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Polytechnical University, Shenzhen, Guangdong, China
Unmanned surface vehicles (USVs) offer significant value through their capability

to undertake hazardous and time-consuming missions across water surfaces.

Recently, as the application of USVs has been extended to nearshore waterways,

object tracking is vital to the safe navigation of USVs in offshore scenes. However,

existing tracking systems for USVs are mainly based on cameras or LiDAR

sensors, which suffer from drawbacks such as lack of depth perception or high

deployment costs. In contrast, millimeter-wave (MMW) radar offers advantages in

terms of low cost and robustness in all weather and lighting conditions. In this

work, to construct a robust and low-cost tracking system for USVs in complex

offshore scenes, we propose a novel MMW radar-based object tracking method

(ROTracker). The proposed ROTracker combines the physical properties of MMW

radar with traditional tracking systems. Specifically, we introduce the radar

Doppler velocity and a designed motion discriminator to improve the

robustness of the tracking system toward low-speed targets. Moreover, we

conducted real-world experiments to validate the efficacy of the proposed

ROTracker. Compared to other baseline methods, ROTracker achieves

excellent multiple object tracking accuracy in terms of 91.9% in our collected

dataset. The experimental results demonstrated that the proposed ROTracker

has significant application potential in both accuracy and efficiency for USVs,

addressing the challenges posed by complex nearshore environments.
KEYWORDS

unmanned surface vehicles, millimeter-wave radar, object track, offshore waterway,
marine observation
1 Introduction

In recent years, unmanned surface vehicles (USVs) have been increasingly notable for

their capacity to execute hazardous and time-intensive missions (Kang et al. (2024)). As
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early as the end of 1960s, remote-controlled USVs have found

utility in various naval applications (Skorski et al. (1970)). With the

advent of the twenty-first century, significant advancements in USV

control systems and navigation technologies have expanded their

operational mode (Manley (2008)) where USVs quipped with

partially autonomous or fully autonomous control systems can be

remotely controlled by operators stationed on land or aboard

nearby vessels. As USVs in offshore scenes are more closely

related to human life and have a large potential value in offshore

waterways transportation systems, strong demands from

commercial, scientific, and environmental factors have driven the

expansion of USV applications from wide marine scenes to narrow

offshore scenes. However, complex offshore environments also

bring new challenges for USV autonomous perception system,

especially for object tracking task.

Object tracking is a typical perception task for USVs, which

provides essential target information and enables USVs autonomous

navigation safe. With the advancement of intelligent perception

technology, object tracking for unmanned surface vehicles (USVs)

has garnered significant attention from researchers. Almeida et al.

(2009); Oleynikova et al. (2010) construct object track system

through marine radar for USV in wide marine environment.

However, as marine radars have low resolution and limited

capability in short-range object detection, they are often deemed

unsuitable for deployment in offshore environments. Some

researchers, such as (Larson et al. (2007); Martins et al. (2007); Xu

et al. (2023)), have developed visual tracking systems for USVs,

leveraging the high semantic information provided by cameras. Tall

et al. (2010) propose a visual tracking method for USV in early

exploring stage, using traditional image processing technology and

demonstrating the potentiality of visual tracking system. Wolf et al.

(2010) extend it with a 360-degree visual tracking system. They utilize

multiple cameras to achieve surrounding-view visual tracking system

for USVs. And with the emergence of deep learning, camera has

become a versatile and highly relevant sensor in automatic

applications, leading the trend of ocean exploration research

around computer vision. Kim et al. (2022) utilize improved YOLO

series object detection algorithms to identify maritime targets against

waves, light reflection, and water mist on the water surface. Yang et al.

(2021) propose an enhanced SiamMask network for visual ship

tracking and semi-supervised video object segmentation in the

open sea. In these visual tracking systems, visual detectors first

detect objects from camera image inputs, followed by a multi-

object track method to output track results. However, these visual-

based algorithms can hardly discriminate ships from background

under light deficiency conditions and suffer from tracking

performance degradation in dynamic shaking environment.

