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USNet: underwater image
superpixel segmentation via
multi-scale water-net
Chuhong Wang1,2, Wenli Duan3, Chengche Luan3,
Junyan Liang3, Lengyu Shen3 and Hua Li3*

1School of Information and Communication Engineering, Hainan University, Hainkou, China, 2School
of Electronic Information Engineering, Guangdong Ocean University, Zhanjiang, China, 3School of
Computer Science and Technology, Hainan University, Haikou, China
Underwater images commonly suffer from a variety of quality degradations, such

as color casts, low contrast, blurring details, and limited visibility. Existing superpixel

segmentation algorithms face challenges in achieving superior performance when

directly applied to underwater images with quality degradation. In this paper, to

alleviate the limitations of superpixel segmentation when applied to underwater

scenes, we propose the first underwater superpixel segmentation network

(USNet), specifically designed according to the intrinsic characteristics of

underwater images. Considering the quality degradation, we propose a multi-

scale water-net module (MWM) aimed at enhancing the quality of underwater

images before superpixel segmentation. The degradation-aware attention (DA)

mechanism is then created and incorporated into MWM to solve light scattering

and absorption, which can decrease object visibility and cause blurred edges. By

effectively directing the network to prioritize locations that exhibit a considerable

decrease in quality, this method enhances the visibility of those specific areas.

Additionally, we extract the deep spatial features using the coordinate attention

method. Finally, these features are fused with the shallow spatial information using

the dynamic spatiality embedding module to embed comprehensive spatial

features. Training and testing were conducted on the SUIM dataset, the

underwater change detection dataset, and UIEB dataset. Experimental results

show that our method achieves the best scores in terms of achievable

segmentation accuracy, undersegmentation error, and boundary recall

evaluation metrics compared to other methods. Both quantitative and qualitative

evaluations demonstrate that our method can handle complicated underwater

scenes and outperform existing state-of-the-art segmentation methods.
KEYWORDS

superpixel segmentation, underwater images, image enhancement, spatial information
fusion, neural network
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1 Introduction

Over the past decades, underwater image processing has

garnered considerable attention, since it plays a vital role in all

kinds of underwater practical applications (Li et al., 2019; Peng

et al., 2023; Zhou et al., 2023), including marine biology and

archaeology (Arnaubec et al., 2023; Calantropio and Chiabrando,

2024), marine ecology (Strachan, 1993; Catalan et al., 2023),

underwater internet of things (Qiu et al., 2019), and underwater

acoustic field (Yang, 2023; Zhang et al., 2024). While underwater

image processing is crucial in these fields, it faces significant

challenges due to the inherent quality degradation in underwater

environments. These degradations, including color casts, low

contrast, and blurred details, greatly hinder the performance of

image processing algorithms tailored to natural, terrestrial

conditions. Seeking to effectively alleviate the problem of quality

degradation and develop efficient algorithms for underwater image

segmentation processing is a major challenge. If it can be solved, it

will greatly enhance the potential and practicality of underwater

image applications. Therefore, developing robust adaptive

algorithms that can cope with the adverse effects of color shift,

contrast reduction, and detail loss is critical to unlocking the full

spectrum of underwater image data for computer vision tasks and

practical applications.

In recent years, computer vision technology has advanced

rapidly. In the prediction of 3D visual saliency, the Multi-input

Multi-output Generative Adversarial Network (Song et al., 2023)

proposed leverages 2D image saliency and 3D object categorization

to enhance the accuracy of saliency prediction, offering new insights

into human visual perception in 3D environments. In the video

description, the Reconstruction Network (Zhang et al., 2019b) has

been proposed to enhance the natural language description of video

content by employing an encoder–decoder–reconstructor

architecture that leverages bidirectional flows between visual

information and textual representation, significantly boosting the

performance of video captioning tasks. However, superpixels are

compact groups of pixels that share similar low-level visual

properties such as color, texture, and contrast. They are

commonly used in computer vision and image processing tasks

(Kumar, 2023; Barcelos et al., 2024) as an intermediate

representation of an image, which is more perceptually
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meaningful than individual pixels. Superpixel segmentation is a

computer vision technique that involves grouping pixels with color,

texture, and other low-level properties into regions or clusters that

perceptually belong together while drastically lowering the number

of primitives for downstream tasks, such as saliency (Cong et al.,

2017a, b, 2019), object tracking (Kim et al., 2019), image

enhancement (Fan et al., 2017; Subudhi et al., 2021), image

reconstruction (Fan et al., 2018b; Li et al., 2020), and optical flow

(Sultana et al., 2022).

