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Bulk and amino acid isotope
evidence of supplementary food
sources besides euphotic
production for a deep-sea
coral community in the
South China Sea
Zhongyuan Luo1, Lingdi Chen1 and Guodong Jia1,2*

1State Key Laboratory of Marine Geology, Tongji University, Shanghai, China, 2Southern Marine
Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Deep-sea coral communities, rich in various zoobenthos, have been discovered

in the South China Sea (SCS) in recent years. Yet little is known about the trophic

structure of these communities. In this study, we applied bulk isotope and

compound-specific isotope analysis of amino acids (CSIA-AAs) to explore

feeding strategies and estimate the trophic positions (TPs) and isotopic

baseline for 6 deep-sea gorgonians and 7 other zoobenthos collected from a

deep-sea coral community in the SCS. Bulk carbon and nitrogen isotope values

(d13C and d15N) suggested that the zoobenthos in the community have a variety

of food sources. Amino acids d15N results indicated that the TP is 2.3 ± 0.2 (mean

± 1s) for the deep-sea gorgonians and varies from 2.0 ± 0.3 (sponge) to 3.5 ± 0.5

(starfish) for other zoobenthos. The d15N values of phenylalanine revealed

variable isotopic baselines ranging from +3.0 ± 0.9‰ to +11.7 ± 0.5‰,

reflecting the incorporation of nitrogen from sources not limited to surface

primary producers. Taken together, our data suggest that zoobenthos in the

deep-sea coral community are mostly omnivorous, and their diet does not come

solely from export production from the sea surface, with symbiotic bacteria as a

potential important source.
KEYWORDS

deep-sea coral community, gorgonian, tropic position, amino acids, carbon and
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1 Introduction

Deep-sea corals are found on hard seafloor substrates in dark

and cold environments. Because of their extraordinary longevity

and ability to record dietary information in accretionary growth

bands that are well preserved through time, they are unique bio-

archives capable of providing centennial- to millennial-scale

records of past ocean conditions at sub-decadal resolution

(Robinson et al., 2014; Sherwood et al., 2014; McMahon et al.,

2015; Glynn et al., 2022). Furthermore, deep-sea coral communities

provide a complex habitat that supports high biodiversity and

serves as a critical gathering point for fish and invertebrates

(Husebo et al., 2002). Despite their seclusion, they face threats

from climate change and anthropogenic perturbations, including

direct (e.g., deep-sea fishing practices) and indirect (e.g., changes in

marine primary productivity, global warming, or ocean

acidification) ones (Roark et al., 2009). The longevity and slow

growth rate of deep-sea organisms make their regeneration

extremely difficult, and damage to these communities has far-

reaching implications for biodiversity, ecosystem structure, and

functional extinctions in the deep sea (Roark et al., 2009). This

excites recent interest in the conservation and protection of deep-

sea coral communities, which requires a better understanding of

deep-sea coral ecology, trophic connectivity, and the coupling

between deep-sea communities and surface ocean primary

production. Among related investigations, carbon and nitrogen

isotope analysis are important research methods.

Analysis of carbon and nitrogen stable isotope values (d13C and

d15N) in organisms has emerged as one of the most powerful tools for

investigating consumer food source and trophic position (TP) in the

food web over the last few decades (e.g., McClelland and Montoya,

2002; Chikaraishi et al., 2009; Larsen et al., 2013; Arthur et al., 2014;

Sherwood et al., 2014; Shen et al., 2021). The bulk stable isotopic value

of an organism’s tissue is generally related to its food source (Mincks

et al., 2008). During feeding, the smaller fractionation of carbon

isotopes (~1‰) makes d13Cbulk useful for distinguishing food sources

with distinctly different d13Cbulk values, whereas the larger

fractionation of nitrogen isotopes (3‰–5‰) makes d15Nbulk

suitable for delineating trophic positions (Hobson and Welch,

1992; Michener and Schell, 1994). The later developed technique of

compound-specific amino acids (AAs) analyses is a complementary

approach to bulk tissue isotope analysis and offers insights into

trophic dynamics that are challenging to ascertain from bulk

analysis alone. The principle of this method is the variation in

isotopic fractionation among various AAs throughout metabolic

processing (McClelland and Montoya, 2002). The application of

d15NAA is based on different degrees of nitrogen isotope

fractionation that occur during trophic transfer between ‘‘source”

and ‘‘trophic” AAs, with little or low 15N enrichment in the source

AAs and high 15N enrichment in the trophic AAs (Popp et al., 2007).

