

extraction. Recurrent neural networks-based algorithms are widely

used in marine environmental forecasting, data inversion and

reconstruction and other fields.
2.2 Models of deep learning

The main steps of deep learning include understanding research

problems, data preprocessing, selecting and designing algorithmic
Frontiers in Marine Science 04
models, training and optimizing models and mapping the output

results. As shown in Figure 4. Datasets may have insufficient data

volume, poor label classification, low data quality, data imbalance

(both category and format), or lack of validation and test sets. Data

cleaning, labelling, normalization, denoising and dimensionality

reduction are required for the dataset during data preprocessing.

Algorithmic models generally include several important

components, such as layers, loss functions, activation functions,

and optimizers. From the main application tasks and data types in

oceanography, such as spatial, temporal, and data generation,

several commonly used frontier algorithm models are described

below, such as CNNs, RNNs and GANs.

CNNs are multilayer neural network algorithms mainly applied

to image data analysis and processing in the image recognition field.

They consist of a class of networks with different structures, as

shown in Table 1. By combining the layers, a local region (i.e., the

sensory domain) of the same size as the convolutional kernel can be

sampled in a sliding fashion as the output of the layer (Figure 5). It

reduces the number of parameters in the network, decreases the

consumption of computational resources, and controls overfitting.

This process can then be repeated until the image is spatially

reduced to a sufficiently small size somewhere in the transition to

a fully connected layer. The final fully connected layer yields the

output, such as classification. Besides, other convolutional domain
FIGURE 4

Deep learning step flow.
FIGURE 3

History of neural network development. Large circles are used to denote important time points, and small circles are used to denote the
presentation of more typical scientific results in each time stage.
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structures were subsequently developed, such as AlexNet, ZF Net,

GoogLeNet, VGGNet, U-Net, and ResNet. The most commonly

used CNNs at present are U-Net and ResNet.

RNNs for processing sequential data are commonly used for

text analysis or natural language processing. The three most well-

known types of RNNs are simple RNN, LSTM and gated recurrent

unit (GRU). By using the output of the previous step as part of the

input of the next step, LSTM is a variation of RNN, while GRU is a

variant of LSTM. The network structures of RNNs are presented in

Figure 6. The RNN maintains forward propagation by continuously

using the output of the previous node as part of the input of the next

node in the sequence. To achieve long-term memory, the RNN

model links the computation of the current implicit state with the

previous n times computations, which increases the computation

cost exponentially, leads to a significant increase in the model

training time, and results in gradient vanishing and gradient

explosion, which, in turn, make it difficult for traditional RNNs to

handle long-term dependence in practice. LSTM tackles these

problems through three control gates: the input, output and

memory gates. The output of the previous node is selectively

retained to ensure that important feature information (also called

memory) will not be lost even during long-term propagation. This

idea is like the later attention mechanism (Bengio, 2014).

Subsequently, along with the self-attention and feedforward

neural network (FFNN), the transformer model is applied to

improve the parallelization and long-term dependency problems

that also occur to LSTM for particularly long-term tasks. Based on

LSTM, GRU reduces substantial operations by combining the input
Frontiers in Marine Science 05
and memory gates into one update gate. This saves a lot of time for

large training sample data.

GANs, which are commonly used for data generation or

unsupervised learning, can be applied to the super-resolution

reconstruction of oceanographic data or balancing sample data. A

GAN contains two important components: the generator and

discriminator (Figure 7). Metaphorically, the generator is a

criminal making counterfeit money, while the discriminator is a

police officer. The generator aims to produce counterfeit money to

trick the discriminator, while the discriminator strives not to be

tricked. A GAN aims to optimize and obtain a generative model to

provide results close to real data. Based on the GAN networks,

several classical algorithmic variants are available, such as deep

convolutional GANs (DC-GANs), Wasserstein GANs (WGANs)

and conditional GANs (CGANs).

In addition to these three main types of networks, it is worth

noting another network model, Transformer. It is based on the Self-

Attention mechanism (Vaswani et al., 2017) to capture the

relationships between elements more efficiently when dealing with

sequential data and is different from traditional RNN and LSTM.

The model’s design ideas and architecture have become the

cornerstone of many subsequent innovative models, including the

well-known ChatGPT and BERT models. For marine researchers,

the model is of great application for the prediction of time-series

data such as SST, SSS, etc. Meanwhile, the prediction and inversion

of 2-D image-like data can also be learned from the idea of Vit

Transformer (Wang et al., 2021), which divides the image data into

multiple small image chunks for location coding in order to serve as

sequence data. However, it should be noted that the model has a

large requirement for the amount of data when applied in the

marine field, and in many cases, only a sufficiently large amount of

data will reflect the obvious effect of improvement.

3 Applications of Deep learning
in oceanography

Physical oceanography is the basic subject of oceanic sciences,

which works on the spatial and temporal changes of force fields,

thermohaline structures, and related mechanical motions in the

ocean using the viewpoint and methods of physics, as well as the

exchanges and transformation of oceanic substances, momentum
FIGURE 5

CNN processing logic.
TABLE 1 Composition logic of different classes of CNNs.

Network logic Type

INPUT->FC Linear
classifier

INPUT->CONV->RELU->FC Single-
layer CNN

INPUT-> [CONV->RELU-> POOL] *2->FC->RELU->FC Multi-
layer CNNs

INPUT-> [CONV->RELU-> CONV->RELU-> POOL] *3->
[FC->RELU] *2->FC

Deep CNNs
FC, Fully-connected layer; CONV, Convolutional layer; ReLU, Rectified Linear Unit; POOL,
Pooling layer.
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and energy. As the first ocean-related sub-discipline developed in

modern times, it covers not only extensive research contents but

also widespread applications of deep learning in modern marine

science. The following sections introduce the application of deep

learning in surface elements, subsurface elements and typical ocean,

weather and climate phenomena.
3.1 Sea surface elements

We systematically summarize each elements in Table 2 and

present its details in the next section.

3.1.1 Sea surface temperature
Currently, the sea surface temperature (SST) is one of the

marine science topics where deep learning is applied more,

mainly used to optimize the quality of remotely sensed data, such

as revising the data error, super-resolving the data, and predicting

the change of sea surface temperature from the spatio-temporal

level. Detailed examples are described below.

The prerequisite for the application of deep learning is good

sample data. Remote sensing data, as one of the important data

sources in oceanography, plays a vital role in analyzing the marine

environment such as sea surface temperature, mainly relying on
Frontiers in Marine Science 06
infrared radiation (IR) sensors and microwave (MW) sensors. IR

resolution is high, but cloud cover leads to missing data. Though

microwave sensors solve the cloud cover problem, resolution is low.

Taking SST as an example, (Aparna et al., 2018) used an artificial

neural network (ANN) trained by daily SST spatial maps to predict

the SST in the missing region, considering spatial and temporal

variability. (Liu et al., 2022) used a deep neural network to optimally

correct the SST retrieval residuals, taking the physical retrieval of

the microwave integrated retrieval system as input. To a certain

extent, it solves various problems, such as the scan angle

dependence of retrieval residuals of cross-tracking instruments in

the low-resolution case. To comprehensively work out missing and

low-resolution observation under clouds in satellite remote sensing,

(Izumi et al., 2022) used the enhanced super-resolution GAN,

ESRGAN, to perform super-resolution of SST data. Compared

with other methods, ESRGAN has the highest accuracy in

learning perceptual image patch similarity and perceptual index,

correctly generating missing parts of SST distribution in low-

resolution data with very high perceptual quality. The method is

suitable for various tasks, such as repairing data defects and super-

resolution, and can also be applied to other physical variables.

The current mainstream idea for predicting SST is to fully

consider the spatiotemporal properties. (Zhang et al., 2017) divided

data into multiple small grids and integrated prediction results
FIGURE 7

GAN network logic.
FIGURE 6

Logic diagram of three main classes of recurrent class neural networks.
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using LSTM on each as the final output. CFCC-LSTM (combined

FC-LSTM and convolution neural network) (Yang et al., 2018),

combines LSTM-AdaBoost method (Xiao et al., 2019) and the

regional convolution long short-term memory (RC-LSTM) (Xu

et al., 2020b) all consider spatiotemporal properties from different

perspectives for short-term, medium-term, and regional SST

prediction. In addition, the multi-long short-term memory

convolution neural network (M-LCNN) (Xu et al., 2020a)

significantly improved the accuracy and robustness at multiple

scales and large SST fluctuations. The temporal convolutional

network (TCN) model proposed by (Sun et al., 2022) achieved

good results in predicting SST at large spatial scales and in the long

term. (Usharani, [[NoYear]]) applied the improved loss function

ILF to the LSTM and greatly improved the ability to reduce the

error and processing time, achieving 98.7% accuracy and reducing

the processing time to approximately 0.35 s. In addition to using the

data for prediction. (Zheng et al., 2020), used time series of SST

charts for predicting SST and tropical instability waves.