For superpixel segmentation of underwater images, existing

superpixel segmentation algorithms are challenging to achieve

superior performance due to the quality degradation. To be more

specific, distinguishing between object and background colors poses

a significant challenge for algorithms due to the presence of color

casts and low contrast in underwater scenes. These issues further

complicate the accurate adherence of object boundaries by the

algorithm. To alleviate this issue, we design a multi-scale water-

net module (MWM), which is used to enhance the quality of

underwater images before superpixel segmentation. Compared to

the water-net (Li et al., 2019), we introduce a U-shape architecture

model instead of convolutional neural networks (CNNs) to obtain

both high-resolution coarse-grained features and low-resolution

fine-grained features. These features can facilitate the generation

of more accurate enhanced results. Moreover, one of the main

challenges in underwater environments is the loss of fine details and

boundaries caused by light scattering and absorption in water,

resulting in low visibility and blurry edges of objects. We have

also designed a novel degradation-aware attention (DA)

incorporated into MWM, which effectively guides the network to

prioritize regions with notable quality degradation, thereby

enhancing the visibility of those areas.

As the simple comparison shown in Figure 1, we can see that

our proposed USNet adheres to the object boundaries more

accurately and can better distinguish between object and

background than the state-of-the-art superpixel segmentation

method (Wang et al., 2021).

The main contributions of the paper can be highlighted

as follows:
1. We propose an end-to-end superpixel segmentation network

(i.e., USNet), which is designed based on the characteristics of
A B D EC

FIGURE 1

A simple comparison of the state-of-the-art superpixel segmentation methods. (A) The original image. (B) The SLIC method designed for nature
images. (C) The FCN method designed for nature images. (D) The AINet method designed for nature images. (E) Our USNet method designed for
underwater images.
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underwater images. The framework can reduce the negative

influence of quality degradation and generate uniform and

compact superpixels by considering shallow and deep spatial

features in the meantime. To the best of our current

knowledge, this is the first attempt to devise a deep

superpixel segmentation network for underwater images.

2. We design a multi-scale water-net module (MWM) to

enhance the quality of underwater images before

superpixel segmentation.

3. We design novel degradation-aware attention (DA) to

enforce the network to pay more attention to quality-

degraded regions, and the DA is embedded in MWM.

4. Extensive experiments on different datasets demonstrate that

our proposed USNet achieves state-of-the-art performance

both qualitatively and quantitatively. We also perform

elaborate ablation studies to validate the effectiveness of each

component in our network.
2 Related work

Superpixel segmentation is a pivotal technique in the realm of

computer vision and image processing, aimed at partitioning an

image into a set of compact and nearly homogeneous regions

known as superpixels. These regions are characterized by their

similarity in terms of color, texture, and contrast, which makes

them particularly useful for a variety of applications such as object

recognition, image segmentation, and feature extraction. The

process of superpixel segmentation can be broadly categorized

into two main approaches: traditional and supervised methods,

each with its own set of algorithms and characteristics.

Traditional methods rely on handcrafted features extracted to

partition or measure the similarity between pixels to group them

into clusters. The normalized cut (Ncut) (Shi and Malik, 2000)

algorithm is a graph-based superpixel segmentation method that

creates a pixel graph using color and spatial proximity to determine

edge weights. However, parameter tuning can be time consuming,

and it may not perform well on images with significant variations in

texture or lighting. Simple linear iterative clustering (SLIC)

(Achanta et al., 2012) is a superpixel segmentation method that

employs a regular grid of candidate centers to group pixels based on

their color similarity and spatial distance to the nearest center.

Although SLIC is computationally efficient and generates high-

quality superpixels, it may encounter difficulties in accurately

segmenting complex structures and sharp contrast boundaries.

Bayesian adaptive superpixel segmentation (BASS) (Uziel et al.,

2019) is a method that uses Bayesian inference to estimate the image

structure and adjust the number and shape of superpixels

adaptively. Its objective is to strike a balance between over-

segmentation and under-segmentation.

For a considerable duration, superpixel segmentation has not

advanced toward an end-to-end trainable algorithm due to the non-

differentiability of the nearest neighbor operation required for

computing pixel superpixel associations. Superpixel Sampling

Networks (SSNs) (Jampani et al., 2018) addressed this issue by
tiers in Marine Science 03
calculating soft pixel–superpixel associations instead of hard

associations. Moreover, Superpixel Segmentation with Fully

Convolutional Networks (FCN) (Yang et al., 2020) integrates

feature extraction and superpixel segmentation into a single step,

making it faster and more readily integrable with existing

Convolutional Neural Network (CNN) frameworks for

downstream tasks. Furthermore, AINET (Wang et al., 2021)

