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Ocean data assimilation
focusing on integral
quantities characterizing
observation profiles
Nozomi Sugiura1*, Shinya Kouketsu1,2 and Satoshi Osafune1

1Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), Yokosuka, Japan, 2Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
An observation operator in data assimilation was formalized based on the

signatures extracted from the integral quantities contained within observed

vertical profiles in the ocean. A four-dimensional variational global ocean data

assimilation system, founded on this observation operator, was developed and

utilized to conduct preliminary data assimilation experiments over a ten-year

assimilation window, comparing the proposed method, namely profile-by-

profile matching, with the traditional method, namely point-by-point

matching. The proposed method not only demonstrated a point-by-point skill

comparable to the traditional method but also provided superior analysis fields in

terms of profile shapes on the temperature-salinity plane. This is an indication of

a well-balanced analysis field, in contrast to the traditional method, which can

produce extremely poor relative errors for certain metrics. Additionally,

signatures were shown to successfully represent properties of the water

column, such as steric height, and serve as an effective new diagnostic tool.

The top-down, or macro–micro, viewpoint in this method is fundamental to the

extent that it can offer an alternative view of how we comprehend ocean

observations, holding significant implications for the advancement of

data assimilation.
KEYWORDS

signature, data assimilation, water property, iterated integral, OGCM, 4D-var
1 Introduction

When integrating an ocean general circulation model (OGCM) under an atmospheric

forcing from atmospheric reanalysis product, the state of the model ocean can deviate from

observed ocean due to inevitable biases in both the model and the forcing (e.g., Lee et al.,

2005; Fu et al., 2023). Therefore, the accuracy of ocean state estimations and predictions

critically depends on the effective assimilation of observational data into numerical models

(e.g., Marotzke and Wunsch, 1993; Stammer et al., 2002; Chang et al., 2023).
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In traditional ocean data assimilation systems, observed

quantities such as temperature and salinity are compared with

model outputs at specific spatial points (e.g., Derber and Rosati,

1989; Malanotte-Rizzoli, 1996). The fundamental concept of this

approach is the point-by-point comparison of state variables with

their observed counterparts, a principle that underlies many existing

data assimilation frameworks (e.g., Kalnay, 2003; Law et al., 2015).

However, when data are obtained as vertical profiles, simply

focusing on temperature and salinity at each depth separately may

not fully capture the information conveyed by the profile shape. The

comparability of water temperature and salinity at each level can be

compromised by the heaving of isopycnal surfaces (e.g., Oke and

Sakov, 2008). Moreover, even if the temperature and salinity at each

level are slightly similar between observations and the model, the

two-dimensional curves formed by these parameters are not

necessarily close, as traditional settings do not consider salinity as

a function of temperature or vice versa (e.g., Haines, 2003;

Dorfschäfer et al., 2020).

The fundamental distinction between the traditional method

and the proposed method lies in the shift from point-to-point

comparisons to comparisons between paths. For point

comparisons, the objects compared could be vectors of salinity

and temperature or those subjected to a linear transformation, such

as through Empirical Orthogonal Functions or the balance operator

(e.g., Fujii and Kamachi, 2003; Weaver et al., 2005). On the other

hand, in the context of comparing paths, it is essential to

acknowledge that paths are mathematically conceptualized as

functions. For instance, a single profile could be envisaged as a

function mapping a real parameter, which varies from 0 to 1, to a

vector that includes pressure, salinity, and temperature

components. Once a path is delineated as a function, any

attribute of the path becomes a functional of that path. Within

this analytical framework, the degree of similarity between two

paths is evaluated based on the proximity of their functional values,

which reflects the extent to which the paths are alike. To investigate

paths from this functional perspective, focusing on the foundational

elements within the functional space becomes imperative. These

foundational elements are precisely what constitute the signature

(Lyons et al., 2007).

The concept of path signatures, as proposed in rough path

theory (Lyons, 1998; Lyons et al., 2007), has been effective in

accurately processing the information present in sequential data,

including profiles. The signature method, which reinterprets paths

through iterated integrals, provides a novel perspective that

captures the essence of information in trajectories efficiently. This

method has been identified as having numerous potential

applications (e.g., Fermanian, 2021), particularly in the field of

earth sciences where it has been combined with machine learning

techniques for predictive analysis e.g., Sugiura and Hosoda, 2020;

Derot et al., 2024; Fujita et al., 2024). One significant aspect of the

signature is that it serves as a functional basis within the space of

functionals defined over a given set of paths. Here, the signature is

called a “functional” because it maps a path, which is a function, to a

number. Consequently, any functional within these sets can be

accurately approximated with a linear combination of iterated

integrals (Levin et al., 2013; Fermanian, 2021; Derot et al., 2024).
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Our research presents a method that fundamentally reconsiders

the assimilation of vertical profile data. By conceptualizing the

observed vertical profiles as three-dimensional trajectories—

pressure, salinity, and temperature—and comparing their

signatures with those derived from numerical models, we

introduce a novel approach, the signature method, which is a key

concept in the theory of rough path. This method represents a

significant shift from conventional point-by-point comparisons,

offering a richer and more comprehensive analysis of the ocean’s

water column structure.