As a result, the information about source nitrogen d15N baseline and

trophic position changes can be obtained from paired analyses of

d15N values for source (d15NSAA) and trophic AAs (d15NTAA)

(Chikaraishi et al., 2009; McMahon and McCarthy, 2016;

Ohkouchi et al., 2017). The d13CAA has been found to have the
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potential to fingerprint food sources (Larsen et al., 2009, 2013; Arthur

et al., 2014; Glynn et al., 2019), but is less applied than the d15NAA,

perhaps due to, e.g., the classification diversity of essential amino

acids in different organisms (Wang, 1999; Larsen et al., 2009) and the

occurrence of kinetic carbon isotope effects during derivatization

before d13CAA values are measured (Corr et al., 2007a).

Globally, bulk and AAs isotope analyses have been increasingly

applied in deep-sea coral studies. Most of these investigations and

pure culture experiments point to sinking particulate organic

matter (POM) as the dominant food for deep-sea corals and their

low tropical level (Duineveld et al., 2004; Sherwood et al., 2005;

Roark et al., 2009; Van Oevelen et al., 2018; Murray et al., 2019;

Shen et al., 2021). This conclusion has been the theoretical basis for

using deep-sea corals to reconstruct past nutrient and production

dynamics in the surface ocean (Sherwood et al., 2011, 2014;

Williams et al., 2017; Glynn et al., 2019). There are, however, a

few studies suggesting the deep-sea coral system is also connected to

submarine methane seeps (Mortensen et al., 2001; Hovland and

Risk, 2003; Judd and Hovland, 2007) and symbiotic microbes that

carry out complex element cycling (Grover et al., 2014; Kellogg

et al., 2016; Lawler et al., 2016; Röthig et al., 2017a; Röthig et

al., 2017b).

In recent years, the manned submersible has been increasingly

exploited in deep-sea investigations in the South China Sea (SCS)

and is uncovering the dark ocean ecosystem. One of the fascinating

findings from these investigations is the existence of “coral forest” in

the depths of 1200–1400 m, which is characterized by tall, whip-

shaped bamboo corals and an understory shrub of “sea fan” corals

and supra-benthos faunas (Li and Wang, 2019). Till now, little is

known about the feeding strategies and trophic connections of the

deep-sea communities. In the deep SCS, previous investigations

showed that the deep microbial carbon demand substantially

exceeded the available particulate organic carbon exported from

the euphotic zone (Shen et al., 2020). We therefore postulate that

the zoobenthos of the deep-sea coral community in the SCS may

also be starved if they rely solely on the export particulate matter

from the euphotic layer and hence require supplementation from

other food sources, perhaps symbiotic microbes. In this study, we

address this issue by analyzing the d13Cbulk, d15Nbulk and d15NAA of

the collected animals in a deep-sea coral community.
2 Materials and methods

2.1 Samples collection and treatment

In this study, various fauna in a deep-sea coral community were

collected by the “Shenhaiyongshi” manned submersible during an

SCS voyage in August 2019, at 1200–1400 m water depth (16.57°N,

110.72°E, Figure 1). They consisted of 6 deep-sea gorgonians (genus

of Alcyonacea) and 7 zoobenthos species, including Holothuroidea

(sea cucumber), Ophiuroidea (brittle star), Asteroidea (starfish),

Hexactinellida (sponge), Siphonostomatoida (sea louse), Actiniaria

(sea anemone), and Eumalacostraca (deep-sea shrimp). After

boarding, the soft tissues of gorgonians and other zoobenthos
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were immediately separated from their skeletons and stored at –20°

C. Seawaters at 30 m, 300 m, 600 m, and 1500 m depths above the

benthic community were lifted along with a CTD instrument for

suspended POM collection, which were filtered from ~100-liter

waters on pre-combusted (450°C) glass fiber filters (GF/F, 0.7 mm
pore size, 142 mm diameter). All suspended POM samples were

stored at –20°C and brought back to the laboratory for

further processing.

In the laboratory, POM samples were lyophilized at –30°C, and

the soft tissues of gorgonians and other zoobenthos were thawed,

then rinsed three times with Milli-Q water, and finally dried at 40°C

for 20 h. After drying, these soft tissues were finely powdered in an

agate mortar.
2.2 Stable isotope analysis

Before bulk isotope analysis, the powdered zoobenthos’ soft

tissues were treated with 1 N HCl to remove any inorganic carbon.

Bulk d13C and d15N values of soft tissues were measured on an

isotope ratio mass spectrometer (Finnigan DELTAplus XP)

interfaced with an elemental analyzer (Carlo Erba Instruments

Flash 1112). The d13C and d15N values were reported using the

standard notation relative to the Vienna Pee Dee Belemnite (VPDB)

standard and air N2, respectively. Each zoobenthos sample was

analyzed in duplicate, and three external isotope standards

(Acetanilide, +1.18 ± 0.02‰ for d15N, –29.53 ± 0.01‰ for d13C)
were introduced between every eight samples. The average standard

deviations (SD) of external isotope standards were ±0.02‰ for d13C
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and ±0.41‰ for d15N. In order to allow sufficient sample amounts

for AAs isotope analysis, POM was not subjected to bulk

isotope analysis.