proposes the Association Implantation (AI) module, the AI

module directly predicts the relationship between pixels and

superpixels, instead of predicting the pixel–pixel relationship

like FCN.
3 The proposed method

Our proposed USNet introduces several innovative features that

differentiate it from traditional superpixel segmentation methods,

especially in the context of underwater image processing. USNet is

an end-to-end trainable framework designed to address the unique

challenges of underwater imagery. Traditional superpixel

segmentation techniques often fail to consider specific

degradations inherent in underwater environments, such as color

casts, low contrast, and blurred details, which can severely affect the

performance of segmentation algorithms. In contrast, USNet

introduces specialized methods to alleviate these problems, as

shown in Figure 2. It adopts the MWM module and introduces a

DA mechanism to adapt to degraded areas in the image, aiming to

improve the quality of underwater images before the segmentation

process begins. In addition, the DSFE module better captures spatial

details and uses a CA mechanism to extract deep spatial features,

focusing on the maintenance of spatial consistency. These features

are then input into DSEM, which normalizes and fuses shallow and

deep spatial features, using a dynamic fusion mechanism to

adaptively adjust the weight of feature representations. This

comprehensive approach ensures that the network can effectively

identify and exploit spatial information to generate compact and

uniform superpixels, even in complex underwater visual

environments. Considering the uniqueness of image enhancement

and superpixel segmentation tasks, USNet uses different loss

functions for the two tasks and optimizes them separately to

avoid mutual interference between the two tasks.
3.1 Multi-scale water-net module

Multi-scale water-net module is the key component to enhance

the quality of underwater images, which is inspired by water net

(Li et al., 2019), because of its impressive performance and simple

but efficient architecture. In the module, we try to alleviate the

limitations of superpixel segmentation applied to underwater

images, which are the negative influences of various quality

degradation existing in underwater scenes. We will introduce

various negative influences of quality degradation that exist in

underwater images and how we reduce them through multi-scale

water-net module below. The details of the multi-scale water-net

module are shown in Figure 2. Through a U-shaped structure
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network, high-resolution coarse-grained features and low-

resolution fine-grained features of the image are extracted

simultaneously. This design enables the network to understand

the image content more comprehensively and thus recover details

and boundary information more effectively during the image

enhancement process. In MWM, a DA mechanism is also

incorporated, which guides the network to pay more attention to

areas with significant quality degradation in the image. Note that

Feature Transformation Unit is used to refine the inputs; more

details can be found in Li et al. (2019).

Underwater images are often characterized by low contrast,

dark regions, and color casts due to the optical properties of water.

To address these issues, histogram equalization (HE) is employed to

enhance the contrast by redistributing the brightness levels across

the entire dynamic range. This method effectively lightens the dark

areas and makes the details more distinguishable, which is crucial

for tasks such as object detection and scene analysis. By increasing

the contrast, HE ensures that the full range of tones from dark to

bright is represented, which leads to a more visually appealing and

informative image. Underwater lighting conditions can cause the

camera sensor to capture images with a non-linear response,

resulting in a loss of detail in the mid to dark tones. Gamma

correction (GC) solves this problem by applying a non-linear

transformation to the pixel values, which helps restore the

perceived brightness and improves the overall visual quality of

the image, making it easier to distinguish different elements in the

scene. The absorption of red light by water results in a blue or green

tint, which can distort the true colors of the underwater image.

White-balancing (WB) algorithms estimate the color cast and

adjust the color components to neutralize it, aiming to recreate

the colors as they would appear under daylight conditions. By

correcting the color cast, WB enhances the image’s visual fidelity,

making it more suitable for further analysis and interpretation.
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Therefore, we preprocess underwater images through HE, GC, and

WB algorithms to improve contrast and detail visibility, illuminate

dark areas, and correct color casts, respectively.