The remainder of this paper is organized as follows. First, we

present the concept of the signature and the theoretical background

for its application to profiles. Next, we detail the setup of our data

assimilation experiments. This is followed by a description of the

results of the data assimilation experiments and their interpretation.

Finally, we discuss the conclusions drawn from these results, as well

as the challenges currently faced.
2 Theoretical background

Our aim is to improve the properties of vertical profiles, for

example heat content, salt content, density, or sea surface height.

More generally, these quantities can be attributed as a function of a

profile, which can be formulated as a linear combination of iterated

integrals in the signature of a path.
2.1 Signature

Signature S(X) for path X :½0, 1� → Rd is defined as follows

(e.g., Lyons et al., 2007; Friz and Victoir, 2010). Order-n signature is

composed of a series of iterated integrals,

S≤n(X) : = 1 + S(i1)
1 (X)

� �
i1=1,⋯,d

+⋯+ S(i1 ⋯ in)
n (X)

� �
i1,⋯,in=1,⋯,d

, (1)

S(i1 ⋯ ik)
k (X) : =

Z 1

0

Z uk

0
⋯
Z u2

0
dX(i1)

u1 ⋯ dX(ik−1)
uk−1 dX(ik)

uk , (2)

where k = 1,⋯, n, and i1,⋯, ik = 1,⋯, d. Note that superscripts

(i1) and (i1 ⋯ ik) do not denote any derivatives but simply assign a

dimensional index, or multi-index. We also denote S≤n(X) as S(X)
or I for brevity.

A full (infinite-order) signature uniquely determines a path up

to tree-like equivalence (Hambly and Lyons, 2010), and even a

truncated (order-n) signature represents a path more effectively

than the conventional pointwise coordinate (e.g., Fermanian, 2021;

Fujita et al., 2024).
2.2 Vertical profile as signature

Imagine a path in a three-dimensional space (P, S,T), labeled

from u = 0 to u = 1 in descending order of altitude using the

parameter u. The signature method represents the shape of this

path using various degrees of iterated integrals. The first-order
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iterated integrals are the differences between the starting and ending

points, defined as 3 dimensional vector (IP , I S, IT ) = (P, S,T)u=1 −

(P, S,T)u=0. The second-order iterated integrals are defined as three

pairs of areas observed from three viewpoints of this three-

dimensional path (IPT , ITP ; I SP , IPS; ITS, I ST ; see Figure 1). In

addition to the nonlinear aspects of the first-order iterated

integrals (IPP , ITT , I SS), a total of 9 = 32 areas constitute the

second-order iterated integrals. Although it is challenging to

visualize the third-order iterated integrals, they are similarly

defined by a total of 27 = 33 volumes.

In data assimilation, it is not practical to only bring specific

variables closer to the observations. However, if the objective is to

bring the state of the ocean closer to the state of observation,

balancing the fidelity of each variable becomes important. For

example, in traditional data assimilation, when assimilating

observation profiles, as shown in Figure 1, a cost function is set to

bring the temperature and salinity of the model at each vertical level

closer to the observations. If we focus on the PS or PT planes, this

policy is not likely to encounter any problems. However,

considering the TS plane, the path drawn by the model profile on

the plane does not necessarily approach the observation profile by

assimilating only on the PS and PT planes. This is a significant

drawback when the representation error of the model is significant.

While incorporating spatial correlation between T and S profiles

through background error covariance, as discussed by Fujii and

Kamachi (2003), can help improve the adjustments on the TS plane

at the level of the prior, the proposed approach emphasizes that the
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profile shape on the TS plane is crucial observational information,

and thus is implemented as an observation operator through

the signature.

As illustrated in Figure 2, the area enclosed by the temperature-

salinity-profile (TS-profile) ½0, 1�∋ u↦ (Su,Tu) ∈ R2 coincides

with the line integral of one-form: w = 1
2 ((Su − S0)dTu − (Tu −

T0)dSu) along the profile, because of Stokes’ theorem (e.g., Spivak,

2018) (note dw = dSu ∧ dTu). This is sometimes called the Lévi’s

stochastic area in mathematics (Lévy, 1940). This one-form

vanishes if the profile is a straight line, but has some value if it is

curved. By contrast, in an oceanographic context, a profile is

straighter if the water is vertically well mixed, but curved if the

water is stratified with multiple water masses. In other words, the

area quantifies the bending of the profile in response to changes in

the water mass. Thus, the area (TS-area) is a key to grasping the

composition of water masses in a water column, which may be the

key to understanding the T-S diagram (e.g., Mamayev, 1975;

Veronis, 2021). Note that this approach shares a common

philosophy with existing approaches (e.g., Cooper and Haines,

1996; Rykova, 2023) that an observation should be treated not

only as values at points but also as features constrained by some

conservation properties. This type of optimization can be continued

for three- or higher-order iterated integrals. Mathematically, the

complete set of iterated integrals from the first to higher orders is

termed the signature, and it is recognized for its appropriateness

and efficiency in representing the shape of a profile (e.g., Hambly

and Lyons, 2010).
FIGURE 1

Grasping the shape of a profile ½0, 1�∋u↦ (Pu, Su,Tu) ∈ R3 by the second-order iterated integrals, (IPT , ITP , IPS , ISP , IST , ITS), in signature.
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2.3 Maximum mean discrepancy

Below, we will explain the comparison of the model profiles, as a

probability measure, with observational profiles in our data assimilation.