About 50 mg of soft tissue powder from each species were taken

for AAs extraction. Briefly, proteins in the samples were acid

hydrolyzed in the 6 N HCl solution at 110°C for 20 h to release the

AAmonomers. After evaporation to dryness with a rotary evaporator

in a water bath at 70°C, AAs were dissolved in 0.01 N HCl and

purified by passing them through a cation exchange column (Dowex

50WX × 400 ion exchange resin) with 2 N ammonia hydroxide as the

eluent. After being dried once more, AAs were derivatized to N-acetyl

methyl (NACME) esters, according to (Corr et al. 2007a, b). After the

derivatization reaction, the solution was gently blown dry under ice-

bath conditions with a stream of ultra-high purity N2 and then re-

dissolved in dichloromethane for compound-specific AAs

isotope analysis.

Isotope analysis of the individual AAs was performed on the gas

chromatography-isotope ratio mass spectrometer (GC-IRMS,

Thermo Scientific). Compounds were separated on the GC

equipped with a TG-5MS column (60 m × 0.32 mm inner

diameter, 0.25 mm film thickness) for d15N analysis. The external

isotope standards (USGS 65, glycine, 20.68 ± 0.06‰ for d15N) were
inserted in triples between every five samples to monitor the

instrumental performance during the analyses. The d15N standard

deviations of the external standard were ±1.0‰ throughout the

experiments. All samples were analyzed 3 times, and the isotope

values were reported as mean ± SD. The standard deviation values

were different for different AAs, overall ranging from ±0.0‰

to ±2.2‰.
FIGURE 1

Site of the deep-sea coral community in the South China Sea and several deep-sea coral photos taken in the manned submersible. (A) Sea fan-
shaped gorgonians, a suborder of soft corals; (B) Tree-shaped gorgonians; (C) A starfish is climbing on and eating a bamboo coral.
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The suspended POM samples were measured for d15NAAs using

the same procedures as above without duplicate analysis because of

limited sample amounts. Therefore, the standard deviations of

suspended POM isotope data were constrained by the inserted

external standards.
2.3 Calculation of trophic position and
isotope baseline

We note that through the acid hydrolysis procedure, glutamine

(Gln) is converted to glutamic acid (Glu), and asparagine (Asn) is

converted into aspartic acid (Asp). As a result, the final measurements

combine Gln + Glu (referred to as Glx) and Asn + Asp (Asx). When

classified in terms of nitrogen isotopes, Glx, Asx, Leu, Ile, and Val are

trophic AAs (TAAs), while Phe and Tyr are source AAs (SAAs)

(McMahon and McCarthy, 2016; O’Connell, 2017). Gly, Ser, and Thr

are kept as separate groups given the lack of consensus on the degree of

trophic fractionation between diet and consumer (McMahon and

McCarthy, 2016). Theoretically, any SAA and TAA can be used to

determine TP, but Phe and Glx are most commonly utilized (e.g.,

McClelland and Montoya, 2002; Chikaraishi et al., 2009; McMahon

et al., 2018), likely because of the relatively higher precision due to

better chromatographic separation. Indeed, the peaks for the two AAs

in the chromatogram of our instrument showed extremely high

precision and clarity. Therefore, the value of TP was based on the

d15N of the two AAs (TPGlx/Phe) and calculated as follows:

TPGlx=Phe = ½(d15NGlx − d15NPhe − bGlx=Phe)=DGlx=Phe�  +  1 (1)

where d15NGlx and d15NPhe are the measured d15N values of Glx

and Phe, respectively; bGlx/Phe is the isotopic difference between Glx

and Phe in the primary producers at the base of a food web; and

DGlx/Phe is the assumed 15N enrichment in Glx relative to Phe with

each trophic transfer from food source to consumer (Chikaraishi

et al., 2009, 2010). Based on the latest meta-analysis, bGlx/Phe is

3.3‰ in the food chain of non-vascular primary producers
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(Ramirez et al., 2021), while DGlx/Phe has a value of +7.6‰

(Chikaraishi et al., 2009; Nielsen et al., 2015; McMahon and

McCarthy, 2016). Uncertainties of TP using Equation 1 were

calculated by the propagation of errors as described by Ohkouchi

et al. (2017). In the calculation, the reproducibility of Glx and Phe in

this work served as a representation of their analytical errors, and

the uncertainties of bGlx/Phe and DGlx/Phe were set as 1.8‰ and

1.2‰, respectively (Chikaraishi et al., 2009; Ramirez et al., 2021).