Then, the generated images will be concatenated with the

original image in the channel dimension as input. Taking into

account the straightforward architecture of the CNN employed in

water net, which restricts their perceptual capabilities to a limited

region, we design a U-shape model to enlarge the receptive field for

generating more accurate enhanced result. The model adopts an

encoder–decoder architecture. The basic block in encoder consists

of “Conv-BN-ReLU”, while the basic blocks in decoder consist of

“Deconv-ReLU” and “Conv-BN-ReLU”. Moreover, we strategically

channeled the extracted features through the DA mechanism,

nestled between the encoder and decoder. This astute

implementation effectively compels the network to allocate

heightened attention toward regions afflicted by quality

degradation. Furthermore, to counteract the peril of gradient

vanishing (He et al., 2016), we judiciously incorporated skip

connections, which seamlessly bridge information across different

network layers. Finally, after the sigmoid activation function layer,

the confidence map will be generated to select the most significant

features of inputs to achieve the enhanced result by fusing with the

output of Feature Transformation Units.
3.2 Degradation-aware attention

In view of several regions with severe quality degradation

reducing the overall performance of subsequent tasks to a large

extent, we devise degradation-aware attention (DA) to enforce the

network to pay more attention to quality-degraded regions. Figure 3

shows the effectiveness of our degradation-aware attention. More

specifically, our proposed degradation-aware attention comprises a
FIGURE 2

The overview architecture of the proposed USNet. It includes the MWM module for preprocessing and enhancing underwater images, the DSFE
module for extracting deep spatial features of images, and the DSEM module to fuse and optimize these features to achieve super-pixel
segmentation based on underwater image characteristics.
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cascade of convolutional block attention module (CBAM) (Woo

et al., 2018) and pixel attention (PA) (Qin et al., 2020) in terms of

the architecture.

As shown in the schematic illustration of the proposed

degradation-aware attention in Figure 4, the deep feature F   ∈
RN�H�W extracted by “Conv-BN-ReLU” block is fed to this

module. Aggregating the most crucial information in the channel

and spatial dimensions using CBAM to guarantee optimal results in

subsequent operations. Then, the essential deep feature F00 ∈
RN�H�W is obtained as follows:

F0 = Mc(F )⊗F (1)

F00 = Ms(F0)⊗F0 (2)

In Equations 1 and 2, ⊗ denotes element-wise multiplication.

Mc ∈ RN�1�1 denotes a channel attention map, while Ms ∈
R1�H�W denotes a spatial attention map; they can be formulated

as follows:

Mc(F)  = s (MLP(AP(F))  +  MLP(MP(F))) (3)

Ms(F)  = s (Conv(Concat(AP(F),MP(F)))) (4)

In Equations 3 and 4, s(·) denotes the Sigmoid activation

function. AP denotes average-pooling, MP denotes max-pooling,
Frontiers in Marine Science 05
while MLP denotes multi-layer perception. Conv and Concat

represent the convolution operation and concatenate operation

on channel dimension, respectively.

Then, we utilize PA to enforce the network to pay more

attention to regions with severe quality degradation, such as

thick-hazed or blurring regions, which can be formulated as

Equations 5 and 6, where d represents the ReLU activation function.

PA = s (Conv(d (Conv(F00)))) (5)

U   =  F00 ⊗ PA (6)
3.3 Deep spatial feature extractor

After enhancing the quality of underwater images, we extract

the deep features of images for subsequent superpixel segmentation.

Considering the importance of spatial information for generating

compact and uniform superpixels, the original RGB image is

converted to the CIELAB color space following Jampani et al.

(2018). Next, we extract shallow spatial features and concatenate

them with the image on the channel dimension, resulting in a new

feature map that is used for subsequent deep feature extraction. The

CA mechanism (Hou et al., 2021) is utilized to extract the deep

spatial features.
FIGURE 4

The schematic illustration of degradation-aware attention. Note that the channel number of input is the same as output.
A B

FIGURE 3

The effectiveness of the degradation-aware attention. (A) The original image. (B) The visualization of deep features after applying degradation-aware attention.
We can see that the proposed degradation-aware attention can highlight the severe quality degradation regions while focusing on the main body of the image.
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However, the shallow spatial features may interfere with the CA

to extract the deep spatial features; CA only extracts deep spatial

features for the image itself rather than its shallow spatial features.

For this reason, the shallow spatial features have been removed

from the input item. After that, a CNN is designed to extract the

deep features of the input image; the basic block “Conv-BN-ReLU”

consists of a convolution layer with 3 × 3 kernel size and batch-

normalization layer and a ReLU activation function layer. Next, the

deep features after two basic blocks are downsampled through the

max-pooling layer.

Specifically, let X =  ½x1, x2,…, xN �  ∈ RC�H�W be the output of

upsamping, where C, H, andW are the number of channels, height,

and width of the image, respectively. We first obtain direction-

aware feature maps zh and zw by aggregating features along vertical

and horizontal directions as Equations 7 and 8, respectively.

zh(h) =
1
W o

0≤i<W
X(h, i), 0 ≤ h < H (7)

zw(w) =
1
H o

0≤j<H
X(j,w), 0 ≤ w < W (8)

Then, the spatial features in vertical and horizontal directions

(X and Y) are encoded by convolution operation; the intermediate

feature map f ∈ RC=r�(H+W) can be achieved as follows:

f = s (Conv1�1(Concat(z
h, zw))) (9)

In Equation 9, s is the Sigmoid activation function layer, and

Conv1×1 is a convolutional layer with 1 × 1 kernel size. r is the

reduction ratio to reduce the complexity of the model.