Suppose that we have an inversion problem

y = G(y ) + h, (3)

where G is an ocean general circulation model (OGCM), y is

the control variables (initial and boundary conditions), G(y ) is the

output variables (a set of profiles), y is the observation (a set of Argo

profiles), and h is the observational error.

Let pm be the restriction operator for the m-th spatiotemporal

Mesh; we define the problem for mesh m as

ym = Gm(y ) + hm, (4)

where Gm : = pm ∘G denotes the OGCM that generates profiles

in mesh m, y denotes the control variables (initial and boundary

conditions), Gm(y ) : = pm ∘G(y ) is the set of profiles in meshm, ym
is the set of Argo profiles in mesh m, and hm is the observational

error for mesh m (assumed to be independent).

Now, we want to compare the model and observational

(probability) measures for mesh m:

profile X ∈ Gm(y ) ⇒ X ∼ Pm,y , (5)

profile Y ∈ ym ⇒ Y ∼ Qm : (6)

These measures, Pm,y and Qm, can be approximated using the

empirical measures:
Frontiers in Marine Science 04
~Pm,y =
1

Gm(y )j j o
X∈Gm(y )

dX , (7)

~Qm =
1
ymj j oY∈ym

dY , (8)

where ymj j denotes the number of observational profiles in

mesh m, and dY denotes the Dirac measure.

The distance between the two measures can be evaluated using

kernel averages, which constitute maximum mean discrepancy

(MMD). This approach has recently been used in estimation

problems (Chérief-Abdellatif and Alquier, 2020).

When paths X ∼ P are embedded in the tensor space T of the

signatures by S :X↦S(X) ∈ T , we can define the kernel mean

embedding of measure P as mk(P) : = EX∼P½S(X)� (Chevyrev and

Oberhauser, 2022). Subsequently, the MMD between the two

measures is defined as

MMD(~Pm,y , ~Qm) = ‖mk(~Pm,y ) − mk(~Qm) ‖T , (9)

where ‖‖T is a norm in the tensor space.

In terms of the empirical measures, Equation (9) is thus written as

MMD2(~Pm,y , ~Qm) = jj 1
Gm(y )j j o

X∈Gm(y )

S(X) − 1
ymj j oY∈ym

S(Y)jj2
T
: (10)

This is merely a comparison of signature averages for sets of

model profiles in the mesh and the observation profiles. We

employed this type of observation operator in our cost function

(see Methods).
FIGURE 2

Example of area in temperature-salinity (T-S) diagram enclosed by profile ½0, 1�∋u↦Xu = (Su,Tu) ∈ R2. Area is calculated as iterated integral

(IST − ITS)=2 : =

Z
0≤u1≤u2≤1

(dSu1
dTu2

− dTu1
dSu2

)=2.
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3 Materials and methods

The 4D-var data assimilation system used in our experiments

was constructed as follows:
3.1 Data assimilation system

3.1.1 Computation of signature
For each profile, the signature is calculated as follows: For a

linear path v, represented by the vector v ∈ R3, the signature is

computed as S(v) = ev : =on
k=0

v⊗ k

k ! , where ⊗ k denotes the k-times

tensor product. Then, for a piecewise linear path v1*… *vm, made

by concatenating linear paths v1,⋯, vm one after the other, the

signature is computed as S(v1*… *vm) = ev1 ⊗…⊗ evm , because of

Chen’s identity (Chen, 1958). Here, the tensor product is extended

to the product in the truncated tensor algebra by (on
k=0ak)⊗ (on

k=0

bk) =on
k=0ok

j=0ak−j ⊗ bj, where the subscript represents the order

of the terms. We set the signature order to n = 4.

3.1.2 Cost function
Our cost function is based on the comparison of mean signatures

between the model and the observations made on each mesh.

We assume that vector Xu ∈ R3 is composed of depth, salinity,

and potential temperature (P, S,T). We also use the notation X(1)
u =

Pu,  X
(2)
u = Su,  X

(3)
u = Tu, where u = 0 (resp. u = 1) corresponds to

sea surface (resp. deepest measurement level ∼ 2000m). Using the

signature transform, we derive order-4 signature for each

vertical profile.

In the proposed method (Sig-case), the observational cost (Sig-

based cost) for each horizontal mesh m is defined as

Jm(y ) =
1
2 o
t  ∈Tm
jj 1

Mm,t
�� �� o

X∈Mm,t

S(X(y ))

−
1

Nm,t
�� �� o

Y∈Nm,t

S(Y)jj2, (11)

where Tm indicates the set of months with observed profiles

for which the homogenous norm  k k is computed, X ∈ Mm,t is the

model profile in the horizontal and temporal mesh (m, t), which is

dependent on control variable y, and Y ∈ Nm,t is an observational

profile in mesh (m, t). The homogenous norm assigns exponent

1=k to the squared sum of the k-th iterated integrals:

o• j S
(•)
k (X) j2

��� ���1=k, considering nonlinear scaling with x > 0 of the

iterated integral: Sk(xX) = xkSk(X) (Friz and Victoir, 2010). In the

reference case without signature transform (TS-case), we set the

temperature-salinity-based cost (TS-based cost) as

Jm(y ) =
1
2 o
t∈Tm

j 1
jMm,t j o

X∈Mm,t

X(y ) −
1

jNm,t j o
Y∈Nm,t

Yj2

, (12)

where X ∈ Mm,t (resp. Y ∈ Nm,t ) denotes model (resp.