The nitrogen isotope baseline (d15Nbaseline) of a community was

reconstructed based on d15NPhe (d15Nbaseline_Phe) as follows:

d15Nbaseline _ Phe = d15NPhe − 0:4 (TP − 1) (2)

In the equation, 0.4‰ is the small trophic discrimination factor

in Phe for each trophic position with a plausible range of ±0.5‰

(1s) (Chikaraishi et al., 2009). In our calculation, the standard

deviation of the d15Nbaseline_Phe was estimated by taking into

account the errors of d15N and TP as stated above.
3 Results

3.1 Bulk isotopic composition

The detailed results of bulk isotopic composition for all

zoobenthos are given in Supplementary Table S1 and shown in

Figure 2A. The d13Cbulk values of the six deep-sea gorgonians

ranged from –20.9 ± 0.0‰ to –18.2 ± 0.6‰, with a mean value

of –19.7 ± 1.0‰. Among coral-associated zoobenthos, sponge had

the most negative d13Cbulk values (–24.2 ± 0.2‰), and starfish had

the most positive values (–16.0 ± 0.3‰), with an overall average

value of –19.1 ± 2.4‰. The d15Nbulk values of the six deep-sea

gorgonians ranged from +11.1 ± 0.1‰ to +13.9 ± 0.0‰, with a

mean value of +12.2 ± 0.9‰. The d15Nbulk values of coral-associated

zoobenthos ranged from +9.7 ± 0.1‰ to +18.0 ± 0.0‰, with the

minimum value for sea anemone, the maximum value for starfish,

and the overall average value being +13.9 ± 2.6‰.
BA

FIGURE 2

Correlations between the bulk carbon (d13Cbulk) and nitrogen (d15Nbulk) stable isotopes. (A) Data of zoobenthos in the SCS (this study) and (B) data
comparison of deep-sea corals from the SCS with those from other regions. The different colors in B represent different studies or various genera
of corals.
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3.2 Amino acids nitrogen isotopes

The d15N values were only available for 10 AAs in our analysis,

as shown in Supplementary Table S2 and Figure 3. Individual AA

d15N values differed significantly among the zoobenthos, with

starfish generally having the highest d15NAAs values (from

−10.3‰ to +34.3‰) and brittle star having the lowest d15NAAs

values (from −3.9‰ to +23.8‰), followed by gorgonians. The

average d15NAAs values of the six gorgonians ranged from −5.8 ±

2.7 ‰ (Thr) to +24.2 ± 1.2 ‰ (Ile). For suspended POM, the

sample with the highest d15NAAs values was at 600 m of the site

CTD04, ranging from +4.4‰ (Asx) to +13.1‰ (Glx), and that with

the lowest values was at 300 m of the CTD04, ranging from −2.6‰

(Thr) to +8.5‰ (Glx). In general, the d15NAAs values in suspended

POM were significantly more negative than those of zoobenthos,

except Thr. The d15N values for some AAs, e.g., Gly, Tyr, and Val,

were not measurable due to their low abundances and limited

suspended POM sample amounts.

Applying Equation 1 to our sample data, the TP values of the six

gorgonians ranged between 2.0 ± 0.3 and 2.5 ± 0.4, and those of the

other zoobenthos ranged from 2.0 ± 0.3 (sponge) to 3.5 ± 0.5

(starfish). In contrast, the TP values of suspended POM ranged

from 0.8 ± 0.3 to 1.7 ± 0.3, with lower values (0.8 ± 0.3 to 1.2 ± 0.3)

occurring in upper water layers (30−300 m) (Figure 4). Overall, the

uncertainties in TPs were smaller (1s = 0.2 to 0.4) than the TP

values for all samples analyzed in this study and hence did not

influence comparisons between species based on TP values.

Applying Equation 2 to our zoobenthic d15NPhe data, the

d15Nbaseline_Phe values ranged from +3.0 ± 0.9‰ (brittle star) to

+11.7 ± 0.5‰ (sponge), and the average d15Nbaseline_Phe value of the

six gorgonians was +6.4 ± 2.0‰, varying between +3.4 ± 0.7‰ and
Frontiers in Marine Science 05
+8.5 ± 1.0‰ (Figure 5). d15Nbaseline_Phe values of suspended POM