Besides, their algorithms do not qualify for tracking multiple

targets simultaneously. Ramos et al. (2019) design an inertial

measurement unit (IMU) aided surface plane fitting algorithm and

a depth fingerprint association cue for nautical object tracking. Due to

the limitation of stereo camera baseline length, this algorithm is range

constrained, which can only perceive obstacles within 20 m. Because

cameras are sensitive to light and weather changes, their perception

performance is relatively unstable.
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To overcome the shortcoming of visual tracking methods, other

researchers (De Robertis et al. (2021); Zulkifli et al. (2023)), have

utilized LiDAR sensors to construct tracking systems for USVs.

LiDAR sensors offer accurate measurements and robustness under

various lighting conditions. LiDAR-based tracking systems provide

valuable spatial information, including the location and velocity of

moving objects, which is beneficial for enabling autonomous

navigation of USVs in complex water surface traffic scenes.

Muhovič et al. (2019) proposed a LiDAR-based simultaneous

multi-object tracking and static mapping system tailored for

USVs. This approach operates effectively without requiring any

training data and exhibits robust performance, particularly in

nearshore scenarios. Halterman and Bruch (2010) developed a

berthing awareness framework, utilizing a 64-line LiDAR to sense

the ego-ship status relative to the dock in real time by registering

point clouds across successive scans. While LiDAR-based tracking

systems (Yao et al. (2023)) offer significant performance benefits for

USVs, the high hardware cost associated with LiDAR poses a barrier

to widespread deployment in USVs. To address this challenge,

single-chip millimeter-wave (MMW) radars have been increasingly

utilized in autonomous road vehicles and intelligent traffic

monitoring as a cost-effective alternative to LiDAR.

MMW radars offer advantages such as low cost, compact size,

and robustness against extreme weather conditions and varying

light conditions, making it an attractive option for tracking systems

(Wenger (1998)). The adoption of radar-based tracking systems

presents great potential for USVs in complex offshore waterways.

Some researchers explore fusing low-cost MMW radar to detect

targets on the water surface. Kiriakidis et al. (2022) explore a radar-

based object detect and track framework for USVs. Cheng et al.

(2021) proposed a radar and camera fusion water surface small

target detection model, which demonstrates the great potential of

radar-camera fusion for USV detection task. However, due to the

low resolution of MMW radar, traditional radar-based detection

methods encounter numerous false targets, particularly in offshore

waterway scenes. With the expanding application scenarios for

certain offshore waterway USVs, it is worth exploring radar-based

detection methods. There are three primary challenges for the

application of radar-based tracking systems in offshore waterways.
(1) Sparse Point Clouds. While LiDAR sensors typically

generate tens of thousands of point clouds per scan,

MMW radar systems produce only hundreds of reflective

points per scan period. This discrepancy arises from the

different electromagnetic wavelengths utilized by each

sensor type. MMW radar, being more susceptible to

specular reflection, yields lower-resolution point clouds.

Consequently, these sparse radar point clouds may fail to

accurately represent track targets and other static features

such as shores, posing a challenge for radar-based

tracking systems.

(2) Noisy Radar Point Clouds. MMW radar often generates

noisy clutter points in its point clouds due to its reflection

characteristics. This noise includes water clutter points and

multi-path noise. Water clutter points are caused by
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inaccurately detecting waves on the water surface, while

multi-path noise results from multiple reflections of radar

beams. Additionally, radar point clouds are influenced by

various factors such as target material, shape, and size

characteristics, further contributing to their instability.

These noisy and unstable radar point clouds decrease the

robustness of radar-based tracking methods.

(3) Low Moving Speed. In offshore waterway environments,

USVs and other targets typically operate at low speeds

compared to road and marine scenes. In these low-speed

tracking scenarios, accurate analysis of point clouds at each

frame is crucial, with the quality of point clouds being of

paramount importance. However, the noisy radar points

mentioned above present significant challenges for radar-

based tracking methods, particularly for static or low-speed

targets. Traditional radar-based tracking methods are

primarily designed for high-speed scenes, making them

less suitable for low-speed environments.
To overcome the challenges of radar-based tracking systems in

offshore waterway scenes, we propose a novel MMW radar-based

object tracking method named ROTracker. Given sparse 4D MMW

radar point clouds, our proposed ROTracker accurately outputs

tracked objects along with their spatial locations and estimated
tiers in Marine Science 03
moving speeds, enabling autonomous navigation of USVs in

complex offshore scenarios. Similar to most tracking systems, our

ROTracker method consists of a detector and a tracker. First, the

radar detector detects objects from sparse and noisy radar point

clouds. Then, in the object tracking stage, alongside the common

Kalman filtering tracker, we introduce Doppler speed information

from MMW radar to address the sparsity of radar points and

enhance the accuracy of moving direction for dynamic targets.