observation) temperature and salinity at gridded vertical levels in

the horizontal and temporal mesh (m, t), and  j j is the

quadratic norm.
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To enhance the representation of climatological water masses,

we also applied a loose cyclicity cost term (e.g., Yu and Malanotte-

Rizzoli, 1998):

Jm,cyc(y ) =
1
2 jj 1

12 o
t  ∈first year

1

Mm,t
�� �� o

X∈Mm,t

S(X(y ))

−
1
12 o

t  ∈last year

1

Mm,t
�� �� o

X∈Mm,t

S(X(y ))jj2, (13)

or the one without signature transform for the reference case.

In each case, the total cost is defined as

J(y ) =
1
2
(y − yb)

⊤B−1(y − yb)

+ l o
observed m

Jm(y ) + o
model m

Jm,cyc(y )

 !
, (14)

where B = B
1
2B

⊤
2 denotes the background error covariance with B

1
2 ,

the composition of smoothing and scaling. In this decomposition, B
1
2 =

D ∘ S, the smoothing operator S is implemented as a Laplacian

smoothing (Weaver et al., 2021) with a horizontal correlation length-

scale of 200km for the initial condition and 300km for fluxes.

Meanwhile, the scaling operator D is implemented as a diagonal

matrix based on the standard deviation of interannual variability at

each point. yb is the firstguess vector, and l > 0 is a scaling factor that

absorbs a possible imbalance between the background and

observational terms.

By changing variable y = B
1
2f + yb, the original cost function is

rewritten as that with respect to f:

J (f) =
1
2
f⊤f + l o

observed m

Jm(B
1
2f + yb) + o

model m

Jm,cyc(B
1
2f + yb)

 !
: (15)

The derivation of its gradient is explained in Supplementary

Material Sec. 2.

3.1.3 Gradient method
The 4D-Var data assimilation problem was solved iteratively

using Nesterov’s accelerated gradient method (Nesterov, 1983).

See Supplementary Material Sec. 3 for details regarding

the implementation.
3.2 Experimental settings

Our data assimilation experiment aimed to compare the

proposed case (Sig-case) to the signature-based cost (Equation 11)

and reference case (TS-case) to TS-based cost (Equation 12). The

experimental setting was as follows:

3.2.1 Ocean general circulation model
The OGCM we used is a version of the Meteorological Research

Institute Community (MRI.com) models (Tsujino et al., 2010,

2011). It is equipped with a mixed-layer model (Noh and Jin

Kim, 1999) and coupled with a sea ice model (Hunke and

Dukowicz, 2002). The global ocean was set as the simulation
frontiersin.org
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domain. for 10 years (T = 120 in Equation 11) from January 2004 to

December 2013. This model was coupled with a sea ice model. It

was divided into spatial meshes of resolution 1� 0:5 degrees and

temporal meshes with monthly resolution. For example, a

spatiotemporal mesh was defined in the following range: of 10N

to 10.5N, 140E to 141E, February 2012.

3.2.2 Firstguess
Before data assimilation (DA), the OGCM was spun up using

climatological air-sea fluxes, with nudging toward the climatological

temperature and salinity fields, and then integrated from 1959 to

December 31, 2003, under interannual air-sea fluxes to obtain a

firstguess snapshot, which was used as the initial condition at the

start of DA iteration. The air-sea fluxes used were compiled as daily

means from JRA-55 atmospheric reanalysis dataset. (Kobayashi

et al., 2015) These values were then linearly interpolated from 10

elements of daily-mean field: surface air temperature, 10 m wind

vector (2-dimensional), scalar wind, shortwave radiation flux,

longwave radiation flux, precipitation, river runoff, dew point

temperature, and sea level pressure. We refer to the model state

at the start of DA iteration as firstguess.

3.2.3 Control variables
Our 4D-Var is a strong constraint (Talagrand and Courtier,

1987), which has a 10-year-long assimilation window without any

temporal gaps in ocean states. The control variables y were the

initial state (of the first year) and the increments in air-sea fluxes in

a 10-day span, which were linearly interpolated. Among the initial

states, we updated 5 ocean state variables— temperature, salinity,

horizontal velocity (2-dimensional), and sea-surface height— but

not for the sea-ice and mixed-layer states.

3.2.4 Adjoint model
The adjoint OGCM was derived through automatic

differentiation of the Fortran code using TAF (Giering and

Kaminski, 2003). For applicability to long assimilation windows,

the forward variables required for the adjoint integration were

stored in scratch files as temporal mean during forward

integration and then restored for adjoint integration. For the sake

of stability in the sensitivity calculation (Sugiura et al., 2014), we did

not use the adjoint of the sea ice model or the mixed-layer model.