3.1.2 Sea surface salinity
Although satellite remote sensing data can obtain a large range

of data information related to sea surface salinity, obtaining high-

quality sea surface salinity products is still facing a variety of

difficulties. Deep learning technology in recent years began to be

gradually used to inverse high-resolution and high-precision sea

surface salinity products through the selection of different modes

and networks.

Sea surface salinity (SSS) is an important variable for studying

scientific issues, such as ocean circulation, global water cycle, and
Frontiers in Marine Science 07
climate change. The main remote sensing sources to monitor SSS

are L-band microwave radiometers from Soil Moisture Active-

Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS),

and also Moderate Resolution Imaging Spectroradiometer

(MODIS) from NASA. Microwave sensors in offshore regions are

susceptible to uncertainties, such as radio frequency interference

and low SST, resulting in low accuracy (Rajabi-Kiasari and

Hasanlou, 2020). used support vector regression (SVR), ANN,

random forest (RF) and gradient boosting machine (GBM) to

model SSS in the Persian Gulf and assessed the ability of machine

learning methods to predict SSS in the region of lower-

accuracy data.

(Jang et al., 2021) used three machine learning methods (RF,

SVR and ANN) to improve the SSS data from SMAP in five global

river-dominated sea areas, resulting in a 28% reduction in root

mean square error (RMSE) compared to the original SMAP SSS

product. Further, they can also capture the spatial and temporal

properties and the differentiation of high and low salinity waters.

Moreover (Jang et al., 2022), simultaneously used SMPA satellite

data and ocean interior salinity data provided by HYCOM to obtain

high-quality global daily SSS estimation with seven machine-

learning algorithms.

Microwave remote sensing is easily affected by problems such as

radio frequency interference in coastal waters leading to low

resolution, while optical remote sensing can avoid this problem.

Numerous optical remote sensing-based inversion methods for SSS

have been proposed. The significant difference among these

methods is the selection of different characteristic factors.

(Geiger et al., 2013) used normalized off-water irradiance, SST
TABLE 2 A summary of the main application tasks, DL models used and current challenges of the sea surface elements.

Application Tasks Primary Model Current challenges

Sea
surface
elements

Sea surface temperature

Optimize the quality of remotely
sensed data

ESRGAN Accuracy; Noise identification

Prediction LSTM, RC-LSTM Integration of different regions and
different dimensions

Sea surface salinity
Inverse high-resolution and high-

precision SSS products
RF, DCN, ResNet Select different characteristic factors

Sea surface currents
Prediction CGAN. GRU, P-ATT Different regions and

different dimensions

Sea surface height

Optimize and reconstruct the quality of
remotely sensed data

GAN Accuracy; Noise identification

Prediction ConvLSTM, CEEMD, EOF Integration with numerical methods

Significant wave height

Validation and calibration for the
observed data

GRU, LSTM Accuracy; Noise identification

Retrieval GF3WVResNet Combining multiple sources of remote
sensing data; Considering the
complexity of sea conditions

Prediction CLTS-Net, CNN-BiLSTM,
RNN-LSTM

Long-term prediction; The 2D spatial
field prediction

Sea ice

Identify and classify MobileNetV3, U-Net Super-resolution for the images;
Identification of ice-water boundaries

Prediction ConvLSTM Select different characteristic factors
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and location information from MODIS-Aqua to account for more

spatial linkages, compared to (Chen and Hu, 2017) and others who

used satellite reflectance data and SST data from MODIS and

SeaWiFS. From the point of multimodality (Xu, 2016), used the

high-correlation variables as sensitive factors for the indirect

inversion of salinity, including total nitrogen, total phosphorus

and temperature. To improve the spatial resolution of sea salt

products (Liu, 2020), used a deep convolutional network (DCN)

model to invert the SSS by considering high-resolution sea surface

reflectance data, seawater temperature data and low-spatial

resolution SMOS salinity products. The RMSE of DCN inversion

model can be reduced to 0.02191 psu when using ResNet and U-net

networks as feature enhancement modules. (Wu et al., 2021)

considered remote sensing reflectance and SST for constructing

an SSS inversion model for the Gulf of Mexico with the RF method.
3.1.3 Sea surface currents
As an important physical ocean phenomenon that regulates

global climate change, the study and prediction of ocean currents

are of great significance. Currently deep learning is mainly applied

to predict ocean surface currents.

In early ocean current prediction applications, (Saha et al., 2016)

indirectly predicted ocean current velocities by applying ANN to the

time series of errors between the estimates and observations of

numerical models. In tidal and wind-dominated coastal areas, (Ren

et al., 2018) applied historical high-frequency radar (HFR)

observations and modelled tide and wind results as feature

variables to train ANNs to achieve high-precision predictions

within a short-term prediction window of an hour. (Yan et al.,

2021) considered the interferometric phase image as the input

image and the measured current velocity image as the output

image, and creatively introduced the conditional generative

adversarial networks (CGAN) model. This approach effectively

leverages deep learning to address the challenge of accurately

measuring current velocity, even when current velocity is directly

measured. The CGAN model reduces error and improves efficiency

by learning from the input-output relationship of the phase and

velocity images, thus offering a significant advantage over traditional

methods, which often struggle with noise and efficiency issues due to

the complex nature of ocean currents. From a spatiotemporal

perspective (Chen and Chi, 2021), adopted both spatial blocks to

obtain spatiotemporal features and combined GRU and attention

mechanisms to capture nearest-neighbor temporal correlations, the

so-called STAGRU model, (Thongniran et al., 2019 2019) conducted

similar studies. Despite applying an attention mechanism, the studies

mentioned above have not fully identified the importance of certain

key elements such as sea surface wind, which remains the major

bottleneck. To settle this bottleneck problem (Liu et al., 2022b), add a

weight parameter adjustment to enhance the importance of different

elements based on the proposed pure attention model (P-ATT) and

significantly improved the performance in contrast to other deep

learning models or schemes that incorporate attention mechanisms

and deep learning models.

Currently, these applications are mostly cases of regional

circulation. The larger spatial scale ocean currents or subsurface
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currents are subject to the joint action of different regions and

different dimensions, with a complex influence mechanism, which

not only poses a greater challenge for the application of deep

learning but also is a major direction that needs to be explored in

the future.

3.1.4 Sea surface height
Sea surface height (SSH) is influenced by various dynamic

processes in the ocean, including mesoscale eddies (MEs), waves,

currents, and tides. The interactions between these processes can be

highly complex due to their nonlinear nature and varying spatial and

temporal scales. Additionally, the uncertainties in measuring and

predicting these processes, such as those introduced by tidal forces,

create challenges that can be effectively addressed using deep learning

techniques. Similarly, as the main source of data, satellite remote

sensing has obvious defects, such as degraded data quality or even

missing data, while in situ observations are sparse. So deep learning

has been attempted to be used in areas such as predicting long-term

changes in sea surface height, as well as optimizing the quality of

remotely sensed data and reconstructing situ observations.

(Zhang et al., 2020) adopted GANs to achieve a good SSH

reconstruction of an entire basin with observations from 19 coastal

sites. (Rong and San Liang, 2022) applied a neural network model to

couple with a causal inference technique based on IF analysis and

reconstructed MEs in an area of the South China Sea successfully.

(Barth et al., 2022) implemented a novel skip connection based on

DINCE (Data INterpolating Convolutional Auto-Encoder) to

reconstruct multivariate data, including SSH, which showed

excellent performance.

Considering the spatiotemporal dependence in the prediction of

SSH (Liu et al., 2022a), achieved superior stability and accuracy in

large-scale and long-term prediction by assigning reasonable

weights to the data at each time step and dividing the points close

to each other at the same latitude into groups to integrate the

attention mechanism of temporal and spatial dimensions into the

LSTM. Similarly, Song et al. proposed a merged LSTMmodel (Song

et al., 2020) and a convolutional LSTM (ConvLSTM) P3 model

(Song et al., 2021) combining LSTM and residual strategies, with the

latter achieving an average accuracy of 93.4% over a 15-d prediction

period for SSH. Based on the correlation between different variables

such as SST, SSH, SSS and sea surface velocity (Shao et al., 2021),

proposed a hybrid empirical orthogonal function (EOF)- complete

ensemble empirical mode decomposition (CEEMD) -ANN model

and a multivariate empirical orthogonal function (MEOF) - 1-D

convolutional neural network (Conv1D block) -LSTM model to

consider the linear and nonlinear characteristics of sea level

change, respectively.