Furthermore, we introduce a novel motion discriminator in our

tracker to improve the robustness of tracking performance.

Quantitative experiments are conducted to validate the tracking

performance of our ROTracker compared to high-cost LiDAR-

based tracking systems. Our ROTracker framework exhibits great

deployment potential for offshore waterway USVs. Due to the low

number of radar point clouds, our ROTracker system boasts fast

running speed and can be efficiently deployed in USV embedded

computing platforms.
2 Radar-based object tracking method

As illustrated in Figure 1, radar-based tracking systems offer a

notable advantage in terms of both cost-effectiveness and

robustness when compared to visual and LiDAR-based tracking
USV Platform Sensor
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FIGURE 1

A novel millimeter wave radar-based object tracking method for unmanned surface vehicle in offshore waterway environments.
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FIGURE 2

The figures present the challenges of sparse MMW radars in offshore waterway scenes: (A) shows camera images. (B) shows sparse MMW radar point
clouds for the detected boat.
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systems. Based on the physical property of MMW radar, we

proposed a novel radar-based object track method named

ROTracker for USVs in complex offshore scenarios. However, as

shown in Figure 2, the sparse and noisy radar point clouds in

offshore waterway scenes present significant challenges for radar-

based tracking systems. Our ROTracker, consisting of a radar

detector and a radar tracker, effectively employ spatial and

Doppler velocity information from 4D MMW radar to overcome

the issues mentioned above. In this section, we will introduce each

important module of our proposed ROTracker in detail.
2.1 Overall architecture

Figure 3 presents the detailed structure of our ROTracker

framework. The ROTracker framework comprises a radar

detector and a radar tracker. As single-frame radar points are

extremely sparse and may lead to false detections from shores, we

construct a static map to integrate multi-frame radar points and

filter out false detection objects on the shore. Once all detected

targets are obtained in the radar detector, the radar tracker

calculates the moving speed and track identification (ID). Since

Kalman filtering trackers are known for their accuracy and

robustness, particularly under noisy sensor inputs, they have been

extensively utilized in camera-based, LiDAR-based, and radar-

based tracking methods. Therefore, we extend their use in our

radar tracker. To address the track errors caused by noisy radar

points, we incorporate radar Doppler velocity information into the

Kalman Filter tracker module. Moreover, we design a motion

discriminator to improve the tracking robustness in low-speed

tracking scenes. This motion discriminator categorizes objects

into five distinct motion levels, thereby aiding in reducing the

impact of MMW radar errors on tracking performance.
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2.2 MMW radar detector

The radar detector contains two processing step: point clouds

clustering and shore points filtering.
1) Point cloud clustering. The point clouds clustering module

detects targets from spatial dimensions. As MMW radar

points own high distance resolution in 2D spatial

dimension, we can cluster radar points to obtain different

objects in 2D spatial dimension. The collected point clouds

primarily originate from obstacles and the surrounding

coastal environment. To focus on relevant objects, we set

the object track range with a region of interest (ROI). The

radar point clouds outside ROI area are filtered out using a

conditional filter. Next, we apply the density-based spatial

clustering of applications with noise (DBSCAN) algorithm

to cluster points within ROI. This method facilitates the

generation of clusters in different scans under the same

hyper-parameter settings. The predefined search distance

and minimum points o f c lus ter serve as the

superparameters of the DBSCAN algorithm.

2) Shore points filtering. The shore is the most common

element for USVs in offshore waterways. After processing

in the point clustering module, there are many clustered

point clouds on the shore. These shore points can lead to

false track results and significantly reduce the efficacy of

tracking algorithm. Hence, we address this issue in the

shore point filtering module by removing these shore

targets. Similar to typical LiDAR-based object tracking

systems, we utilize a static map to filter out shore targets.

At the start of the ROTracker system, the static map is

initialized with a 2D voxel grid matrix in the world

coordinate system. Subsequently, at each frame, radar
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FIGURE 3

The proposed ROTracker architecture consists of a MMW radar detector and a MMW radar tracker.
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point clouds are fed into the static map, and multi-frame

sparse radar point clouds are accumulated to form denser

radar points. To populate the static map, a coordinate

transformation process is applied to the radar point

clouds: Then we use an image contour extraction

algorithm to extract the shore edge from a static map.