Regarding the signature transform, we must compute the gradient

(adjoint) of the signature transform, which is also derived by

applying the automatic differentiation of the Fortran code. Our

implementation of the signature module is available on GitHub.

3.2.5 Assimilated data
To determine the effect of the signature method on the profile data,

we assimilated only the Argo profiles (Argo, 2020) that have three

elements (pressure P, salinity S, and temperature T) and vertical lengths

of nearly 2000m. The area from the southern shore of Greenland to the

far north Atlantic was excluded from the observational area because of

the poor representation ability of the model around there. For the

comparison with the model state, the in-situ temperature was

converted into potential temperature, and the pressure was converted
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into depth. As a simple observational error variance, (P, S,T) are

normalized by their typical variations, (2000m, 8psu, 20K), before the

signature transform. Additionally, after several trials, we set l = 106 in

Equation 14.
4 Results

4.1 Variation of cost function

Figure 3 shows the variation in the cost function during the

iterations. The signature-based cost (Equation 11) decreased almost

monotonically in Sig-case because it was the minimization object

but fluctuated in TS-case, converging to a higher value. TS-based

cost (Equation 12) showed the opposite behavior. Naturally, the two

minimization problems have distinct stationary points, leading to

different estimates. Note that Sig-case also reduced TS-based costs

considerably, which guarantees a certain level of compatibility with

traditional TS-based cost function settings.

To observe the breakdown of the reduction in the observational

cost term, the relative error from firstguess was calculated for each

iterated integral up to degree 3. The relative error eI was defined as

the root mean squared error of the estimated field against the

observation across all the observed meshes, divided by that of

firstguess:

e2I : =
oobserved mot∈Tm

n2
m,t ,I(y )

oobserved mot∈Tm
n2
m,t ,I(yb)

, (16)

where

nm,t ,I(y ) : =
1
Mmj j o

X∈Mm,t

S(I)(X(y )) −
1
Nmj j o

Y∈Nm,t

S(I)(Y) : (17)

Figure 4 compares the relative errors for each iterated integral

for Sig-case and TS-case. Iterated integrals composed only of index

P showed no change because we cannot change the depth span of a

profile. Iterated integrals that include both T and S generally showed

a decrease in Sig-case, but some terms increased in TS-case, which is

likely owing to the lack of direct observational constraints on such

metrics in TS-case. For iterated integrals that did not include both T

and S, the two cases exhibit a similar behavior, but TS-case was

slightly better than Sig-case in general. Overall, most of the terms

showed a decrease from firstguess in both cases. Although TS-case

generally showed a better performance than Sig-case, it sometimes

showed a significant increase from firstguess (for example, in I STT

or I STP). In summary, Sig-case showed a balanced improvement,

whereas, in TS-case, the improvement was skewed and some

deterioration were observed in terms of the T-S diagram.
4.2 Point-by-point performance

As evident in the right panel of Figure 3, the total pointwise errors

in temperature and salinity have no significant difference between Sig-

case and TS-case. To uncover the difference, we will first examine the

point-by-point performance of both cases by showing the horizontal
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distributions of the root mean square errors (RMSEs) against

observations at several vertical levels. To emphasize the differences

between the two cases, we show the RMSEs relative to that of the

firstguess. Figures 5 and 6 indicate the RMSEs for temperature at 200

m and 1500m, respectively. Both cases have relatively small RMSEs,

but the contrast is more significant in the TS-case, which means that

some regions show notable improvements, while others show

deteriorations. For example, the temperature at 200m in the

Kuroshio recirculation region, and the temperature at 1500m in the

Indian Ocean, became worse than the firstguess. On the other hand,

the deteriorations in the Sig-case are more suppressed than in the TS-

case. Figures 7 and 8 indicate the RMSEs for salinity at 0m and 700m,

respectively. Again, the contrast is more significant in the TS-case. For

example, the sea surface salinity in the Kuroshio recirculation region,

and the salinity at 700m in some regions along the Antarctic
Frontiers in Marine Science 07
Circumpolar Current, became significantly worse than the firstguess.

On the other hand, the deteriorations in the Sig-case are more

suppressed than in the TS-case.

Figures 9 and 10 present the comparison of T-S-P (TS, PT, and

PS) diagrams as illustrative examples. In Figure 9B, there is no

significant problem in the temperature representation, but the

difference is evident in the salinity representation. The TS-case

(blue in Figure 9C) shows a poor representation of surface salinity

by attempting to match the salinity at each level to the observation.

On the other hand, the Sig-case (red in Figure 9C) shows an accurate

representation of surface salinity by aligning the first iterated integralZ ​

dS with the observation. The structure of the salinity minimum

remains unchanged from the firstguess in both cases. In Figure 10, we

observe a mostly barotropic structure along the Antarctic

Circumpolar Current. Improvements on the PS plane can be seen
FIGURE 4

Relative error to firstguess for each iterated integral. Sig-case is denoted by red circles and TS-case by triangles. Horizontal axis is the index of

iterated integral, for example, TS represents ITS.
FIGURE 3

Variation in the cost functions in terms of signature-based cost (left) and TS-based cost (right). Sig-case is shown by red circles, TS-case by
blue triangles.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1398901
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sugiura et al. 10.3389/fmars.2024.1398901
in the shallow salinity structure (Figure 10C). Both cases have surface

salinity closer to the observation than the firstguess. However, the

curve shape of on the TS plane looks better in Sig-case (Figure 10A).
4.3 TS-area

As shown in Figure 2 the area enclosed by TS-profile (TS-area)

is important for characterizing water properties in a water column.