3.1.5 Significant wave height
The significant wave height (SWH) is the most widely used

wave parameter in climate assessment and various marine

industries. Altimeters and radiometers onboard satellites provide

large-range and high-resolution observations to support SWH

studies. At the same time, as a prerequisite for accurate wave

forecasting, performing validation and calibration for the
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observed data and improving the quantity and quality have also

become important research topics.

For the Chinese HY-2 ocean remote sensing satellite series

(Wang et al., 2020), applied deep learning techniques to combine

multiple parameters of altimeter HY2B, including SWH, sigma0

and sigma0 Standard Deviation (STD) and significantly reduce the

calibration bias by 80%, RMSE by 24%, and scatter index (SI) by

10% on the SWH calibration task than the previous methods. It

demonstrated the good capability of HY2B calibration and

robustness. The GRU model was also trained using the minimum

wave height and wind field data obtained from the altimeter and

Scatterometer (SCAT) on HY-2C operating on an inclined orbit,

and achieved good results in large-scale SWH data generation

(Wang et al., 2021b). To solve the problem of data loss due to

observational platform and sensor failure (Bethel et al., 2021), used

LSTM along with the Simulating WAves Nearshore (SWAN) for

bidirectional modelling of surface wind speeds (WSP) and SWH to

improve the data reliability, based on the relationship between the

WSP and SWH.

The French CFOSAT carries Surface Waves Investigation and

Monitoring (SWIM) and a scatterometer (SCAT), both of which are

designed to provide along-track wave parameters and wind

observationals over a wide swath, respectively (Wang et al., 2021).

combined the wave and wind from SWIM and SCAT to train the

deep neural network with a variety of variables to estimate the wide

swath SWH, achieving an accuracy as good as the SWIM nadir and

an improved spatial coverage (Figure 8). The variables included

SWH and Sigma0 (s0) (The most common representation of the

surface backscatter coefficient, also known as the Normalized Radar

Cross Section (NRCS). It takes into account the effect of the size and

shape of the surface target on the reflection of the radar signal) from

the SWIM nadir observations, SWH and peak period from the wave

spectrum in the SWIM off-bottom box and wind speed from SCAT.

Using the wide swath SWH achieves impacts as good as using the

assimilation of the SWIM nadir SWH and enhances the accuracy of

the wave model when used together with the nadir SWH.

Based on a deep residual CNN (Wang et al., 2022), proposed a

quadrupolar synthetic aperture radar (SAR) SWH retrieval

algorithm, GF3WVResNet, to improve the estimation of SAR

SWH for China’s HMS-3 with an RMSE of 0.32 m and an SI of
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approximately 13%, outperforming other state-of-the-art wave

height retrieval algorithms. For potentially catastrophic SWH

changes caused by typhoons (Meng et al., 2021), introduced a

deep learning method for the long-term prediction of tropical

cyclone (TC)-forced nearshore wave heights, and identified them.

A two-way gated recurrent cell network was used as an effective

model for real-time and 24 h forward-looking predictions (Bethel

et al., 2022). proposed an LSTM model for predicting the forced

elevation SWH of Caribbean Sea hurricanes, which can provide

accurate predictions within 12 hours (R2 ≥ 0.8) and maintain the

error below 1 m within 6 hours of the forecast lead time. The RNN-

LSTM model (Pushpam et al., 2020 2020), GRU algorithm (Wang

et al., 2021a), bidirectional ConvLSTMmodel (Son et al., 2020), and

nearshore simulated wave-LSTM model (Fan ST. et al., 2020) all

achieved satisfactory performance for single-point short-term

prediction in their respective study seas.

However, the spatial distribution of wave is two-dimensional

(2D), and the 2D spatial field prediction helps to understand the

overall wave conditions in certain regions (Zhou SY. et al., 2021).

applied the ConvLSTM network to South China Sea and East China

Sea and demonstrated its feasibility for short-term SWH prediction

under normal and extreme conditions (Bai et al., 2022). used a

stochastic search algorithm to optimize a CNN-based 2D wave field

prediction model, which could not only accurately predict the wave

height variation along the timeline but also accurately estimate the

spatial wave height distribution of the 2D wave field. In addition

(Ma et al., 2021), combined the numerical weather prediction model

Weather Rearch Forecast (WRF) with a deep learning model for the

SWH prediction algorithm WRF-CLSF, which can effectively

suppress both the randomness and instability of waves as well as

extract the continuity and interaction scales from the wind-wave

history information. Combining numerical forecasting with data-

driven algorithms is a unique and innovative perspective. The

effectiveness of the model for long-term prediction (24 h, 48 h,

and 72 h) was also demonstrated (Li et al., 2021). proposed a deep

learning model, convolutional long term time series network

(CLTS-Net), for multivariate time series SWH prediction, which

integrates the advantages of CNN, LSTM, and autoregressive

models. It captures short- and long-term dependencies in

multivariate data and combines linear and nonlinear models for
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Selection of training factors for deep neural networks.
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reliable prediction and has been experimentally proven to be a more

accurate and general method for long-term prediction of SWH.

Similarly, the CNN-BiLSTM-attention model offers the mentioned

above advantages while proving its feasibility under extreme

conditions (Wang LN. et al., 2022).

3.1.6 Sea ice
The identification and prediction of sea ice are crucial to

maritime navigation safety, marine resource exploitation, global

climate change and sea surface altitude change monitoring.

Currently, the main sources of sea ice data include Sentinel-1

SAR images, RADARSAT system missions, passive microwave

data from AMSR2 and ship photographs. These data sources

provide massive datasets, and therefore deep learning can be

widely applied for the identification, segmentation, and prediction

of sea ice. The following sections present the latest research findings

in these fields.

Global warming has intensified the melting trend of Arctic sea

ice. Prediction of sea ice concentrations (SIC) at different timescales

is important to understanding global climate change. For medium-

and long-term predictions on monthly timescales (Wei et al., 2022),

used an LSTM incorporating mean absolute error and attention

modules based on the persistence of SIC anomalies for extracting

the relationship between sea ice in the target month and that in the

preceding 12 months, which generally improves the accuracy of

predictions. To achieve SIC prediction beyond 30 days compared to

traditional LSTM networks (Zheng et al., 2022), used the EOF

analysis to extract the spatiotemporal characteristics of the Arctic

SIC and then used LSTM for time series prediction, which showed

some validity on a 100-day time scale. However, all of these studies

involved prediction only from the univariate perspective of SIC,

ignoring the influence of some necessary external factors on SIC

evolution (Andersson et al., 2021). integrated 11 variables of both

ocean and atmosphere and trained an ensemble of U-Net networks

to predict monthly mean SIC maps at a 25 km resolution for the

next six months. It performed well in the seasonal forecasting of

summer sea ice and extreme sea ice events (Chi et al., 2021).

combined different modalities with a dual ConvLSTM and

improved the loss function to address the discrepancy between

statistical and visual errors. Although a six-month sea ice prediction

was achieved, it demonstrated that atmospheric parameters did not

have significant contributions, and the model still has room to

improve (Liu QH. et al., 2021). specifically selected five factors (SST,

mean sea level pressure (MSL), 2-m temperature (T2M), skin

temperature (SKT), and SIC) to train an improved predictive

RNN (PredRNN++) to achieve daily SIC prediction for up to 9

days; more recently (Ren et al., 2022), incorporated a fully

convolutional network with spatiotemporal attention.

Another major application scenario is to identify and classify

sea ice in remote sensing images. SAR images provide an important

data source for sea ice research (Song W. et al., 2022), provided a

large labeled sea ice SAR dataset which includes seven different sea

ice types and is a reliable data set for applying deep learning to sea

ice-related research. It was the first to provide both spatial and

temporal information, providing a reliable data set for applying

deep learning to sea ice-related research. Based on SAR data in a
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dual-polarization mode of operation (Zhang et al., 2022), used a

modeling approach combining the backbone network MobileNetV3

with a multiscale feature fusion approach to achieve more than 95%

classification accuracy when classifying sea ice (new ice, thin first-

year ice, thick ice, and old ice). The accuracy can be improved by

approximately 10% compared to that when using single-polarized

data. However, SAR images can suffer from unclear backscattering

features and noise phenomena. Based on the U-Net architecture

with the addition of model receptive fields and noise correction

(Stokholm et al., 2022), achieved faster automatic sea ice

concentration generation. These methods mentioned above

mainly focus on shallow feature learning. To mine deeper features

in images (Han et al., 2021), performed multi-level feature fusion

based on residual networks, and further improved the classification

accuracy by mining and fusing layer and layer element features

through feature pyramid networks (FPN), path aggregation

network (PAN), and spatial pyramid pooling (SPP) modules

compared with the algorithm with fewer layers of deep learning

network. In addition, based on the idea of residuals (Goncalves and

Lynch, 2021), used a U-Net variant model fused with ResNet

encoders to remedy the defects, such as insignificant texture

distinction of ice and water boundaries in ice floe extraction. The

framework proposed by (Jiang et al., 2022) uses a regional pooling

layer to integrate spatial features learned by ResNet and

unsupervised iterative region growing with semantics (IRGS). The

contextual information extracted by the partitioning algorithm

achieves an overall accuracy of 99.67% for ice and water

classification results, which can generate sea ice maps with pixel-

level labels and more natural ice-water boundaries.