According to the shore edge and USV location, we can filter

false targets on the shore. After filtering shore pints, we can

effectively decrease the false targets in radar detectors.
2.3 MMW radar tracker

The radar tracker module of our ROTracker framework is

developed from the traditional Kalman filter method. However,

we have incorporated several key modules to enhance tracking

accuracy, particularly in challenging multi-radar tracking scenes

and low-speed tracking scenarios. In radar measurement, we

dynamically combine spatial measurements and velocity

measurements obtained from MMW radar. While traditional

radar-based tracking methods may struggle with significant

spatial location variations in MMW radar points, potentially

leading to tracking direction errors, our approach leverages

Doppler velocity information from MMW radar to provide

accurate estimates of the target’s moving direction. Furthermore,

we have developed a motion discriminator module to enhance the

robustness of tracking static or low-speed targets. The radar tracker

module consists of three main processing steps: 1) State Estimate

and Association, 2) Update with fusion measurement,

3) Motion Discriminator.

1) State estimate and association.

Similar to other vehicles, the motions of boats can be considered

a linear system, so we adopt the Kalman filter algorithm in the state

estimate stage. For each track object, we construct the state vector

including eight elements:

x  =  ½px, py, vx, vy, ax, ay, l, w�, (1)

where px and py are the center position of target, vx and vy are

the speed along with x and y axis directions, ax and ay are the

acceleration along with x and y axis directions, l and w are the

length and width of the target box.

Compared to the state vector of LiDAR-based track system, we

lack height estimation. The reason is that MMW radar has poor

resolution in z-axis direction and we need to ignore it. Then we can

predict the state for each target. As illustrated in Equation 2, we

follow the KF algorithm to linearly predict the states of targets.

xk = Axk−1 + wk−1,w ∼ N(0,Q), (2)

where k and k − 1 denote current frame and last frame, x

denotes the state vector, A denotes the state transition matrix, w
denotes Gaussian white noises with zero mean and covariance Q.

Once the target states are confirmed, we employ a data

association method to match track results using the intersection-

over-union (IOU) metric. We compute the assignment cost matrix
tiers in Marine Science 05
based on the IOU metric between each detected target and all

predicted targets. Subsequently, the association results are

calculated using the Hungarian algorithm to achieve the best

association between targets and trajectories.

2) Update with fusion measurement.

To decrease radar measurement errors, we combine radar

spatial measurement and radar velocity measurement. The radar

spatial measurement can be obtained through KF state transfer

equation. When there are obvious errors in spatial location

measurements, we can supplement the velocity measurements of

MMW radar to enhance the radar measurement results. As Doppler

velocity is not the actual moving speed of targets, it is a relative

radius velocity. Here we introduce the theoretical background of

MMW radar Doppler velocity. As presented in Figure 4, for all

radar points (i =1…N), the Doppler radar gets the measured radial

velocity vr depending on its azimuth angle q. The identical velocity
vector vx, vy in radar coordinates can be formulated as follows:

vr,1

vr,2

⋮

vr,N

2
666664

3
777775 =

cos (q1) sin (q1)

cos (q2) sin (q2)

⋮ ⋮

cos (qN ) sin (qN )

2
666664

3
777775

vx

vy

" #
, (3)

where vr,1 is the radial velocity of i-th radar point, q1 is the

azimuth angle of i-th radar point.

Then we estimate the velocity of targets using Doppler velocity.

As illustrated in Figure 5, the velocity profile is a linear system that

is over-determined for more than two targets and Equation 1 and is

transformed in a general cosine with orientation a and absolute

velocity v. Using vx = vcos(a) and vy = vsin(a) in Equation 3, the

radial velocity vr can be expressed as:

vr,i = v cos(qi − a Þ: (4)
∆

FIGURE 4

The figure presents the Doppler velocity measurement values (red)
and actual velocity (blue).
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As vr and qi can be directly obtained from radar point clouds,

to solve Equation 4, we simultaneously calculate all radar points

(i =1, 2,…, N) with the same orientation a and absolute velocity v.