To this end, we compared the proximity of TS-area to observations
Frontiers in Marine Science 08
in the estimated fields. Figure 11 shows the temporal averages of TS-

area (I ST − ITS)=2, in the observation, firstguess, Sig-case, and TS-

case. While common shortcomings stand out in the model fields,

some improvements can be observed from firstguess in Sig-case.

Principally, this term indicates a salinity drop or surge in T-S

diagram near the sea surface due to precipitation or evaporation

(e.g., Sugiura, 2021). To observe this in detail, we derive the relative

error in the model fields, which is defined as follows: Let ya be a

linear combination of iterated integrals oI∈GaIS(I)(X(y )), where

aI ∈ R is a coefficient, and G is a set of multi-indices. Using nm,t ,I
FIGURE 5

Change in RMSEs against observations of 200m temperature for Sig-case (left) and TS-case (right). The change is shown as the RMSE of each case
minus that of the firstguess. Unit is K.
FIGURE 6

Change in RMSEs against observation of 1500m temperature for Sig-case (left), and TS-case (right). The change is shown as the RMSE of each case
minus that of the firstguess. Unit is K.
FIGURE 7

Change in RMSEs against observation of sea surface salinity for Sig-case (left), and TS-case (right). The change is shown as the RMSE of each case
minus that of the firstguess. Unit is psu.
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(y ) in Equation 17, the relative error of ya for each mesh, em,a , and

overall relative error, ea , are defined as respectively. Figure 12

shows the distribution of the relative error for TS-area

(aST = 0:5,aTS = −0:5) in the model fields. The overall relative

error was 0.967 in Sig-case and 1.027 in TS-case. Both showed a

similar pattern, with a noticeable decrease in errors around the

Antarctic circumpolar current but an increase in errors in the

subtropical circulation. Moreover, this difference was more

intense in TS-case, with a more pronounced deterioration in

subtropical circulation (see also Supplementary Material Sec. 4).

Noting that our data assimilation is not solely for the Lévy area, the

correction tendency in these two regions can be explained by the

consistency of corrections with respect to iterated integral
Z ​

dS

(surface salinity, or SSS) and
Z ​

(TdS − SdT) (Lévy area). Along the

Antarctic circumpolar current, Figure 10A suggests that matching

model SSS to observations is compatible with matching the Lévy

area to observations. On the other hand, as suggested by Figure 9A,

matching model SSS to observations conflicts with matching the

Lévy area to observations in the subtropical regions. In TS-case, “the

Lévy area” should be interpreted as salinity at the intermediate

layer”.

e2m,a : =
ot  ∈Tm

(oI∈G aInm,t ,I(y ))2

ot  ∈Tm
(oI∈G aInm,t ,I(yb))

2 , (18)

e2a : =
oobserved mot  ∈Tm

(oI∈GaInm,t ,I(y ))2

oobserved mot  ∈Tm
(oI∈GaInm,t ,I(yb))

2 , (19)

Similarly, Figure 13 shows the temporal averages of TS-volume

(I STT − ITST )=2 (see Figure 14 for the meaning), in observation

firstguess, Sig-case, and TS-case. In observation, this volume showed

a high value around the warm water pool in the Indo-Pacific region

but low value around the high evaporation areas. Such features were

also observed in the model fields, but common shortcomings in terms

of the shape of the high evaporation zones in the firstguess remained

in both Sig-case and TS-case. Figure 15 shows the distribution of the

relative error in the model fields by applying Equation 18 to aSTT =

0:5,aTST = −0:5. The error pattern is similar to the relative error for
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TS-area (I ST − ITS)=2 shown in Figure 12, with higher constant in

TS-case. The overall value for TS-volume was 1.031 in Sig-case and

1.172 in TS-case. No overall improvement was observed in Sig-case,

and deterioration was observed in TS-case.
4.4 Steric height

Owing to the universal approximation theorem (Derot et al.,

2024), a nonlinear function on a set of paths can be approximated

by a linear combination of the iterated integrals with any accuracy.

We leverage this fact for approximating the steric height assigned to

each profile.

By considering up to the second-order nonlinearity in the state

equation, the steric sea level was estimated using iterated integrals

for each horizontal point m as

hm = −bSIPS
m − bTIPT

m + 2bS2IPSS
m + 2bT2IPTT

m

+bST IPST
m + IPTS

m

� �
− bSPIPPS

m − bTPIPPT
m + C,

(20)

where I •
m denotes an averaged iterated integral for all the profiles

in mesh m, and C is a constant along time. See the Supplementary

Material Sec. 1 for the derivation. The coefficient values are listed in

Table 1. Figure 16 shows the temporal averages of the estimated steric

height minus the global mean for observation, firstguess, Sig-case,

and TS-case. The firstguess assumption seems to represent the

pattern of the steric anomaly to a certain extent; however,

improvement is not evident in Sig-case or TS-case.