To ensure that the channel number of feature maps is equal to

input X, we first split f into vertical feature map f h ∈ RC=r�H and

horizontal feature map f w ∈ RC=r�W , then convert the channel

number of fh and fw to input X as follows:

gh = s (Convh(f
h)) (10)

gw = s (Convw(f
w)) (11)

In Equations 10 and 11, Convh and Convw are the convolutional

layer with 1 × 1 kernel size. Finally, the deep spatial features can be

obtained with the guidance of coordinate attention weight, which

can be formulated as Equation 12:

bF (i, j)  = X(i, j) ⊗ gh(i) ⊗ gw(j) (12)

where F̂ represents the deep spatial features; more details about

coordinate attention can be seen in (Hou et al., 2021).
3.4 Dynamic spatiality embedding module

In our previous work (Li et al., 2023), we design the DSEM to

achieve comprehensive spatial features to handle various

complicated underwater scenes and generate compact and regular

superpixels. In this paper, we continue to adopt this method. The

schematic illustration of DSEM is shown in Figure 2.
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More specifically, first, the shallow spatial features are

normalized to prevent an over-consideration of spatial

information, since the value of spatial features for a high-

resolution image may be too large, which will pollute the image

feature representation. Then, X̂ and Ŷ are added to the deep spatial

features and respectively fed to two convolution layers with 1×1

kernel size to fuse the shallow and deep spatial features, and embed

the comprehensive spatial features to the network. After that, the

features with comprehensive spatial information in vertical and

horizontal directions will be concatenated on channel dimension,

then the weighting of spatial features will be adaptively adjusted

through the dynamic fusion (DF) mechanism to obtain a more

effective representation of spatial features. The DF mechanism is

based on the channel attention mechanism, the schematic

illustration of which has been shown in Figure 5.
3.5 Loss functions

Due to the low correlation between the task of underwater

image enhancement and superpixel segmentation, if the loss

functions of two tasks are combined for joint training, the loss

function of underwater image enhancement will interfere with

superpixel segmentation, resulting in erroneous segmentation

results. Thus, the task of underwater image enhancement and

superpixel segmentation are back-propagated separately.

3.5.1 Underwater image enhancement
Following the previous work (Li et al., 2019), a linear

combination of ℓ1 loss L‘1 and the perceptual loss Lper is utilized

to ensure the high quantitative scores and facilitate the model to

produce visually pleasing and realistic results.

The ℓ1 loss is used to measure the global similarity between the

enhanced results Î and corresponding ground truth I. The

calculation formula is as Equation 13, where H and W represent

the height and width of the image, respectively.
FIGURE 5

The schematic illustration of Dynamic Spatiality Embedding Module.
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L‘1 = o
H

x=1
o
W

y=1
Î (x, y) − I(x, y)
�� �� (13)

To alleviate the artifact induced by pixel-wise loss function (e.g.,

ℓ1 loss) (Li et al., 2019), perceptual loss is introduced to facilitate the

enhanced results more visually pleasing and realistic. In addition,

perceptual loss also can constrain the consistency between the

enhanced results and ground truth to prevent over-enhancement

(Ni et al., 2020), which can be formulated as Equation 14:

Lper = o
H

x=1
o
W

y=1
fn(Î )(x, y) − fn(I)(x, y)

�� �� (14)

where fj(·) represents the jth convolutional layer of a VGG-19

network pretrained on ImageNet dataset (Deng et al., 2009). The

final loss of underwater image enhancement Lenhance can be

obtained as Equation 15, where l1 is set to 0.05 following the

setting (Li et al., 2019).

Lenhance = L‘
1
+ l1 Lper (15)
3.5.2 Superpixel segmentation
To supervise the training of the network for superpixel

segmentation, we combine two loss functions to make it

more sufficient.

The semantic loss Lsem helps to adhere to semantic boundaries,

optimize the segmentation process, and improve the accuracy of

downstream tasks that rely on semantic segmentation, as follows:

Lsem = L(R,R∗) (16)

In Equation 16, L(∙,∙) stands for cross-entropy loss, R represents

the one-hot semantic label of ground truth, and R∗ represents the

restructed semantic label.

The compactness loss Lcompact can ensure that the superpixels

are spatially coherent, which is defined as the following ℓ2 norm:

Lcompact = Ixy − Î xy
�� ��

2 (17)

In Equation 17, Ixy denotes the spatial information of original

image, and Î xy denotes the spatial information after reconstructing.

The overall loss of superpixel segmentation can be formulated as

Equation 18, where l2 is set to 0.4 according to extensive

experience.