Figure 5 shows the velocity profile of all radar points in a linear

moving vehicle. As can be seen, the phase shift of the velocity

profile is identical to the negative vehicle orientation and the

amplitude is identical to the absolute velocity. Therefore, in our

designed Doppler velocity encoder, we first adopt a density cluster

algorithm DBSCAN to cluster radar points. Then a Random

Sample and Consensus (RANSAC) algorithm is utilized to

calculate the velocity profile of each clustered radar point

clouds. RANSAC is normally used to eliminate outliers in group

data. Here we used RANSAC to filter abnormal Doppler velocity

in radar point clouds. The estimated azimuth angle can be

calculated as follows:

a = RANSAC  o
n0

i=1

vr,i
cos   (qi − a)

−
1
n0
o
n0

i=1

vr,i
cos   (qi − a)

 !2 !
, (5)

where n0 denotes the maximum iterations for RANSAC.

After obtaining estimated azimuth angle through Equation 5,

then we can solve a velocity vector (vx, vy) with an estimated

azimuth angle, which can be formulated in Equation 6:

vx =o
N

i=1

cos   (a) · vr,i
cos   (qi − a)

, vy =o
N

i=1

sin   (a) · vr,i
cos   (qi − a)

, (6)

where vx, vy denote Dopper estimated velocity vectors in the X-

axis and Y-axis of radar coordinate.

The final fusion measurement consists of radar spatial

measurement and radar velocity measurement. The measurement

update result zk for each target are presented in Equation 7.
Frontiers in Marine Science 06
zk =  (H + g ½vx , vy�=d)xk + vk, v ∼ N(0,R), (7)

where xk denotes the state vector, H denotes the radar

measurement matrix, d denotes the Euclidean distance of targets,

g denotes the hyper-parameter, v denotes Gaussian white noises

with zero mean and covariance R.

3) Motion discriminator.

Compared to other radar-based tracking methods, the motion

discriminator is one core contribution of our radar tracker. Since

MMW radar points occur in obvious spatial variation under

different RCS conditions, it is hard to distinguish low-speed or

static targets through KF estimation. And we usually misidentify

static targets as dynamic targets. Therefore we design a motion

discriminator to judge the status of target. We define five motion

levels in the motion discriminator: absolutely static, static, wait,

dynamic, and absolutely dynamic. All track targets will be initiated

with wait status at the start frame, then we check target statuses with

a dynamic-static distinguish method at the next frames. The

dynamic-static distinguish method adopts intersection and union

ratio (IoU) calculation for the convex hull of the radar point group,

which can be expressed as:

D =
D + 1,  loU (Ct−1,Ct) > c

D − 1,  loU (Ct−1,Ct) ≤ c

(
(8)

where D denotes the motion status of target, as presented in

Figure 6, Ct−1 and Ct are the convex hull of radar point clouds at t

frame and t − 1 frame, c is IoU threshold.

After we obtain multi-frame dynamic-static distinguish results

through Equation 8, we update the status of track targets

according to distinguish results. Table 1 presents the dynamic-

static distinguish results according to motion status. Each time the

motion statuses of targets are only permitted to move adjacent

states. Finally, the motion statuses of targets are combined with

KF estimated results. For those targets with wait status, their speed

will be Nan. For those targets with static or absolutely static status,

their speed will be zero. The motion discriminator effectively

improve the robustness of radar track system in low-speed

scenes against the noisy radar point clouds.
3 Experiments

To validate the performance of our proposed ROTracker

framework, we compared our method to other baseline methods
, ,

, , ,

FIGURE 5

The figure presents the velocity profile of multi radar points in a
linear moving vehicle, Considering one radial cell the velocity
describes a cosine curve (green curve).
TABLE 1 Dynamic-static distinguish results according to motion status.

Motion status Condition
Dynamic-static

distinguish results

M1 D <= −6 absolutely static

M2 −6 < D <= −3 static

M3 −3 < D < 3 wait

M4 3 <= D < 6 dynamic

M5 D >= 6 absolutely dynamic
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in the real-world USV platform. First, we introduce the experiment

platform and evaluation metrics. Then we compare our method to

other baseline methods with quantitative evaluation. Finally, we

evaluate the efficiency of our ROTracker framework in

each module.
3.1 Experiment platform

Figure 7 illustrates our custom unmanned surface vehicle (USV),

which is equipped with a diverse array of sensors to enable

comprehensive environmental perception. These sensors include a

LiDAR, a camera, a 4D millimeter-wave (MMW) radar, an inertial

sensing unit (IMU) module, and a global positioning system (GPS).