To determine where the improvement could be observed, we

derived the relative error by applying Equation 18 to aI = bI .
Figure 17 shows the distribution of the relative observational

error of steric height to firstguess. There was an obvious

deterioration around the Antarctic circumpolar current and

subarctic circulation in both cases, but there was a slight

improvement in other areas. The contrast was stronger in TS-

case, resulting in a large deterioration around the Antarctic

circumpolar current. The overall relative error estimated using

Equation 19 was 1.000 for Sig-case and 1.013 for TS-case, which
FIGURE 8

Change in RMSEs against observation of 700m salinity for Sig-case (left), and TS-case (right). The change is shown as the RMSE of each case minus
that of the firstguess. Unit is psu.
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means that no overall improvement by DA was observed in Sig-

case, and TS-case was slightly worse. Given that DA did not

necessarily improve the agreement of steric height with

observations, we do not discuss about the estimate of the global

average steric height.

The estimation Formula 20 is more informative than just for

estimating steric height. For example, we can also obtain

information regarding which iterated integral is dominant in the

estimation of the global mean steric sea level (GMSSL). By

integrating Equation 20 over the global ocean, we obtain a linear
Frontiers in Marine Science 10
regression formula for GMSSL for each month:

�h = −bSIPS
m − bTIPT

m + 2bS2IPSS
m + 2bT2IPTT

m

+bST IPST
m + IPTS

m

� �
− bSPIPPS

m − bTPIPPT
m + C,

(21)

where I • =omI •Am=A, with om the summation over global

ocean domain, Am the area of each mesh, and A =omAm. Using

this equation, we can compute the Standardized Partial Regression

Coefficients (SPRCs) (McClendon, 2002) for a linear regression

model that predicts the monthly mean GMSSLs. The SPRCs from
FIGURE 9

Comparison of T-S-P diagrams in the Kuroshio recirculation region. The temporal average values at 157 degrees east and 20 degrees north are
shown for observation (green), firstguess (black), Sig-case (red), and TS-case (blue). The units are practical salinity unit (psu) for salinity, degree
Celsius for temperature, and dbar for pressure. RMSEs for temperature are 0:72K (firstguess), 0:55K (Sig-case), and 0:49K (TS-case). RMSEs for
salinity are 0:23psu (firstguess), 0:18psu (Sig-case), and 0:30psu (TS-case). (A) TS diagram. (B) PT diagram. (C) PS diagram.
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the results of our experiment are shown in Table 1. The most

dominant terms are thermosteric terms bT2 and bT . By contrast, the
contribution of the TS-cross term bST was sufficiently small

compared with that of the dominant terms: bT2 , bT , and bS : The
dominant terms, bT2 and bT , clearly indicate that thermosteric

changes are more dominant compared to halosteric changes or the

cross effects. Furthermore, the most dominant term, bT2 ,

demonstrates that regions characterized by high temperature

layers significantly contribute to thermosteric effects. The slightly

worse overall relative error for steric sea level (1.013) to firstguess in
Frontiers in Marine Science 11
TS-case might be attributed to the deterioration of iterated integrals

IPPT and IPST in Figure 4, at least partially.
5 Discussion
1. We developed a method to enhance ocean state estimates

by comparing mean signatures of observed vertical profiles

against those of model profiles within a framework of the
FIGURE 10

Comparison of T-S-P diagrams in a region along the Antarctic Circumpolar current. The temporal average values at 130 degrees east and 60
degrees south are shown for observation (green), firstguess (black), Sig-case (red), and TS-case (blue). The units are practical salinity unit (psu) for
salinity, degree Celsius for temperature, and dbar for pressure. RMSEs for temperature are 1:35K (firstguess), 1:19K (Sig-case), and 0:69K (TS-case).
RMSEs for salinity are 0:19psu (firstguess), 0:16psu (Sig-case), and 0:16psu (TS-case). (A) TS diagram. (B) PT diagram. (C) PS diagram.
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four-dimensional variational DA. This novel approach was

meticulously formulated and implemented, aiming to harness

the comprehensive information embedded within vertical

profile trajectories. We applied this implementation to ocean

DA with a decadal assimilation window.

2. Our DA experiment demonstrated that the signature method

can achieve improvements in temperature and salinity

estimations that are comparable to those attained by
Frontiers in Marine Science 12
conventional methods. This finding ensures the sanity of our

implementation as a DA method.

3. Importantly, the utilization of signatures allowed for a certain

level of enhancement in the representation of profile shapes on

the TS plane, a critical aspect that traditional ocean DA

approaches have largely overlooked. This advancement

highlights the potential to properly capture the water mass

and the dynamics of oceanic processes.
FIGURE 12

Relative observational error of TS-area, (IST − ITS)=2, to firstguess. Overall relative error is 0.967 for Sig-case (left) and 1.027 for TS-case (right). Blue
denotes the regions of greatest improvement.
FIGURE 11

Temporal averages of TS-area (IST − ITS)=2, in observation (top left), firstguess (top right), Sig-case (bottom left), and TS-case (bottom right). Unit is psu · K.
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4. This type of cost function provides a more safety-side

assessment; in other words, it will no longer be the case that

only some aspects improve and other aspects become

significantly worse (Refer to Figure 4).