Lsegment = Lsem + l2 Lcompact (18)
4 Experiments and results

4.1 Experimental setup

4.1.1 Datasets
In our experiment, we use SUIM dataset (Islam et al., 2020),

underwater change detection dataset (Radolko et al., 2016),

UIEB dataset (Li et al., 2019) for training and testing. SUIM is a
Frontiers in Marine Science 07
large-scale and popular underwater image dataset with semantic

annotations, which contains over 1,500 images and includes

eight object categories. Underwater change detection dataset

contains videos of five scenes, including caustics, fish swarm, two

fishes, marine snow, and small aquaculture. Each video contains

1,100 frames and provides semantic annotations of the last 100

frames for evaluation. UIEB is a real-world underwater image

enhancement dataset, which contains 950 real underwater images,

of which 890 images are provided with corresponding ground

truth. This dataset is very popular in the field of underwater

image enhancement.

Considering that if the underwater image enhancement module

is not fully trained, the network may produce unsatisfactory

superpixel segmentation results. First, the Multi-scale water-net

module is pretrained using 890 semantically annotated images from

UIEB for 20K iterations. Next, in terms of supervised learning for

both tasks, 1,040 images from the SUIM training set with size

640×480 were used for training. However, these images lack the

ground truth of underwater image enhancement and cannot

simultaneously provide ground truth for both superpixel

segmentation and underwater image enhancement tasks.

Therefore, we utilize the state-of-the-art underwater image

enhancement method Ucolor (Li et al., 2021) to generate the

enhancement results of the training data and carefully select 1,040

ground truth images with good enhancement effects. Finally, 110

images of size 640 × 480 from the SUIM test set and 100 images of

size 1,920 × 1,080 from the caustic scene are used for testing.

4.1.2 Evaluation metrics
We employed three commonly used evaluation metrics, namely,

achievable segmentation accuracy (ASA), undersegmentation error

(UE), and boundary recall (BR), to assess the performance of our

model in our experiments. ASA measures the similarity between the

ground truth segmentation and the superpixel segmentation. It

measures the percentage of pixels that are correctly assigned to the

corresponding superpixel in the ground truth segmentation. BR

measures the accuracy of the superpixel boundaries by calculating

the fraction of correctly overlapped pixels of superpixel segments

from the ground truth boundaries. UEmeasures the extent to which a

superpixel algorithm fails to segment an image accurately. It

calculates the fraction of pixels that are not assigned to a superpixel

in the ground truth segmentation but are assigned to a superpixel in

the superpixel segmentation. These metrics are commonly used in the

field (Jampani et al., 2018; Yang et al., 2020;Wang et al., 2021; Li et al.,

2023) and serve as reliable indicators of the accuracy and effectiveness

of superpixel segmentation algorithms (detailed definitions in Stutz

et al., 2018).

4.1.3 Implementation details
During the training stage, the original images are randomly

cropped to size 200 × 200 as input and horizontal and vertical

flipping is performed for data augmentation. Since underwater

image enhancement and superpixel segmentation are back-

propagated separately, two optimizers based on Adam with
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default parameters (Kingma and Ba, 2015) (b1 = 0.9 indicating that

the current gradient information is slightly more significant than

the past gradients in updating the parameters, b2 = 0.999 indicating

that the optimizer is quite sensitive to recent changes in the

gradient’s scale) are used to respectively optimize the modules of

two tasks. The learning rate of the optimizer for underwater image

enhancement is set to 1e−3 and decreases by 0.1 every 5K iterations,

while the initial learning rate of the optimizer for superpixel

segmentation is set to 2e−4 and decreases by half every 2k

iterations, then the learning rate is fixed to 1e−5 after 10K

iterations. A batch-mode learning method with a batch size of 8

is applied. In addition, superpixels are enforced to be spatially

connected to follow (Jampani et al., 2018; Yang et al., 2020) for fair

comparison. All experiments are implemented by PyTorch

framework on a PC with NVIDIA RTX 2080 Ti GPU.
4.2 Comparison with state-of-the-
art methods

In our evaluation, we compare our methods against other state-

of-the-art methods, including SSN (Jampani et al., 2018), FCN

(Yang et al., 2020), AINET (Wang et al., 2021), SLIC (Achanta et al.,

2012), SNIC (Achanta and Süsstrunk, 2017), and our methods on

SUIM and caustics scene in underwater change detection dataset,

respectively. For a fair comparison, we adopt the parameter settings

used in the original works and implement all methods using either

the code provided by (Soomro and Wang, 2017) or the code from

the original authors.
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4.2.1 Quantitative comparison
The quantitative comparison results of our proposed method