were about equal to their d15NPhe values, ranging from +3.5 ± 0.9‰

(CTD04–30m) to +10.4 ± 0.9‰ (CTD04–600m), with an average of

+5.3 ± 3.0‰ (Figure 5).
4 Discussion

4.1 Feeding strategies of zoobenthos
indicated by bulk isotope characteristics

In a deep-sea community, the relationship between d13Cbulk and

d15Nbulk may provide clues for food sources for the community,

with a strong correlation suggestive of a simple food source (Cartes

et al., 2007) and a weak correlation suggestive of a wide array of

sources for production (Polunin et al., 2001; Fanelli et al., 2011). A

number of d15Nbulk and d13Cbulk data have been published for deep-

sea corals in the world’s oceans, facilitating a comparison of the data

in the SCS with other regions. As can be seen in Figure 2B, d15Nbulk

and d13Cbulk values in deep-sea corals exhibited clear geographic

trends, with generally higher values in the Pacific (d15Nbulk: +11.1‰

to +16.4‰; d13Cbulk: –17.9‰ to –20.9‰; McMahon et al., 2018 and

this study), lower values in the north Atlantic (d15Nbulk: +7.0‰ to

+11.7‰; d13Cbulk: –19.2‰ to –22.2‰; Sherwood et al., 2008;

Becker et al., 2009; Prouty et al., 2014; Vinha et al., 2023), and

the lowest isotopic values in the Red Sea (d15Nbulk: +6.5‰ to

+6.9‰; d13Cbulk: –21.2‰ to –21.4‰; Roder et al., 2013). The

data points from the SCS fall between those from the

Northeastern Pacific and the Atlantic (Figure 2B). In the Pacific,

the deep-sea soft corals of Primnoa pacifica and Isidella sp. have

been indicated to rely on multiple foods, including export

production by eukaryotic microalgae, cyanobacteria, and

heterotrophic bacteria (McMahon et al., 2018). This is likely the

reason why the correlations between d13Cbulk and d15Nbulk are

negative and weak for P. pacifica (R2 = 0.051) and Isidella sp. (R2

= 0.247) (Figure 2B). In the SCS, six coral data points show a similar

picture (R2 = 0.316). On the contrary, the deep-sea soft corals in the

northwestern At lant i c exhib i t a s ign ificant pos i t ive

d13Cbulk–d15Nbulk correlation (R2 = 0.820), suggesting a relatively

simple source for them (Sherwood et al., 2008; Figure 2B).

The scattered distribution of the six deep-sea gorgonians

isotope values (Figure 2A) is somewhat surprising, as they have

been considered to favor fresh, rapidly sinking POM (Sherwood

et al., 2005; Van Oevelen et al., 2018; Murray et al., 2019). In this

study, the d13Cbulk values of deep-sea gorgonians ranging from –

20.9‰ to –18.2‰ cannot be fully explained by the d13C value of

previously reported sinking POM (–25‰ to –20.8‰; Liu et al.,

2007; Zhang et al., 2022) in the SCS, considering the small

enrichment of ~0.5–1.0‰ during consumption (Hobson and

Welch, 1992; Michener and Schell, 1994). Moreover, the large

d15N offset between these deep-sea gorgonians (from +11.1 to

+13.9‰) and sinking POM (< +4‰; Yang et al., 2017) also does

not support sinking POM as the sole and direct source of food for

deep-sea corals. As a matter of fact, although often considered

deposit feeders, deep-sea corals have a variety of feeding strategies,

with feeding types ranging from preying on algae-derived POM and
FIGURE 3

Measured d15N of individual amino acids (AAs) in zoobenthos and
suspended particulate organic material (SPOM). The gorgonian data
points represent the average d15N values of the six gorgonians.
Trophic-AA and source-AA refer to the two amino acid categories
based on N isotope behaviors during trophic transfer.
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zooplankton (Duineveld et al., 2004; Sherwood et al., 2005; Roark

et al., 2009; Van Oevelen et al., 2018; Murray et al., 2019; Shen

et al., 2021) to relying on symbiotic bacteria in vivo or in vitro

(Grover et al., 2014; Kellogg et al., 2016; Lawler et al., 2016; Röthig

et al., 2017a; Rincon-Tomas et al., 2019).

In the d13Cbulk–d15Nbulk plot (Figure 2A), sponges are

distinguished by their most negative d13Cbulk (–24.2‰) and

relatively high d15Nbulk (+14.9‰). The d13Cbulk values of sponge

are similar to the reported d13C values of dissolved organic matter

(DOM) (–23.5‰ to –20.5‰; Ding et al., 2020) and sinking POM (–

25‰ to –20.8‰; Liu et al., 2007; Zhang et al., 2022). Suspended

POM have similar concentration weighted mean values of –22.1‰

to –24.0‰ in the top 200 m waters (Liu et al., 2007), but no data are
Frontiers in Marine Science 06
available for deeper waters. According to Yang et al. (2017),

suspended and sinking particles in the SCS contain very different

d15N values, showing lower d15N in sinking POM (+3.2‰ at 3000–

4000 m) but higher d15N in suspended POM (+8.2‰) below 500 m.