The LiDAR used in our research is a multi-line mechanical LiDAR

from LSLIDAR Instrument, featuring 16 laser scan lines covering a

360° horizontal field of view and a 32° vertical field of view. With a

range resolution set at 2 cm, this LiDAR system offers precise

detection and localization of objects in the horizontal plane,

complemented by a horizontal angular resolution of 0.18°. The
Frontiers in Marine Science 07
MMW radar utilized is a Texas Instrument 77 GHz frequency-

modulated continuous-wave (FMCW) radar model AWR1843,

configured with a maximum range of 100 m and a range resolution

of 0.16 m. Operating at a frame rate of 10 Hz, the MMW radar

provides valuable information about the surrounding environment,

particularly in challenging weather and lighting conditions. In this

experiment, we utilized three types of unmanned surface vehicles

(USVs) equipped with GPS location modules, as depicted in Figure 8.

These GPS modules employ real-time kinematic (RTK) technology,

providing high location accuracy within ±0.1 meters. The GPS

location modules enable us to obtain ground truth data for

tracking boats. By directly outputting the location of USV targets,

these modules facilitate accurate calculation of the moving direction

and speed of the targets. This ground truth data serves as a reference

for evaluating the performance of our tracking framework and other

baseline methods.

Both sensors operated at a frame rate of 10 Hz. The extrinsic

parameters of the MMW radar were obtained through calibration

with corner reflectors. Subsequently, we performed coordinate

system alignment to ensure consistency between the radar and
A B

FIGURE 7

Our experiment platform. (A) Shows our data collection platform. (B) Shows detailed sensor configuration.
IOU( , ) = 
    

 Radar point clouds

 (t-1, t)

Convex 

Hull

A B

FIGURE 6

Convex hull calculation for radar point clouds. (A) shows radar point clouds in frame t-1 and t. (B) shows detailed IoU calculation of convex hull.
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LiDAR data. Our collected dataset comprises 4 sequences with three

kinds of USVs. In total, the dataset contains 12,000 frames of data.

For further details on each sequence, refer to Table 2, which outlines

the scenes covered in each sequence.
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3.2 Implementation details

The experimental code for the ROTracker framework is

implemented in Python. In the radar detector module, we set the
Smurf Titan Xi

Size (m) (2.9, 1.8, 0.6) (3.5, 2.6, 1.0) (4.9, 2.95, 3.2) 
Location Sensor Single GPS, RTK Double GPS, RTK Double GPS, RTK

USV platform

Small surface cleaning Funciton Middle surface cleaning Surface crusing

FIGURE 8

Our collected 3D boat detection dataset contains three kinds of USVs: Smurf, Titan, Xi.
Shore Shore Boundary Current MMW 
Radar Points Track Box M1 status M2 status M3 status M4 status M5 status

Camera 
Image

Radar
Track
Results

Frame 253 Frame 865 Frame 1697

FIGURE 9

Visualization result of radar-based object tracking using our method.
A B C

FIGURE 10

Per-class tracking performance comparison using our ROTracker and other baseline methods: (A) shows the “Smurf” class, (B) shows the “Titan”
class, (C) shows the “Xi” class.
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search radius for spatial clustering at 1.2 m and the velocity

threshold for velocity clustering at 0.8 m/s. Additionally, the

minimum number of points required for inclusion in a cluster is

set to 20 for both spatial and velocity clustering. For the radar static

map, we employ a resolution of 0.25 m and a size of 400 × 400 pixels

for each sub-map. In the multi-path filtering module, the search

angle resolution is set to 10 degrees to identify and filter out clutter

caused by multi-path reflections. In the radar tracker module, the

fusion hyper-parameter g is set to 0.8 to balance the influence of

radar measurements and prediction estimates during the state

update process. These parameter settings have been carefully

chosen to optimize the performance of the ROTracker framework

under various operating conditions and environments encountered

in offshore waterways.
3.3 Evaluation metrics

For evaluating the performance of our tracking system, we utilize

the widely recognized CLEAR MOT metrics, which offer a

comprehensive assessment of the algorithm’s effectiveness. The

primary metrics employed include: multi-object tracking accuracy

(MOTA) and multi-object tracking precision (MOTP). In addition to

these primarymetrics, we consider other important indicators such as:

true positives (TP) and false positives (FP). Moreover, since the speed

and direction of moving targets are crucial in tracking applications, we

include the following metrics to assess velocity and direction accuracy:
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mean velocity error (MVE) and mean angle error (MAE). By

considering these metrics collectively, we can comprehensively

evaluate the performance of our tracking system and gain insights

into its strengths and limitations under various real-world scenarios.
3.4 Quantitative evaluation