The identification of sea ice is not limited to these studies.

Identifying ice surface and bottom boundaries by radar images to

further calculate ice cover thickness is also an important topic in sea

ice-related researches. Recently, a multiscale feature fusion network

was developed to solve the sample imbalance problem of boundary

detection effectively (Cai et al., 2022), using a multiscale

convolution module to learn multiscale feature representations of

different layers and a combined loss function called cross-entropy

(CE) and focus loss. It accounted for multiscale features more

comprehensively and further improved the accuracy of boundary

detection. Moreover, there are also studies which focus on

identifying glacier cracks to understand glacier state and stability

(Zhao et al., 2022). used an improved U-Net network to map the

spatial distribution of Antarctic ice shelf cracks in 2020 with a

spatial resolution of ~40 m. Extraction accuracy of 84.2% was

reached with good visual consistency.

Compared with SAR, passive microwave has stronger surface

penetration, wider coverage and better all-weather operation, but

coarser spatial resolution. (Liu XM. et al., 2022) proposed a super-

resolution algorithm to improve the spatial resolution of passive

microwave images, called a progressive multiscale deformable

residual network. It employed a novel alignment module

including a progressive alignment strategy and a multiscale

deformable convolutional al ignment unit and further

incorporated a temporal attention mechanism. In addition, for

some of the shipboard shot data, which are susceptible to image

quality degradation due to rain and other factors (Alsharay et al.,
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2022), developed a raindrop removal framework to classify the

scenes of sea ice images into ice, water, ship and sky by three deep

learning networks, which improved the classification performance

to a-certain extent.
3.2 Subsurface temperature and salinity

The ocean is the major global climate regulator and balancer of

Earth’s thermal energy (Deng, 2024). Monitoring and predicting ocean

parameters are of great significance for understanding the state of the

oceans and predicting global climate change. With the generation of

huge amount of satellite remote sensing data, research related to ocean

surface phenomena and variabilities has been greatly promoted.

However, owing to the ocean’s complex environment and physical

characteristics, satellite remote sensing cannot directly observe

subsurface information. Modeling the relationship between ocean

surface and subsurface parameters and retrieving or predicting the

environmental parameters inside the ocean accurately through deep

learning-related methods has become a hot and promising topic.

Regarding subsurface temperature and salinity, most studies

have selected ocean surface parameters as predictors, such as SSH,

SST, SSS, sea surface wind and location information (latitude and

longitude). Su carried out more work on reconstructing subsurface

temperature and salinity, exploring the effects of different methods

with different resolutions. The ability of CNN, light gradient booster

models (LightGBMs) (Su et al., 2021b), and LSTM (Su et al., 2021a)

to have high–resolution and long–time series reconstruction for

subsurface temperatures was compared and validated. The

percentage of contribution that latitude and longitude to

subsurface temperature and salinity anomalies was validated

using a bidirectional LSTM (Bi-LSTM) neural network (Su et al.,

2021c). The recent attempt at the convolutional LSTM neural

network (ConvLSTM) (Su et al., 2022), which better accounts for

time series dependence and spatial features, revealed significant

spatial heterogeneity among different ocean basins (Cheng et al.,

2021). introduced sea surface velocity as the input of a BP neural

network based on these several predictors and verified its

accuracy positively.

Similarly, CNN- or LSTM-based approaches were also developed.

Again using the characteristic data variables mentioned above (SSH,

SST, SSS) (Nardelli, 2020), combined stacking-based LSTM neural

networks with Monte Carlo dropout methods to reduce the RMSD of

the reconstructed hydrographic profiles to 50% relative to the

reference reconstruction (climatology and mEOF-r profiles).

Considering spatiotemporal features for 3D ocean temperature

prediction, using three-dimensional temperature data (Zhang K.

et al., 2020), proposed a multilayer convolutional LSTM (M-

convLSTM), while (Zuo et al., 2022) proposed a stereotactic

spatiotemporal convolutional model, SST-4D-CNN. The latter

added residual and recalibration modules to the convolutional

module to improve the horizontal and profile prediction accuracy

to more than 98.02%, mostly maintaining it above 99% compared

with SVR, FC-LSTM, Conv-LSTM and 3D Convolutional Models

(Sammartino et al., 2020). constructed an ANN using the absolute

dynamic topography, the geostrophic velocity components derived
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from altimeter, ocean surface chlorophyll-a and temperature as input

parameters to accurately infer the vertical shape of the Mediterranean

chlorophyll-a profile while also acquiring profile information for

other similar substances (e.g., particulate organic carbon,

salinity etc.).
3.3 Typical ocean phenomena

We systematically summarize each phenomenon in Table 3 and

present its details in the next section.

3.3.1 Mesoscale eddies
MEs are extremely important for ocean energy and material

exchange, and ubiquitous phenomena in global ocean. Therefore,

effective eddy detection and tracking are essential for promoting the

development of understanding of ocean dynamics. Advances in remote

sensing technology have greatly facilitated the integration of researches

on eddy detection and tracking with deep learning techniques.

MEs produce an irregular pulsation in the background field,

leading to a strong correlation with the surrounding SSH anomalies

and variables, such as SST. (Moschos et al., 2020 2020) and (Sun

et al., 2021) proposed a deep learning framework to accurately

identify and extract eddy features from SST satellite images and

satellite remote sensing SSH images, respectively, along with a

CNN-based network model. Within the framework, the latter

proposed a tracking algorithm, MCML (Median blur, Contours

finding, Moments computation, Location), to track multiple eddies

without relying on adjusting physical parameters. Recently, for

ocean satellite SSH images (Dong Z. et al., 2022), proposed an

improved U-Net network integrating a convolutional attention

module and a residual learning module. Its accuracy can reach

93.28% on an ME automatic detection task and was significantly

better than those of the previous AI detection models. To improve

the spatiotemporal predictability of MEs (Nian et al., 2021), fused

GRU and spatial attention in the original MIM (Memory in

Memory) architecture to provide a smoother and more accurate

sea level anomaly (SLA) time series, which provided a good

database for ME prediction. This enhanced approach allows for

the effective capture of both temporal and spatial variations in SLAs,

significantly improving the accuracy of ME predictions. By

leveraging this method, oceanographers can achieve reliable

mesoscale eddy forecasts, potentially extending the prediction

horizon up to several weeks, thus offering valuable insights for

understanding and managing oceanographic processes. Since the

temperature structure of MEs leads to changes in the ocean pressure

layer, which can be reflected in the SLA (Yu et al., 2021), proposed a

deep learning algorithm along with the satellite SLA data to invert

the temperature structure within the eddies, the eddy CNN,

providing high-resolution ME 3D temperature structure with

daily and horizontal resolutions of 0.25° with better spatial and

temporal resolutions. For the issue that insufficient spatial

resolution of altimeters can lead to the low efficiency of oceanic

eddy recognition (Chen et al., 2021), proposed a vertical structure-

based eddy recognition algorithm, a 3D CNN based on a residual

network and a hybrid CNN-XGBoost model based on Argo profile
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data and altimetry data; the latter can reach 98% classification

accuracy and recapture approximately 36% of the eddy currents.

Most of the above methods use single-mode data (i.e., a single

feature variable) to identify MEs and ignore data from other modes

closely related to ME detection. The EDNet identification network

proposed by (Fan ZL. et al., 2020) considers three modes: SSH, SST,

and current velocity, while a deep learning abnormal eddy (warm

cyclonic eddies and cold anticyclonic eddies) detection (DL-AED)

model proposed by (Liu YJ. et al., 2021) fuses global SSH and SST

data to detect eddy features and identify anomalous and normal

eddies (cold cyclonic eddies and warm anticyclonic eddies).

Anomalous eddies were found to account for a surprising one-

third of the total eddies in global ocean.

Unlike previous studies based on SSH data and target detection

skeletons (Liu et al., 2021b), proposed a deep eddy current detection

neural network (DEDNet) with a pixel partitioning skeleton for

high-frequency Radar (HFR) data, which can achieve global

optimality in space and powerful detail discrimination for

automatic detection and localization of offshore eddy currents.