The d15N value of DOM in the deep SCS also lacks data and was

hypothesized to be as high as that of suspended POM (Yang et al.,

2017). Therefore, DOM is likely a major food source for sponges,

which is consistent with their feeding strategies. Moreover, they can

transfer DOM to POM as food for corals and associated fauna

through a sponge loop (de Goeij et al., 2013; Rix et al., 2016, 2018;

Bart et al., 2021). Excluding sponge, the d13Cbulk–d15Nbulk data of

other zoobenthos exhibit a weak correlation (R2 = 0.280)

(Figure 2A), suggesting that in addition to possible common food

sources, there are also diverse sources of their own. Nevertheless,

starfish and sea louse exhibited the most positive values in d13Cbulk

and d15Nbulk among these zoobenthos, suggesting the two are at the

top of the trophic hierarchy of this deep-sea community. Indeed,

starfish are carnivorous and can consume coral’s detrital waste or

directly feed on coral tissue (Larkum, 1988; Caballes et al., 2016),

and the sea louse is parasitic (Leonardi et al., 2020) and is usually

found to live on other animals. Other zoobenthos showing

intermediate d13Cbulk values and relatively lower d15Nbulk values

are generally consistent with their feeding strategies. For example,

the deep-sea anemone is mixotrophic chemosynthesis (Goffredi

et al., 2021), the deep-sea shrimp is a plankton predator (Cartes

et al., 2014), the brittle star is omnivorous (Bart et al., 2021), and the

sea cucumber is filter feeding (Billett, 1991). Similarly, Iken et al.

(2001) studied trophic food webs in the deep sea and observed large

overlaps in isotopic values between the different food web members,

which were thought to be a result of competition for and adaptation

to limited food availability in the deep-sea environments.

Fundamentally, the ultimate food sources are autotrophs,

including photosynthetic phytoplankton that are the main source

of organic matter exported from the euphotic layer and various

chemoautotrophs in the water column. In addition to the classic,

well-known Calvin–Benson–Bassham (CBB) cycle, several minor

autotrophic carbon fixation mechanisms have also been identified,

all of which have different carbon isotope fractionation during the

carbon fixation process (Berg et al., 2010; Ward and Shih, 2019).

Although the production by these minor autotrophic carbon

fixation mechanisms in the SCS is unknown, we tentatively assess

their contribution as food sources for gorgonians and other

zoobenthos in this study. A Bayesian stable isotope mixing model

with five sources additional to the CBB machanism, including the

reductive citric acid cycle (rTCA), Wood–Ljungdahl pathway (or

the reductive Acetyl-CoA, rAcCoA), 3-Hydroxypropionate bicycle

(3HP), 3-Hydroxypropionate–4-hydroxybutyrate cycle (3HP/4HB)

and Dicarboxylate–4-hydroxybutyrate cycle (DC/4HB), was run

using the R software (R 4.3.3) package MixSIAR (Ferreira de

Moraes and Henry-Silva, 2018). Carbon isotope fractionations of

these mechanisms against DIC (–0.61‰ to +0.05‰ in the SCS;

Ding et al., 2020) are set as follows except for 3HP/4HB according

to Berg et al. (2010): –25 ± 5‰ for CBB, –7 ± 5‰ for rTCA, –30‰

for rAcCoA, –13.1 ± 0.6‰ for 3HP and –2 ± 2‰ for DC/

4HB. In deep sea environment the ubiquitous Thaumarchaea

likely dominate the 3HP/4HB pathway with carbon isotope
FIGURE 4

The trophic position (TP) of deep-sea corals, coral-associated
zoobenthos and suspended particulate organic matter (SPOM)
calculated by d15N values of glutamate (Glx) and phenylalanine (Phe).
FIGURE 5

The d15Nbaseline_Phe value of suspended particulate organic matter
(triangle), deep-sea gorgonians (rhombus) and associated
zoobenthos (square).
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fractionation ~ –19 ± 1‰ (Pearson et al., 2019). The MixSIAR

model results show that the food sources of deep-sea gorgonians

mainly originate from the CBB (56.8% ± 14.7%), with the 3HP/4HB

(15.8% ± 15.4%), the 3HP (9.0% ± 9.2%), the rAcCoA (8.2% ±

8.4%), the rTCA (5.4% ± 5.5%) and the DC/4HB (4.9% ± 5.0%) as

secondary sources (Figure 6). Other zoobenthos also have similar

food source contributions (Figure 6, detail see in Supplementary

Table S3). Because photoautotrophs, dominated by phytoplankton

in the marine euphoic zone, mainly use the CBB cycle, these results

demonstrate that the deep-sea coral community in this study relies

mainly on the export production of surface photoautotrophs, with

other chemoautotrophs as supplementary.
4.2 d15N baseline of the deep-sea
coral community

Organisms draw their nitrogen from the base of the food web,

the d15N value of which, i.e., d15Nbaseline, is essential to determine if

variation in the d15N of an organism reflects changes in food web

structure, or just a variation in the d15Nbaseline (Post, 2002).