To validate the performance of our proposed ROTracker

framework, we conducted a real-world experiment comparing our

method with other baseline methods.

textbfCompared with other baselines. There are two baseline

methods for the quantitative evaluation. The first baseline method is

a traditional MMW radar-based tracking method SRT (Tan et al.,

2023) which adopts a Kalman tracker. As the LiDAR-based tracking

method LSTM (Yao et al., 2023) shows great performance, we also

choose it as the baseline method. Table 3 presents the comparison

result using our method and baseline methods on the evaluation

dataset mentioned above. Due to the high-precision LiDAR point

clouds, the LiDAR-based tracking baseline methods achieve the best

performance in each evaluation metric. Only using space and noisy

radar point clouds, our ROTracker framework also performs greatly

in complex offshore waterway scenes. Compared to other MMW

radar-based tracking methods only using simple KF state

estimation, our ROTracker also presents an obvious improvement

in tracking performance. Figure 9 visualizes the tracking results

using our ROTracker framework. Figure 10 presents per-class

tracking performance comparison using our ROTracker and other

baseline methods. While LiDAR-based tracking methods

demonstrate superior tracking accuracy, our ROTracker, solely

relying on low-cost radar technology, strikes a crucial balance

between efficiency and accuracy, thus holding immense potential

for widespread deployment across USVs. Furthermore, leveraging

the robustness of MMW radar, our ROTracker exhibits enhanced

robustness compared to LiDAR-based tracking methods, especially

in harsh weather conditions. Moreover, with the continuous

advancement of radar sensors, next-generation radar systems
TABLE 2 Dataset description, S, T, X in class column denote “Smurf”,
“Titan” and “Xi”, respectively.

Scene Frame Class Description

Seq-01 2,000 S,T,X Static vessels

Seq-02 2,000 S,T,X Low-speed vessels & static vessels

Seq-03 4,000 T,X Mid-speed vessels & Low-speed vessels

Seq-04 4,000 S,X High-speed vessels
TABLE 3 Object track comparison on our collected datasets using the proposed method and other baseline methods.

Method Sensor Type Class
MOTA MOTP MVE MAE TP FP

[%] ↑ [cm] ↓ [cm/s] ↓ [deg] ↓ [%] ↑ [%] ↓

SRT MMW Radar Smurf 83.4 76.6 45.7 27.4 88.3 8.9

Titan 81.5 89.3 59.1 28.3 90.1 10.3

Xi 73.6 103.5 77.5 32.1 92.5 15.7

LSMT LiDAR Smurf 90.2 47.1 16.5 12.6 94.7 4.3

Titan 94.1 55.3 18.9 10.4 95.3 1.5

Xi 96.3 71.9 20.1 9.97 98.9 0.6

Ours MMW Radar Smurf 88.7 55.1 19.6 14.3 93.8 3.7

Titan 91.9 59.4 23.9 15.9 94.1 2.3

Xi 95.3 78.0 26.5 17.3 95.2 1.1
↑ denotes positive correlation and ↓ denotes negative correlation.
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offer improved resolution, further bolstering the capabilities of

radar-based tracking methods.

Ablation evaluation. We conducted an ablation experiment to

analyze the effects of key modules in the ROTracker framework. Our

framework integrates the traditional Kalman Filter (KF) tracking

method with additional modules for velocity measurement and

motion discrimination. Table 4 presents the results of this ablation

experiment, assessing the effectiveness of these modules. Due to the

challenges posed by low-speed scenes for radar-based tracker, we

evaluated the performance using the mean velocity error (MVE) and

mean angle error (MAE) metrics, with a focus on low-speed

conditions (MVEL and MAEL). Interestingly, the results indicate

that combining spatial and velocity measurements leads to

decreased direction estimation accuracy (MAE), particularly

noticeable in low-speed scenes (MAEL). Conversely, the Motion

Discriminator module enhances the robustness of the radar tracker

against noisy radar point clouds, thereby improving velocity

estimation accuracy in low-speed scenes.