and other state-of-the-art methods test on SUIM and caustics scene

in underwater change detection dataset are shown in Figures 6, 7,

while other state-of-the-art methods keep their original training

dataset BSDS500. In Figure 6, we can see that our method achieves

the top score on all mentioned metrics of the SUIM and caustics

datasets. Taking 300 superpixels in SUIM dataset for example, our

method’s minimum percentage gain (computed with the highest

score of the compared methods) of UE is 10.6%, while that of BR is

5.7%. Furthermore, in Figure 7, we enhance the input images of

compared methods through MWM to demonstrate the effectiveness

of other components in USNet. As can be seen, our method still

outperforms other algorithms on the SUIM dataset. Taking 300

superpixels in SUIM dataset for example, our method’s minimum

percentage gain (computed with the highest score of the compared

methods) of UE is 7.7%, while that of BR is 4.8%.

Concerning the other state-of-the-art methods, due to the low

quality of the images in the underwater image dataset, it presents a

challenge to achieve satisfactory performance when trained with the

SUIM dataset. Therefore, for comparative experiments, we use

SUIM datasets as training datasets for other state-of-the-art

methods. Similarly, Figures 8, 9 show the quantitative comparison

results, but other state-of-the-art methods were trained using the

underwater dataset (SUIM). We can observe that the segmentation

performance of other state-of-the-art methods using SUIM as the

training set suffers from varying degrees of negative impact, due to

quality degradation. In contrast, our methods still continued to

achieve superior segmentation performance. Taking 500
A B

D E F

C

FIGURE 6

Quantitative comparison of the proposed method and other state-of-the-art methods using BSDS500 as the training set. Panels (A–C) are the
performance on the test set of SUIM dataset. Panels (D–F) are the performance on the caustics scene in underwater change detection dataset.
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FIGURE 8

Quantitative comparison of the proposed method and other state-of-the-art methods using SUIM as the training set. Panels (A–C) are the
performance on the test set of SUIM dataset. Panels (D–F) are the performance on the caustics scene in underwater change detection dataset.
A B

D E F

C

FIGURE 7

Quantitative comparison of the proposed method and other state-of-the-art methods using BSDS500 as the training set, the input images of
compared methods are enhanced by MWM. Panels (A–C) are the performance on the test set of SUIM dataset. Panels (D–F) are the performance on
the caustics scene in underwater change detection dataset.
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superpixels in the caustic scene for example, our method’s

minimum percentage gain (computed with the highest score of

the compared methods) of UE is 10.5%, while that of BR is 10.6%.

The results prove that our method can handle complicated

underwater scenes and outperform existing state-of-the-art

segmentation methods. In addition, this observation highlights

the convenience and efficiency of the MWM approach. As a
Frontiers in Marine Science 10
result, MWM approach has the potential to be broadly applicable

to other fields in the future, such as image segmentation and

object detection.

4.2.2 Qualitative comparison
As the qualitative comparison results shown in Figures 10, 11,

we present in detail the visual effects obtained through our
FIGURE 10

Qualitative comparison of the proposed method and other state-of-the-art methods on SUIM.
A B

D E F

C

FIGURE 9

Quantitative comparison of the proposed method and other state-of-the-art methods using SUIM as the training set; the input images of compared
methods are enhanced by MWM. Panels (A–C) are the performance on the test set of SUIM dataset. Panels (D–F) are the performance on the
caustics scene in underwater change detection dataset.
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approach and other state-of-the-art methods on the SUIM and

caustics datasets, with and without the MWM augmentation for

image segmentation. It is apparent that our method adheres more

accurately and comprehensively to the boundaries when compared

to other methods, which often fail to capture such intricate details.

Regarding the SUIM dataset specifically, we can find that SNIC,

FCN, and AINET are unable to fully segment the letter M, while

SLIC and SSN can segment the important edges of the M but are

unable to fit them together seamlessly. Only our method is capable

of both fully segmenting and fitting the edges of the M clearly and

completely. In addition, concerning the caustics dataset, where part

of the segmentation focus appears blurred and colors are weak, our

algorithm excels at distinguishing the target object from the

background. It can smoothly segment fish and can even

accurately capture the complete boundaries of low-contrast tail

and fins of fish, which other algorithms cannot achieve.

To summarize, as shown in the figures, while augmenting the

input for other methods can enhance their visual segmentation

performance, the proposed USNet still achieves superior visual

performance on the SUIM and caustics datasets. Moreover, we

can observe that utilizing MWM to improve other segmentation

algorithms enhances the segmentation results, indicating the strong
Frontiers in Marine Science 11
generalization performance of MWM and its potential for

application in other domains in the future.
4.3 Ablation experiments

We can observe that the ablation model with MWM can

largely improve the score of UE and BR, since MWM can

enhance the quality of underwater images as shown in Figure 12.