However, d15Nbaseline may vary due to differences in the isotopic

ratio of nitrogen available for uptake at the base of the food web and

through variable expression of fractionation during uptake (Post,

2002; Woodcock et al., 2012). Compound-specific d15N analysis is

preferred for the d15Nbaseline determination because the negligible
15N enrichment in SAAs, like Phe, allows the d15Nbaseline to be

obtained despite the general trophic enrichment by heterotrophic

organisms (McCarthy et al., 2007; McMahon and McCarthy, 2016;

Ohkouchi et al., 2017). If primary producers at the sea surface are

the only basal source of nitrogen, then d15Nbaseline_Phe should

roughly correspond to the mean d15N value of inorganic nitrogen
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in oligotrophic tropical and temperate regions (e.g., Sherwood et al.,

2011, 2014; Xing et al., 2020).

In the SCS, the d15N values of thermocline nitrate and the

surface primary producers are steady at about +5.0‰, and those for

sinking POM keep in a narrow range of +3.2‰ to +3.6‰ below

1000 m in the SCS (Yang et al., 2017, 2018). These data, however,

cannot explain the overall d15Nbaseline_Phe values of the deep-sea

coral community, which range from +3.0 ± 0.9‰ to +11.7 ± 0.5‰,

hence reflecting various N sources in addition to phytoplankton.

For the suspended POM, the large changes in d15Nbaseline_Phe values

with different water depths (Figure 5) indicate that they have

undergone complex processes, including the degradation and

addition of new AAs produced from chemoautotrophs when they

remain in the water column for a long residence time (Liu et al.,

2007; Hong et al., 2021). Microbial degradation may hydrolyze the

labile proteins in the POM, resulting in 15N-enriched residual AAs,

regardless of SAAs and TAAs (Hannides et al., 2013).

Chemoautotrophs may have distinct d15NPhe values caused by the

diversity of Phe metabolic pathways among microbes (Macko et al.,

1987; Maki et al., 2014; Yamaguchi et al., 2017). For the zoobenthos,

the wide d15Nbaseline_Phe value range is consistent with their diverse

feeding strategies discussed above. These additional bases for the

food web, although not clearly known, could be related to microbes

that reside in POM or are symbiotic with zoobenthos. Indeed,

previous studies have suggested that deep-sea gorgonians in a deep-

sea environment with limited food supply may rely on symbiotic

bacteria to have a complete nitrogen cycle that ensures adequate

nitrogen sources (Kellogg et al., 2016; Lawler et al., 2016; Röthig

et al., 2017a). These symbiotic bacteria can parasitize on the surface

mucosa of gorgonians and possibly outside the gorgonians, where

the gorgonians feed by ingesting the bacteria or the metabolites they

produce. We speculate that these symbiotic microbes may be
FIGURE 6

Probability distribution density diagram of contributions from the six pathways of autotrophic carbon fixation: the Calvin–Benson–Bassham cycle
(CBB), the reductive Acetyl-CoA or Wood-Ljungdahl pathway (rAcCoA), the reductive tricarboxylic acid cycle (rTCA), the 3-hydroxypropionate
bicycle (3HP), the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB), and the dicarboxylate/4-hydroxybutyrate cycle (DC/4HB), based on the
MixSIAR model.
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characterized by unique d15NPhe values, though not well

constrained, representing diversity of the d15N baseline at the

species or individual level, despite being collected from a single

study site. Thus, together with the d13Cbulk–d15Nbulk results, we

believe that these symbiotic microbes may indeed be an important

food candidate for the deep-sea coral community.
4.3 Trophic position of deep-
sea zoobenthos

The trophic discrimination factor (TDF), which is also

frequently used to estimate the TPs, varies in a typical range from

3‰ to 4‰ in terms of d15Nbulk between predator and prey in

marine environments (McCutchan et al., 2003; del Rio et al., 2009).