However, there remain two challenges in using HFR data for

eddy detection. One is insufficient effective labelled data, and the

other is the difficulty in inheriting the experience from previous

detections. (Liu et al., 2021a) proposed a cross-domain eddy

detection neural network, which used an instance-based domain

adaptive approach to expand the training dataset to produce

sufficient labelled data and parameter-based transfer learning for

multiscene eddy detection to inherit the previous detection

experience. In addition (Xu et al., 2021), demonstrated the

potential of the bilateral segmentation network (BiSeNet)

algorithm to preserve edge information and identify large-scale

eddies, which also provides a reference for subsequent applications.

Accurate prediction of eddies is of great scientific and applied

importance for understanding the characteristics of eddy

propagation and evolution and improving the simulation and

prediction of regional weather and climate change. Recently

(Wang X. et al., 2020), developed a model for predicting eddy

properties and propagation trajectories by using the eddy trajectory

data as model inputs, which learned spatiotemporal variation

features using LSTM networks and applied the ET algorithm to

obtain relevant one-dimensional features from the changes in

propagation positions (Wang XN. et al., 2022). proposed the

MesoGRU framework to better extract feature correlations by
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integrating SLA and Archiving, Validation, and Interpretation of

Satellite Oceanographic (AVISO) data (Figure 9), and then used two

GRU layers to learn different patterns of ME trajectories. It can

obtain an average daily center error of about 8 km and maintain a

lower center error of 7-day prediction (8 to 18 kilometers), which is

a great improvement compared to other methods, such as LSTM/

GRU or method using a single dataset.

3.3.2 Fronts
As a representative mesoscale ocean phenomenon, ocean fronts

occur in narrow transition zones between water bodies of different

physical properties and exhibit distinct spatial and temporal

behavioral characteristics. Companying mixing, upwelling and

convergence of ocean fronts influence the upper layer ocean

dynamic processes. At present, ocean-front detection studies

confront two challenges, which are the scarcity of tagged data and

limitations of ocean-front detection algorithms.

(Li QY. et al., 2022) constructed a labelled oceanfront dataset

contributing positively to subsequent studies. With the dataset,

oceanfront detection was treated as a weak edge identification

problem, and edge locations were predicted by a network

consisting of four convolutional blocks. (Cao et al., 2020) set up

an oceanfront pixel-level recognition model from the gradient

threshold perspective, which trained Mask R-CNN with labelled

SST gradient maps and adaptively adjusted the recognition results

with the benchmark gradient threshold for each class of fronts.

However, the accuracy and applicability of the methods mentioned

above are not satisfactory due to the dynamic properties of ocean

fronts and their variability in different regions (Xie et al., 2022).

combined a channel supervisory unit structure with a location

attention mechanism to further improve the prediction capability

of multiclass fronts in different regions at different temporal and

spatial scales, which improved the pixel-level multiclass ocean front

detection accuracy. Here, the location attention mechanism could

integrate seasonal characteristics and contextual information of a

seashore, while the location attention mechanism adaptively

assigned attention weights according to the sea areas where fronts

occurred frequently.

3.3.3 Internal waves
Internal waves (IW), a type of sub-mesoscale wave motion

occurring within the stratified ocean, are an integral part of ocean
TABLE 3 A summary of the main application tasks, DL models used and current challenges of the typical ocean phenomena.

Application Tasks Primary Model Current challenges

Typical
ocean

phenomena

Mesoscale
eddies

Detection CNN-XGBoost, EDNet Insufficient effective labeled data

Track MCML, MesoGRU 3-Dimensional Considerations

Fronts
Detection Mask R-CNN;Attention Scarcity of tagged data and limitations

of algorithms

Internal
waves

Identification SegNet, Mask R-CNN, PAU-Net Considering the complex environmental
noise and generation mechanism

Prediction CNN-LSTM Prediction of shear stress due to internal
waves; Consideration of multi-

scale features
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dynamical processes, especially for ocean mixing and energy

cascade studies. Among the different types of internal waves,

internal solitary waves are one of the research hotspots for ocean

researchers, whose waveforms remain approximately constant

during propagation. The sudden generation of great shock

momentum may pose a catastrophic threat to subsurface

navigation and marine engineering facilities. Therefore, the real-

time monitoring and forecasting of IWs are crucial to

operational applications.

IW identification is a necessary foundation for ocean hazard

research and prevention. Remote sensing observations with a high

time efficiency, large range and long time series provide a rich

database for dynamic monitoring of internal waves, such as SAR

images. IWs appear as irregular alternating light and dark stripes in

SAR images, and this feature makes it possible to identify IWs from

SAR images (Vasavi et al., 2021). provided a complete method for

IW detection using the U-Net and KdV (Korteweg-de Vries)

methods. By improving the U-Net method (Zheng et al., 2021),

proposed an IW stripe segmentation algorithm based on SegNet for

SAR images. However, the methods only target a small part of the

whole SAR image and do not give segmentation results for the

whole image (Ma et al., 2023). classified image blocks containing

ocean IW based on a multi-decision fusion IW image classification

strategy and subsequently applied PAU-Net, the IW streak

segmentation method incorporating the pixel attention

mechanism, to effectively suppress the complex background

information of the ocean. In this condition, the feature extraction

of the whole image is realized. In contrast to the way based on U-

Net method (Zheng et al., 2022), proposed an IW stripe

segmentation algorithm based on Mask R-CNN. The proposed

method could identify the presence of oceanic internal waves,

obtain the corresponding positions of bright and dark stripes in

the image and even the width and directional angle of each bright

and dark stripe. To deal with the subsurface observations and

numerical modelling results and obtain more detailed

information, researchers tried to develop techniques for full-depth

3D ocean internal wave structure extraction and recognition (Zhang

X. et al., 2022). used the transfer learning method to fuse laboratory,

buoy and remote sensing data to construct an internal solitary wave
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amplitude inversion model, which made good progress in the

reconstruction of the 3D structure of internal solitary wave.

The vertical structure characteristics of the internal solitary

waves (ISW) are the key factors in determining the degree of threat

to subsurface vehicles or offshore engineering construction. With

the rapid development of subsurface vehicles, offshore wind power

systems, offshore drilling platforms and other offshore engineering

projects continuing to advance to the deep sea, ensuring the safety

of navigation of subsurface vehicles and the normal construction of

offshore engineering operations matters the national economic

development. Accurate forecasting is a crucial way to provide

protection to ISWs. Due to the complexity of its generation

mechanism and the lack of in situ observation, the prediction of

ISW propagation is a difficult problem in oceanography. Based on

the high-spatio-temporal-resolution results of an MITgcm model

(Lu et al., 2021), applied an LSTMmodel to predict the propagation

and evolution of ISWs, including amplitude, position and arrival

time, achieving more promising results (Zhang M. et al., 2022).

added a convolutional block attention module to the deep

convolutional neural network and then applied them to detect

ISW in combination with hydrodynamic signal observations for

the first time, and achieved an accuracy of >95% in predicting the

position of ISWs. Besides, IWs can generate shear stress on the

seafloor and seriously affect the development of deepwater ocean

engineering (Tian et al., 2023). trained various models by external

environmental factors to predict the bottom shear stress, such as

vertical velocity (w), zonal and meridional velocities (u and v) and

amplitude (A), and found that the CNN-LSTM is significantly

better than other models.
3.4 Typical weather and
climate phenomena

Constituting 71% of the Earth’s surface, the ocean’s influence on

the global climate is an important part of the oceanography field

and cannot be ignored. Any complex dynamic interaction between

oceans and atmosphere has the potential to result in dramatic

climate phenomena. Currently, the oceanic climate phenomena
B CA

FIGURE 9

MesoGRU Framework for ME Trajectory Prediction. (A) Data downloading part obtains TCME and SLA data from AVISO and CMEMS and extracts the
SCS information. (B) Data preprocessing part deals with SCS data by MAF, PCA, normalization, and feature combination and establishes a combined
dataset of ME (CDME) after data compression. (C) Network prediction part iteratively trains prediction model with our WMSE loss function and
renormalization (Wang XN. et al., 2022).
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receiving the most attention are tropical cyclones (TC), El Nino-

Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). We

systematically summarize each phenomenon in Table 4 and present

its details in the next section.

3.4.1 Tropical cyclones
A TC is a rapidly rotating storm system characterized by a low-

pressure center, a closed low-level atmospheric circulation, strong

winds and a spiral arrangement of thunderstorms that produce heavy

rain and squalls. TCs generated in the western and northwestern

Pacific and its adjacent waters are called ‘typhoons’. TCs are strong

disturbances to the ocean and atmosphere and result in extreme

destruction. Accurate analysis and prediction of typhoon intensity,

path and the related wind-wave changes are of great importance for

East Asian countries to prevent strong wind waves near typhoon

centers and other secondary hazards caused by heavy rainfall near

dense cloud structures (Zheng Z. et al., 2020) trained three source

models: VGG16, InceptionV3 and ResNet50, on a large-scale

ImageNet source dataset and constructed transferred forecasting

models (T-typCNNs) for typhoons with small dataset samples

using parameter transfer and Typhoon cloud images. The training

accuracy on its self-built typhoon dataset was 95.081%, which was

18.571% higher than that trained using shallow CNNs, and at most

9.819% better than the results obtained directly with the three source

models trained on the large-scale ImageNet source dataset without

parameter transfer (Qian et al., 2021). used a ResNet deep learning

model, in which transfer learning followed pretraining, to achieve a

more accurate objective intensity estimation of typhoons of different

intensities and development stages.