5. Furthermore, the signature formulation can be used as an

evaluation formula for various properties of the water column.
Frontiers in Marine Science 13
For instance, steric heights could be directly assessed from

iterated integrals derived during the DA experiment,

showcasing the versatility of the signature method in

representing various oceanographic properties.

6. The comprehensive analysis revealed that the use of a

signature-based observation operator not only achieves
FIGURE 14

Example of volume in temperature-salinity (T-S) diagram enclosed by profile ½0, 1�∋u↦Xu = (Su,Tu) ∈ R2. Volume is calculated as iterated integral

(ISTT − ITST )=2 =

Z 1

0
AudTu, where area Au : =

Z
0≤u1≤u2≤u

(dSu1
dTu2

− dTu1
dSu2

)=2 as in Figure 2. Typically, u↦Tu decreases monotonically.
FIGURE 13

Temporal average of TS-volume (ISTT − ITST )=2, in observation (top left), firstguess (top right), Sig-case (bottom left), and TS-case (bottom right).

Unit is psu · K2.
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comparable improvements in temperature and salinity fields

as conventional methods but also enhances previously

neglected aspects, such as profile shapes on the TS plane.

This dual capability marks a significant step forward in the

field of DA involving shape matching.

7. This method provides a versatile framework applicable to DA of

observational profiles across various dimensions, not limited to

ocean profiles. Given a multidimensional profile, it is capable of

considering the shape of paths composed of any combinations

of two or even more variables that have mostly been overlooked

in traditional DA.

8. Furthermore, our setting of observational cost is broadly

applicable in DA practices incorporating profile observations,

extending its utility beyond four-dimensional variational

approaches to include ensemble methods. This flexibility

suggests a wide range of potential applications for the

signature method in improving the accuracy and efficiency of

state estimations and predictions.
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By embracing the essence of oceanic phenomena through

the innovative use of signatures, this study offers a promising

new direction for DA techniques, potentially enhancing our

understanding of oceanography by estimating the ocean states

more accurately.

Finally, the limitations of the experimental settings and

methods must be mentioned.
1. In the present experimental setup, the model was not well-

tuned, and the representation errors were pronounced to

the extent that the advantages of the proposed method

could not be fully demonstrated. To clearly demonstrate the

significance of using signatures, more experiments in an

effective assimilation setting under appropriate tuning are

needed, with comprehensive observations to be assimilated.

2. While the transformation to signatures has been modularized

in Fortran, to facilitate its integration as an extension to

conventional methods, a comprehensive understanding of
TABLE 1 Standard partial regression coefficients (SPRC) in the estimation of global mean steric sea level, displayed in descending order from
dominant terms.

Iterated integral Coefficient Coefficient value SPRC

IPTT 2bT2 2 · 6:08 · 10−4 m−1K−2 0:5169

IPT − bT − 8:50 · 10−3 m−1K−1 − 0:3727

IPS − bS 7:77 · 10−2 m−1psu−1 0:1184

IPPT − bTP − 2:59 · 10−6 m−2K−1 − 0:05472

IPST + IPTS bST 2:72 · 10−4 m−1psu−1K−1 0:02901

IPPS − bSP − 1:15 · 10−6 m−2psu−1 − 1:053 · 10−3

IPSS 2bS2 2 · 2:25 · 10−5 m−1psu−2 2:628 · 10−4
I • denotes the global mean of the iterated integral.
FIGURE 15

Relative observational error of TS-volume (ISTT − ITST )=2 to firstguess. Overall relative error is 1.031 for Sig-case (left) and 1.172 for TS-case (right).
Blue denotes the regions of greatest improvement.
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the signature concept is crucial. For example, the independence of

observation variables should be crucial for the observation operator

to perform better. In our case, the iterated integrals inherently have

multicollinearity. To reduce this dependency, we can make use of

log-signature (e.g., Lyons et al., 2007) or apply whitening by using

the observational covariance between iterated integrals.

3. Related to the covariance, implementing this approach involves

using several ad hoc constants for scaling and weighting the
Frontiers in Marine Science 15
observational data. This reliance on arbitrary parameters

introduces an element of subjectivity and may affect the

reproducibility and universality of the method. A more rigid

formulation upon which the assimilation is set is desirable.

4. Operational forecasting models assimilate not only vertical

profiles but also observations taken on the surface (e.g., Sea

Surface Temperature, Sea Surface Height). To systematically

incorporate surface observations, we need to extend the notion
FIGURE 16

The temporal average in cm of steric height minus global mean, in observation (top left), firstguess (top right), Sig-case (bottom left), and TS-case
(bottom right).
FIGURE 17

Relative observational error of steric height to firstguess. The overall relative error is 1.000 for Sig-case (left) and 1.013 for TS-case (right). Blue
denotes the regions of greatest improvement.
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of path (1-parameter) signature to surface (2-parameter)

signature. The mathematical setting for how a 2-parameter

signature can be consistently defined is still an active research

topic (Diehl and Schmitz, 2023; Diehl et al., 2024, and references

therein). Therefore, for now, traditional treatments with point-

by-point matching on the surface remain a practical solution to

be used in data assimilation.
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