However, due to the large uncertainty in the estimated TDF, there

are some limitations to the application of this method (Ohkouchi

et al., 2017). The differences in d15Nbulk values between deep-sea

gogornias (+12.2 ± 0.9‰) and other zoobenthos in this study are

less than 3‰, except for starfish (+18.0 ± 0.0‰) and sea louse

(+15.7 ± 0.1‰). A comparison of these differences would seem to

point to a similar TP, with the exception of the sea louse and

starfish, which are at higher TPs. However, the potentially various N

sources due to the aforementioned multiple food sources make it

difficult to use d15Nbulk values to estimate TPs for individual

organisms in this study. Assuming that the N provided by sinking

POM (d15N = +3.5‰; Yang et al., 2017) is the only initial N source

in the SCS, the deep-sea gorgonians would be at TP of ~4, sea louse

at ~5, and starfish at ~6. Such higher TPs for animals in an

oligotrophic deep-sea environment are unrealistic, because even

in a common food web, apex predators’ TPs are no more than 5

(Bonhommeau et al., 2013), and in a deep-sea food web, they would

be less than 3 (Kercher and Shugart, 1975).

The above difficulties in estimating TPs with d15Nbulk can be

partly solved by compound-specific d15N of AAs. The TP defined by

the Glx and Phe d15N values has been widely used to understand

food web structure (Xing et al., 2020) because it can constrain both

trophic changes in the d15N value and baseline variation within a

single organism (McCarthy et al., 2007; Popp et al., 2007; Ohkouchi

et al., 2017). Although not strictly comparable to the TP of a single

organism, the apparent TP values of POM may reflect the relative

balance of autotrophic and heterotrophic sources in a detrital pool

(Yamaguchi and McCarthy, 2018). In this study, the resultant lower

TPs (0.9 ± 0.3 to 1.2 ± 0.3) of upper water (30−600 m) suspended

POM indicate their main phytoplankton origin, whereas elevated

TPs (1.3 ± 0.3) of suspended POM at the deep (1500 m) are

consistent with previous results for suspended particles in

mesopelagic waters (McCarthy et al., 2007; Yamaguchi and

McCarthy, 2018) and suggest additional inputs other than

microalgae during downward movement (Figure 4). Among the

zoobenthos, sponge has the highest d15NPhe values (12.1 ± 0.2‰)

and the lowest TP (2.0 ± 0.3), suggesting its food, mainly deep-sea

DOM as discussed above, has a complex source of N, not just from

euphotic phytoplankton. The d15NPhe values show some overlap

between the gorgonians and suspended POM, and the TPs of the

gorgonians range from 2.0 ± 0.3 to 2.5 ± 0.4 (Figure 4), indicating
Frontiers in Marine Science 08
the suspended POM is a likely N source. Sponge-derived POM (Rix

et al., 2016, 2018; Bart et al., 2021) and nitrogen-processing

symbiotic microbes (Kellogg et al., 2016; Lawler et al., 2016;

Röthig et al., 2017a) could be additional sources that may elevate

the TPs of gorgonians. Similar phenomena could also occur for

brittle star, sea anemone, shrimp, and sea cucumber, which have

similar ranges of d15NPhe and TP values between 2.2 ± 0.3 and 2.6 ±

0.4 (Figures 3, 4). The sea louse and starfish, which are the same as

in the bulk isotope analysis, have the highest TPs, 3.3 ± 0.4 and 3.5 ±

0.5, respectively, indicating they are secondary consumers feeding

on primary consumers. Sea lice are parasitic organisms that derive

nutrients from their hosts, indicating a likely association with

primary consumers exhibiting TP values ranging between 2 and

3. Starfish are carnivores, and in the surface ocean, they are often

seen in coral reef areas feeding on corals (Buhl-Mortensen and

Mortensen, 2004). Coral tissue is often found in the stomach

contents of deep-sea starfish (Gale et al., 2013; Birk et al., 2018),

which likely also happens at the sea floor in the deep SCS.
5 Conclusion

In the present study, the d13Cbulk and d15Nbulk and compound-

specific amino acids d15N are applied to trace the trophic structure

of a deep-sea coral community in the SCS. We illustrate the trophic

trends of various zoobenthos species occupying trophic positions

between 2.0 ± 0.3 and 3.5 ± 0.5, as well as a wide range of

isotopically diverse primary producers with d15NPhe-derived

baseline values ranging from +3.0 ± 0.9‰ to +11.7 ± 0.5‰. The

d13Cbulk–d15Nbulk correlation of gorgonians and MixSIAR model

analysis suggest a variety of food sources, probably microbes in the

water column and/or symbiotic with zoobenthos, in addition to

phytoplankton-derived POM. These results suggest that the food

sources of the deep-sea coral community in the oligotrophic SCS are

more diverse than just the primary producers in the surface ocean,

and the deep-sea coral likely is an omnivorous or opportunistic

feeder (Dodds et al., 2009; Mueller et al., 2014). Further work is

needed to refine carbon and nitrogen sources and cycling in the

community, which is critical to understanding and protecting such

a fragile, dark ecosystem.
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