The resolution and accuracy of satellite cloud images are crucial

for discriminating typhoon intensities (Zhang et al., 2021).

proposed a multipath network model called SRCloudNet to

achieve more accurate image reconstruction and improved

resolution by integrating features extracted from back-projected

units (exploring the dependencies between LR and HR satellite

cloud images) and residual dense blocks. This model significantly

enhances the quality of satellite cloud image reconstruction, thereby

providing a solid foundation for future research and applications in

this field. Previous deep learning recognition methods based on

satellite cloud images commonly used CNNs to extract features [e.g.
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(Wang et al., 2020 2020) and (Giffard-Roisin et al., 2020)]. Given

the irregular structure of satellite cloud images can affect the feature

extraction capability of CNN, a new framework was proposed, the

graph convolution (GC)-LSTM network (Zhou et al., 2020). In this

work, the GC network is used to mitigate the influence of irregular

structure effectively with better accuracy and stability in identifying

typhoon eyes and spiral cloud bands; on the other hand, the LSTM

network learned the features of satellite cloud images over time for

prediction of the typhoon’s formation, and the prediction accuracy

can reach 95.12% in typhoons and super typhoons. It also provided

new ideas for processing irregular satellite images for other topics.

Unlike simply extracting features from satellite clouds (Higa et al.,

2021), combined the related meteorological knowledge such as

characteristics of the typhoon’s eye, etc. to estimate typhoon

intensity class with higher accuracy from individual satellite

images using a VGG-16 model with pre-processed fisheye

distortion, focusing on enhanced typhoon eyes, eye walls, and

cloud distributions. (Lee et al., 2020) combined numerical forecast

and satellite cloud image fusion for real-time TC intensity

estimation and prediction, fully considering the effects of

environmental variables and the feature identification of cloud

maps based on multitask learning (MTL). It reduced the

computational cost of the MTL model by approximately 300%

compared to the single-task model. The performance improvement

in TC intensity prediction for 6 and 12 h was 13% and

16%, respectively.

Regarding typhoon path prediction (Lian et al., 2020), proposed

a multidimensional feature selection layer from the perspective of

correlation analysis (CA) to select the most relevant meteorological

variables and temporal ranges of tropical cyclone trajectories, learn

their implicit features using a CNN layer and then input them to a

GRU layer to mine their deep temporal features to predict the

central location of the target tropical cyclone at the next timestamp.

In addition, based on the GRU model (Song T. et al., 2022),

considered the trajectory task as a time series prediction challenge

and built a deep learning framework with an attention mechanism

for trajectory prediction through a bidirectional GRU network

(BiGRU), which showed significant advantages in medium- and

long-term track forecasting, especially in the next 72 h. It

significantly improved the training efficiency and accuracy of the
TABLE 4 A summary of the main application tasks, DL models used and current challenges of the typical weather and climate phenomena.

Application Tasks Primary Model Current challenges

Typical weather and
climate phenomena

Tropical cyclones

Typhoon-induced
disaster forecasts

VGGNNet Accuracy
Long lead time prediction

Typhoon track and
intensity forecasts

VGG16, InceptionV3,
ResNet50, GC-LSTM,

AM-ConvGRU

The resolution and accuracy of
satellite cloud images.

Consider
multidimensional features

ENSO

Prediction of ENSO occurrence,
category and intensity

CNN, MS-CNN, ENSO-
ASC, Transformer

The Spring Predictability
Barrier;

Long-term forecasting;
Seasonal forecasting

Feedback relationship building U-Net Multidimensional and
multimodal considerations
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network. The framework was further implemented in a distributed

system to provide a perspective to improve the training speed of the

network, that is, parallelization of the program distribution. To

solve the problem of limited access to observational data (Ruttgers

et al., 2022), replaced the satellite images with reanalysis data of

total cloudiness and vorticity fields, which had a more positive

impact in terms of real-time forecasting and provided a new way of

thinking to fit first-level sample data (i.e., raw observational data)

with multiple reanalysis data, which may have more

positive influences.

Typhoons are not only a compound of multi-feature factors but

also multidimensional features. Thus, how to extract 3D features

and fuse them with the 2D features in an appropriate way remains a

key challenge, (Xu et al., 2022) combined the traditional generalized

linear model (GLM) with the proposed AM-ConvGRU model

based on the attentional Multi-ConvGRU. The GLM was applied

to extract 2D typhoon features, while the proposed AM-ConvGRU

used the residual channel attention block to select high-response

isobaric planes automatically when considering the entire 3D

structure of the typhoon, as well as to extract large-scale

nonlinear spatial features of the typhoon by the Multi-ConvGRU.

The broad logic can be seen in Figure 10. It has good results in

predicting the central location of typhoons in the next 24 hours and

is the latest method in the field for integrating 2D and 3D elements,

providing a methodological guide for subsequent studies to

consider multidimensional features.

Typhoons bring heavy rain, strong winds, and wind waves

which threaten navigation safety, docking operations in ports and

the safety of coastal residents’ lives and properties. During a

typhoon, accurate wind and wave prediction is also crucial,

(Meng et al., 2021) adopted six different parameters, namely wave

height, air pressure and wind speed obtained by buoys, the lowest

pressure in the center of typhoons and real-time wind speed, and

the calculated distance between typhoon center and buoy, to predict

wave heights at buoy sites at different leading time by a BiGRU

network, which demonstrated that the stability and effectiveness of

the method were reliable. (Wei, 2021) coupled a numerical forecast

model with an AI model, which included a VGGNNet and a high-

resolution network (HRNet) consisting of a hybrid model

integrated with a circulation-based GRU. The simulation results

of the Weather Research Forecast (WRF) model (wind) were used

as part of the data samples of the AI model to train the wave field,

and the experiments in the coastal waters of northeastern Taiwan

demonstrated feasibility in handling spatial data. Based on

numerical model results, a more comprehensive experiment of

multidata fusion was conducted to further consider ground

station data collected by the Weather Bureau (WB) of Taiwan

ground stations, buoy data, and hourly radar reflectivity images.

Considering multi-resource data did help the AI model to predict

the typhoon-induced wind and wave within higher accuracy.

3.4.2 ENSO
ENSO is a prominent signal of inter-annual and interdecadal

climate change on a global scale, occurring as winds and SST

oscillation in the eastern equatorial Pacific. It fluctuates

periodically among three phases: neutral, La Niña and El Niño
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and affects the climate of much of the tropics and subtropics. Deep

learning techniques drive accurate advance prediction of ENSO

occurrence, category and intensity.

Due to the influence on the global climate, several climate

factors can be employed as predictors, such as IOD, Atlantic Nino,

North Tropical Atlantic SST and Western Hemisphere warm pool.

(Li C. et al., 2022) in predicting SST and determining whether IOD

occurs by calculating the IOD index, selected 81 features from three

dimensions, atmospheric, surface, and subsurface, to train a deep

learning model based on convLSTM and combined the data

partially constrained by realistic physical information. The

positive effect of wind field information on IOD prediction was

verified by adding the wind field signal to the entire time step

of learning.

As a landmark work in AI prediction of ENSO (Ham et al.,

2019), applied transfer learning on the CMIP5 output and

reanalysis products to train the CNN model to predict the

Nino3.4 index and ENSO phase using SST and heat content

anomalies. A valid prediction 17 months ahead of time was

achieved, paving the way for AI applications using this method.

Subsequently, they further improved the ability to identify different

characteristics of seasonal variabilities by incorporating seasonal

factors into climate data and training samples for all target seasons

and leading forecast months simultaneously (Ham et al., 2021),

which minimized the ‘spring predictability barrier’ problem

(During the spring (April-July) in the Northern Hemisphere, the

self-perpetuation of ENSO development is weak, and there is a great

deal of difficulty in how to forecast ENSO development during this

time period, which is called the spring predictability barrier).