Note that Full Model means our methods USNet including MWM

module, DSFE module with CA mechanism, DSEM module, and

others. CA+DSEM refers to USNet without an MWM module,

MWM+CA means USNet without a DSEM module, MWM refers

to USNet without the DSFE module and DSEM module, the

baseline is SSN.

Furthermore, the ablation model with CA and improved DSEM

also improves the BR score, indicating that comprehensive spatial

information can capture the boundaries of complicated underwater

scenes. However, the improvement in the UE score of this model is

only slight compared to the baseline, since there are various quality

degradations in underwater scenes that introduce more superpixel

segmentation errors concerning the ground truth.
A B

FIGURE 12

Results of ablation studies on SUIM. (A) UE metrics. (B) BR metrics.
FIGURE 11

Qualitative comparison of the proposed method and other state-of-the-art methods on caustics.
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4.4 Application on salient object detection

Salient object detection (SOD) has a wide range of applications

in fields such as object segmentation (Wang et al., 2015), object

detection (Zhang et al., 2019a; Jiao et al., 2021), visual tracking (Li

et al., 2015; Wang et al., 2017), and image compression (Guo and

Zhang, 2009; Fang et al., 2013). Due to the absence of high-level

knowledge, several existing methods still focus on exploiting low-

level cues, such as contrast (Perazzi et al., 2012; Cheng et al., 2013;

Yang et al., 2013; Cheng et al., 2014) and boundary prior (Wei et al.,

2012) to improve the accuracy of s object detection algorithms.

However, these methods suffer from fragility and lack a principled

optimization framework. To address these issues, Zhu et al. (2014)

proposed a novel method for salient object detection by utilizing

superpixels instead of hard segmentation. They observed that

background regions are more connected to image boundaries
Frontiers in Marine Science 12
than salient object regions and treated the problem as a saliency

value optimization problem for all superpixels in an image. The

method used superpixels to construct an undirected weighted

graph, which represented the relationships between different

regions in the image and allowed for the calculation of the

saliency of each region graph. The method precisely captured the

spatial layout of objects and background regions in natural images

while circumventing the challenging issue of algorithm and

parameter selection associated with hard segmentation, resulting

in improved performance.

To demonstrate the superior performance of our method in

downstream tasks, we evaluated its performance against six state-

of-the-art methods, including our proposed method, SSN (Jampani

et al., 2018), FCN (Yang et al., 2020), AINET (Wang et al., 2021),

SNIC (Achanta and Süsstrunk, 2017), and the default SLIC

(Achanta et al., 2012) used as the superpixel segmentation

method (Zhu et al., 2014). In our experiments, we used the SUIM

dataset for evaluation purposes and resized all images to 400 × 400

for the sake of convenience in experimentation. We evaluate our

model’s performance using two metrics: Mean Absolute Error

(MAE) (Perazzi et al., 2012) and Enhanced Alignment Measure

(E-measure) (Fan et al., 2018a). MAE calculates the average

difference between the binary ground truth and the predicted

saliency map, but it only considers pixel-wise errors. On the other

hand, E-measure incorporates structural cues to evaluate the

model’s performance.

Table 1 presents the results of the quantitative evaluation, which

demonstrate that our method outperforms other state-of-the-art

methods in terms of both MAE and E-measure. Furthermore,

Figure 13 provides visual evidence that our saliency map can
TABLE 1 Results on SUIM.

Model MAE ↓ S-Measure↑

SSN 0.1896 0.6223

FCN 0.1910 0.6189

SLIC 0.1949 0.6308

SNIC 0.1966 0.6243

AINet 0.1966 0.6243

USNet 0.1859 0.6311
↑ denotes that higher is better, and ↓ indicates the opposite.
The bold values represent the best results.
FIGURE 13

Visual comparison of SOD results obtained using various superpixel segmentation methods reveals that our method is capable of capturing more
features compared to others.
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capture more details compared to other methods. This validation

confirms that our method performs well in downstream tasks, both

quantitatively and qualitatively.
5 Conclusion

In this paper, we have proposed an end-to-end superpixel

segmentation network for underwater images (USNet).

Considering a variety of quality degradation appears in

underwater scenes, we design a multi-scale water-net module

(MWM) to enhance the quality of underwater images before

superpixel segmentation to alleviate such issues. Since several

regions with severe quality degradation reduce the overall

performance of subsequent tasks, we also design a degradation-

aware attention (DA) to enforce the network to pay more attention

to high-degradation regions. Moreover, we utilize the coordinate

attention mechanism to extract the deep spatial features, which are

fused with the shallow spatial features to embed comprehensive

spatial features through the dynamic spatial embedding module.
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