Different distances. Distance is an important influence factor

for object tracking accuracy. We further analyze the performance of

our model under different distance conditions. The experiment

results are shown in Table 5. Our ROTracker model has excellent

tracking performance at near distances. The introduction of

Doppler velocity information provides moving direction and

helps the detector to overcome the sparse radar spatial features.
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Efficiency analysis. Efficiency is crucial for real-world

deployment, particularly in offshore waterways where USVs must

process large volumes of point clouds in real-time. To evaluate the

efficiency of our proposed radar-based detection and tracking

framework, we conducted further analysis using a USV-embedded

computing platform, the NVIDIA Xavier NX shown in Figure 11.

The NVIDIA Xavier NX features a 6-core central processing unit

with a maximum frequency of 1.40 GHz. We selected test data from

our single radar USV platform and measured the average running

time per period as the evaluation metric. Table 6 presents the

efficiency comparison results between our ROTracker framework

and LiDAR-based baseline methods using single LiDAR data. The

results indicate that our ROTracker framework demonstrates

outstanding efficiency, requiring minimal computing resources. In

contrast, LiDAR sensors produce a significantly larger volume of

point clouds in offshore waterway environments, leading to increased

computation time for LiDAR-based tracking systems. Compared to

LiDAR-based methods, our ROTracker framework offers lower costs

in both sensor and computation expenses, making it highly suitable

for deployment in real-world scenarios.
4 Conclusion

In this work, we propose a novel MMW radar-based object

tracking framework called ROTracker. Comprising a radar detector

and a radar tracker, the ROTracker framework effectively integrates

the unique characteristics of MMW radar with traditional tracking

systems. Despite the sparse and noisy nature of MMW radar point

clouds, our ROTracker leverages radar Doppler velocity and a motion

discriminator to enhance the tracking system’s robustness,

particularly for low-speed targets. Through real-world experiments,

we validate the robustness and efficiency of the ROTracker

framework, showcasing its significant potential for USVs. In the

future, we aim to expand the ROTracker into a multi-radar tracking

system to further enhance our research and improve the deployment
FIGURE 11

USV embedded computing platform (NVIDIA Jetson Xavier NX).
TABLE 4 Effectiveness of different modules in radar tracker.

Method

MVE MAE MVEL MAEL

[cm/
s] ↓

[deg]
↓

[cm/
s] ↓

[deg]
↓

RODT 23.3 15.8 18.9 22.3

Remove
Velocity Measurement

43.7 26.4 58.5 37.7

Remove
Motion Discriminator

25.6 17.8 36.5 27.9
↑ denotes positive correlation and ↓ denotes negative correlation.
TABLE 5 Object track results at different distances using the
proposed method.

Distance
MOTA MOTP MVE MAE

[%] ↑ [cm] ↓ [cm/s] ↓ [deg] ↓

0–30 m 97.2 34.2 13.5 11.3

30–60 m 93.4 63.0 21.6 14.8

60–90 m 90.1 92.5 30.2 19.2
fron
↑ denotes positive correlation and ↓ denotes negative correlation.
TABLE 6 Computation time of different methods in NVIDIA Xavier
NX platform.

Method Sensor Mean [ms] Std [ms]

SRT MMW Radar 13.2 8.7

LSMT LiDAR 135.3 75.8

Ours MMW RADAR 24.5 17.2
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convenience of USV autonomous systems. To summarize, this paper

mainly contributes to the following aspects:
Fron
(1) We introduce a novel MMW radar-based object tracking

method (ROTracker), leveraging the unique characteristics

of MMW radars. Our ROTracker framework provides a

robust and cost-effective tracking system for USVs

navigating complex offshore waterways.

(2) To address the challenges posed by sparse and noisy MMW

radar point clouds, our ROTracker integrates traditional

Kalman filtering tracking methods with Doppler velocity

information from MMW radar, effectively enhancing the

robustness of the multi-radar ROTracker system.

Furthermore, a motion discriminator is designed to

mitigate errors in low-speed tracking scenarios.

(3) Our ROTracker method demonstrates significant potential.

Extensive real-world experiments validate the effectiveness

of ROTracker. Moreover, the proposed framework exhibits

high efficiency on USV embedded computation platforms.
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