Although the work of Ham achieved good results, the CNN

model still has room for improvement (Hu et al., 2021).

incorporated residual ideas and dropout techniques into a CNN

model and extended transfer learning for the ENSO index and

phase prediction. Not only can the Niño3.4 index be effectively

predicted 20 months in advance, but the accuracy of the type

prediction can also reach 83.3% 12 months ahead, which is much

greater than the current best prediction accuracy (66.7%). (Gupta

et al., 2022) and (Zhou P. et al., 2021) also made good progress in

dealing with the barrier based on convLSTM and LSTM,

respectively. However, these studies used only one deep learning

model, which is not better adaptable to different tasks. (Ye et al.,

2021) proposed the MS-CNN framework for adaptively adjusting

the CNN structure according to different time-prediction tasks, in

which the multi-model parallel prediction replaced the traditional

single-model iterative process to avoid error accumulation, and

improve the reliability of long-term prediction.

Considering the dynamical complexity of ENSO and the close

correlation of Walker circulation, a multivariate coupled model

ENSO-ASC(air–sea coupler) was proposed by (Mu et al., 2021) not

only extract the multiscale spatial and temporal characteristics of

multiple physical variables, but also included two attention weights

for different air-sea coupling strengths for different starting calendar

months and different effects of these variables. The validity of Niño

3.4 index predictions over 18 months was demonstrated, as well as

the positive effects of SST and zonal winds. Similarly, the prediction

of the EI Niño index and phase using spatiotemporal structures has
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also been reported in several studies [e.g. (Geng and Wang, 2021;

Hashemi, 2021; Jonnalagadda and Hashemi, 2022)., etc.].

In addition, working on enhancing the ENSO-related target

signal and reducing the ‘spring predictability barrier’ problem

(Zhou and Zhang, 2022), combined the POP (Principal Oscillation

Pattern) analysis procedure with the CNN-LSTM algorithm in

predicting the Niño-3.4 SST index. They enhanced the ENSO

correlated target signal by POP-based preprocessing function; while

filtering out the uncorrelated noise. Similarly, by combining physical

analysis methods (Mu et al., 2020 2020), proposed a multiscale

Bayesian convolutional network which formulated ENSO

downscaling as a multiscale probabilistic prediction problem and

aggregated the outputs at all scale levels in the form of a joint

distribution, which ensured good stability, validity, and scalability. In

addition, the transformer, which can better focus on global features

than the CNN model, has recently been introduced to ENSO

prediction by (Ye et al., 2022), but relevant applications of this

model in oceanography are still scarce and deserve in-depth study.

With the wide application of the Transformer model, there are

attempts to apply it in areas such as ENSO prediction. Zhang et al.

predicted 3-D upper ocean temperature anomalies and wind stress

anomalies eighteen months in advance (Zhou and Zhang, 2023), and

comprehensively explored the reasons for the success of the

predictions with interpretability by considering wind and

subsurface thermal forcing separately in the input predictor (Gao

et al., 2023). At the same time, by coupling multimodal 3D fields, the

ability to predict multivariate 3D fields 20 months ahead of time is

realized by rolling prediction (Zhang et al., 2024).

Finally, the data mapping relationship construction capability

of deep learning is an important tool for constructing and exploring

unknown relationships between different phenomena and different

modalities. This has already been attempted to be applied in ENSO
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research. Zhang et al. have attempted to use a deep neural network

structure based on U-Net technology to explore the influence of the

SST-precipitation feedback process during the evolution of ENSO

(A deep learning-based U-Net model for ENSO-related

precipitation responses to sea surface temperature anomalies over

the tropical Pacific, 2023). As well as constructing the relationship

between SST anomalies and wind stress (tau) anomalies. These

works also provide a new approach for ocean-atmosphere

interaction modeling studies (Du and Zhang, 2024).
4 Future development trends

With the advent of the era of big data, the application practice of

deep learning in recent years has proven that the large-scale integration

of deep learning technology into the research of specific problems in

various fields has become an inevitable trend. The development of

remote sensing technology has led to the qualitative improvement of

oceanography, and oceanographic research has been in a ‘remote

sensing ocean era’ since the 1970s. Thus, this review argues that the

development of deep learning will naturally lead to a new leap in

oceanographic research. This does not mean that deep learning will

replace traditional methods. As mentioned above, it is an auxiliary tool

to help traditional methods improve their performance. In the

following, the development perspectives of application scenarios and

methods of deep learning are discussed.
4.1 Application

Deep learning is a tool that aids traditional research. For

example, one can better handle a variety of complex data.
FIGURE 10

Overview of the typhoon prediction model using AM-ConvGRU. The architecture of the model is based on the Wide & Deep framework. The model
input consists of two folds: 2D typhoon and 3D typhoon, and the Max-Min normalization method is applied to both inputs. The feature extractor
consists of two components; namely, the wide component and the deep component. In the wide component, 2D typhoon features with shape (53)
were constructed by the CLIPER method and converted into hidden layers by GLM. In the deep component, 3D time-series typhoon features with
shapes (4, 4, 31, 31, 31) (whose dimensions denote time step, channel, width, and height, respectively) were transformed by the three-layer AM-
ConvGRU for feature map downsampling. For the element integrator, the wide and deep elements were combined in a dense layer. Finally, the
model outputs were the latitude and longitude of the typhoon 24 h in advance (Xu et al., 2022).
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The current main application scenario of deep learning is one of the

main application aspects in the future. The main methods can be

divided into direct data analysis, data secondary information

extraction, data reconstruction and inversion, and data generation.

Data analysis is the direct application of deep learning to

existing data for operations, such as recognition and classification.

For example, Dong et al. (2022) (Dong Z. et al., 2022) used a deep

learning model to detect MEs directly from ocean satellite SSH

images. The extraction of secondary information from the data is

suitable for obtaining secondary data products with higher accuracy

and for the subsequent analysis of the secondary products. The

existing data are similar to ‘industrial raw materials,’ and the

operation of data secondary information extraction aims to

combine the ‘industrial raw materials’ into ‘parts’ required for

subsequent work by deep learning for a specific job.

Data reconstruction or inversion is essentially interconnected.

Applying deep learning to learn the dynamic potential connections of

different variables so that the potential relationship model, a trained

deep learning model, is built to achieve operations, such as high-

resolution reconstruction or inversion of unknown or missing data by

a part of the existing data. For example, the wide-format SWH

structure can be detected by a deep neural network model. Specific

applications, such as (Izumi et al., 2022) and (Barth et al., 2022), used

deep learning to reconstruct the missing portions of data due to cloud

cover. In particular, the method of (Zhang ZG. et al., 2020) for

reconstructing the SSH for an entire basin using TG data from

multiple coastal stations is worth extending to other areas.

Data generation confronts problems, such as unavailability or

high cost of data on a large scale, and the imbalance in ocean

datasets, where variables such as sea surface temperature are

overrepresented while others, like subsurface temperature, have

significantly less data available, and a common approach is using

the deep learning GAN family of neural networks to generate data

[e.g. (Izumi et al., 2022; Jamali and Mahdianpari, 2021)]. It not only

improves data defects and augmentation but also saves significant

human and material resources in data collection and will be an

indispensable key step in most future deep learning applications.

In summary, the above application scenarios are the areas that

have previously drawn more attention and are currently more

technically mature. In the future, researchers need to keep

exploring and discovering more potential application directions.
4.2 Methods

In addition to exploring the application of deep learning in

more domain directions, we also summarize the following

innovative applications of different methods and the directions

which are likely to produce innovative results in the near future

based on three perspectives: data pre-processing, model selection

and training strategy from the deep learning method itself.

4.2.1 Multidimensional, multiscale, and
multimodal feature fusion

The idea behind deep-learning algorithms is to learn explicit

and implicit connections of data for various purposes, such as
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prediction, recognition or classification. Therefore, the more

comprehensive the data collected from different sources related to

the target, the more accurate the results of the trained model will be.

Owing to the high dynamics and complexity of the marine

environment, any marine phenomenon is the result of

interactions of multi-modal and multi-dimensional processes.

Some studies select various methods to determine the correlation

coefficients of each possible relevant datum in the data processing

stage and dynamically determine the characteristic variables to train

a model. For example, Shao (2021) et al. (Shao et al., 2021) used a

series of methods, such as EOF analysis, to construct correlation

coefficients between variables and spatial correlations of different

sites when conducting sea surface data analysis in the South China

Sea. In addition, related research can draw on the work of (Huang

et al., 2022) to consider eddy current identification from a 3D

perspective. Nevertheless, how to properly extract 3D features and

fuse them with 2D features is currently uncertain and the most

promising direction to carry out related innovations to improve

research performance.

4.2.2 Transfer learning
The ability of deep learning to be rapidly and comprehensively

deployed as a convenient tool for solving problems in various

domains depends on the development of methods of

transferability and pervasiveness. In this condition, time and

computing resources, which are spent undertaking repeated

training of similar model solutions based on different datasets,

can be saved. Transfer learning shows great potential in this respect,

as shown by (Ordonez et al., 2022) on otolith images from different

laboratories. Referring to (Zheng Z. et al., 2020), training time can

be reduced by training baseline features on similar large datasets

already available and being fine-tuned for task-specific adaptation

on a small number of target datasets. In addition, scaling from small

sample source domains to large target domains can solve the

problem of too few labels in the target dataset. In future, transfer

learning methods that balance convenience and accuracy from

different perspectives are worth exploring.

4.2.3 Unsupervised and semi-supervised
Owing to the reliance of deep learning on data labeling and the

difficulty of labelling large datasets, future training samples of deep

learning must be unsupervised and semi-supervised. Applying

unlabeled or less-labeled data samples to deep learning to

accomplish specific tasks through appropriate methods or

frameworks is an appealing direction to develop. Data generation

and transfer learning have solved such problems to some extent.

However, other more suitable methods are still waiting to

be discovered.

4.2.4 Model fusion
As an essential aspect of deep learning applications, model

fusion is imperative to how well a task is completed. Most current

applications use generalized models to solve specific problems

directly. As an applicator, oceanographic researchers are of little

need to create new models to achieve better results but can

appropriately fuse more relevant models and methods or make
frontiersin.org

https://doi.org/10.3389/fmars.2024.1396322
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2024.1396322
targeted specialized modifications to models to achieve innovation

and improve results according to specific research tasks. Currently,

it is popular to fuse or nest convolutional series neural networks and

recurrent series neural networks, which can fully consider the

spatio-temporal characteristics, such as the CLTS-Net model

proposed by (Li et al., 2021). Recent innovative works incorporate

the idea of attention mechanisms or residuals [e.g. (Song et al., 2020;

Dong Z. et al., 2022)].

4.2.5 Modularity
Breaking down professional barriers and making deep learning

technology more widely and conveniently applied by experts in various

fields is a difficult hurdle that must be overcome in future

developments. A feasible alternative is to modularize deep learning

algorithms. We encapsulate the task-based algorithm model in a ‘black

box’ form and provide the data interface and tuning interface for non-

AI experts. In this condition, they no longer need to fully understand

the details of each neural network algorithm before applying deep

learning techniques; nevertheless, they can directly find themodule that

matches their tasks and adjust the required parameters appropriately to

generate satisfactory solutions. AI experts are expected to be more

involved in algorithm modularization in the future, thus,

modularizations can be applied to specific fields to frame the

workflow, which uses deep learning networks to handle the assigned

tasks as one of the components. It improved the portability of deep

learning, facilitate its extension to various industries to develop data

processing capabilities and promote its development.

4.2.6 Training strategies
In the final step of the deep learning application process,

choosing a smart training strategy can improve results with less

effort. For example, rolling prediction is currently used more

frequently in prediction tasks. It uses the sliding window within

the known variables to predict the post-window state and gradually

incorporates the prediction results into the known variables to

improve the prediction accuracy; however, it is worth noting that

this has the potential to produce problems, such as overfitting and

magnifying errors, which can be patched by physical dynamic

constraints. Beyond simply cycling the predicted results, MTL can

be performed to aid in prediction by cycling the variables of interest

for real-time prediction into known variables. For example,

(Politikos et al., 2021) used the prediction of fish length as an

auxiliary task to estimate the fish age better. Selecting a proper

training strategy should be task-oriented and is an open and

potentially innovative aspect.
4.3 Integration with numerical methods

As the primary traditional approach in oceanographic research,

the development of numerical models enables scientists to better

understand and predict the behavior of natural systems, providing

crucial support for forecasting and simulating the dynamic changes

of atmospheric, oceanic, and terrestrial systems. While the accuracy

and efficiency of numerical models are influenced by various
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factors, including model resolution, parameterization schemes,

accuracy of initial conditions, and boundary conditions, their

simulation of various physical processes and phenomena is

reliable, and the simulation process described by complex

physical equations and mathematical methods is clear. Therefore,

the main direction of future deep learning applications lies in

appropriately integrating the accuracy of deep learning with the

reliability and interpretability of numerical models.

Currently, there are two main application scenarios: firstly, deep

learning can be nested with numerical models to form hybrid

models to improve data processing accuracy. For example (Xiao

et al., 2019), combined LSTM with the AdaBoost integrated

learning model to settle the overfitting problem in LSTM. Most

typically (Ma et al., 2021), combined the numerical weather

forecasting model WRF with a deep learning model for a

significant wave height prediction, which extracts features from

historical dataset and considers the geographic and meteorological

factors considered by the WRF model at the meantime, effectively

suppressing the randomness and instability of waves and improving

the prediction accuracy. In addition, it can also be used in scenarios

of pattern recognition and feature extraction to extract useful

features from large-scale observational data or identify complex

spatial and temporal patterns. A common approach is to use EOF

analysis to extract different structural features of the data, thereby

improving model performance (Zhou SY. et al., 2021). coupled the

EOF and LSTM networks to solve the problem of poor accuracy

when predicting significant wave heights.

Furthermore, there are many foreseeable application directions,

some of which researchers have already begun to explore:
1. Model Parameterization and Physical Process Modeling:

Deep learning can be used to optimize parameterization

schemes of numerical models (Zhu et al., 2022), such as

adjusting parameter values in parameterization schemes or

adjusting parameters in physical equations. Alternatively,

deep learning can provide more accurate and reliable

parameterization schemes by learning from large amounts

of observational data, thereby improving model

performance. Neural networks capable of obeying all the

laws of physics described by the PDE when solving

supervised learning tasks (Dong C. et al., 2022),

Physically Informed Neural Networks (PINN), are also an

important current direction.

2. Model Defect Correction: Traditional numerical models may

have some systematic biases or errors, which may be caused

by model simplifications or incomplete physical

descriptions. Deep learning can correct these errors by

learning the differences between observational data and

model outputs, thereby improving the accuracy of

the model.

3. Data Assimilation: Data assimilation combines

observational data with numerical model outputs to

provide more accurate model state estimates. Deep

learning can be used to design more effective data

assimilation methods, such as handling spatiotemporal
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correlations through Recurrent Neural Networks (RNN) or

Convolutional Neural Networks (CNN), and improving the

model’s adaptability to observational data.

4. Model Acceleration and Optimization: Deep learning can be

adopted to accelerate the speed of numerical models and

optimize computational processes. For example, deep

learning methods can be used to design more efficient

numerical algorithms or reduce the computational load of

models, thereby improving model performance and efficiency.

5. Uncertainty Modeling: Deep learning can model and handle

uncertainty in numerical models, such as generating

multiple possible prediction results through Generative

Adversarial Networks (GAN), or estimating the posterior

distribution of parameters through Monte Carlo methods.
The interpretability of neural networks appears to be an

important factor influencing oceanographers’ acceptance of

artificial intelligence methods. Proper integration with numerical

models can help scientists better understand physical mechanisms

and their relative effects, improve the predictive capability of

numerical models, and address some challenges and difficulties in

numerical modeling. Additionally, some studies incorporate experts’

experience and knowledge into the model training and construction

process, artificially assigning weights to features or filtering results,

which can be considered a good approach to enhance accuracy and

interpretability, as shown in (Conradt et al., 2022).
5 Summary

Although deep learning technology has been rapidly applied in the

field of oceanography, including physical oceanography, there are still

many issues to be addressed. Factors such as multidimensional fusion,

integration with physics, complexity of features, and data imbalance are

constraining the deeper application of deep learning. At the same time,

the majority of existing research remains at the application level, failing

to achieve a qualitative improvement in advancing oceanographic

research. Compared to the vast unknown areas of the ocean, the

future trend lies in leveraging the advantages of deep learning to

promote scientific discoveries and propose new scientific questions.

This work discussed the background and necessity of deep

learning applications in physical oceanography. After introducing

the history of deep neural networks, this review introduced the

three main classes of deep learning models and their main

application scenarios in a black box format from the application

perspective, avoiding the initial hindrance for oceanographers to

use deep learning, that is, the difficulty in understanding the details

of the models. To provide some comprehensive and cutting-edge

references for all oceanographers interested in deep learning

techniques, the latest applications and innovative cases of deep

learning techniques in various fields of oceanography were reviewed

in detail mainly by examining recent studies published in the last 3

years. Moreover, some promising directions for future applications

and innovations were introduced for oceanographers from both

application tasks and deep-learning perspectives. We look forward

to the promotion and popularization of deep learning technology in
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the oceanography field and more discoveries about the ocean. From

the perspective of AI researchers, we hope to obtain an increasing

amount of application feedback to improve and innovate deep

learning models. We believe that deep learning will help the

oceanographic research field to achieve a new leap forward and

embark on a more intelligent and rapid development stage within

the next decade.
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