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Chl-a concentration is one of the key characteristics of marine areas related to

photosynthesis, along with oxygen levels and water salinity. Most studies focus

on estimating chl-a concentration in closed water bodies, rivers, and coastal

areas of the tropical and temperate Earth belts and are therefore limited to

specific regions and also require direct measurements and chemical analysis to

obtain precise information about marine environmental conditions. Remote

sensing techniques and spatial modeling aim to offer tools for rapid and global

analysis of climate and ecological changes. In this study, we aim to develop a

machine learning (ML)-based approach to estimate chlorophyll-a concentration

when satellite data are unavailable. To provide physical parameters that may

influence the predicted variable (chl-a concentration), we combined satellite

observations from MODIS with geophysical Weather Research & Forecasting

(WRF) and Nucleus for European Modelling of the Ocean (NEMO) models.

Classical ML and deep learning (DL) algorithms were compared and analyzed

for their ability to extract key biogeochemical patterns in the Barents Sea. The

proposed approach allows us to forecast chl-a concentration for the next 8 days

based on spatial features and measurements from preceding days. The best R2

metric achieved was 0.578 using a LightGBM algorithm, confirming the

applicability of the developed solution to map the northern marine region even

in cases where MODIS observations are unavailable for the preceding period due

to insufficient illumination and dense cloud cover.
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1 Introduction
Chlorophyll-a (Chl-a) in water is a systemic climate indicator

because the pigment is directly related to the functioning of

photosynthetic organisms, reflecting the level of photosynthetic

activity and the potential of water areas to sequester greenhouse

gases from the atmosphere. At the same time, the growth and

development of chlorophyll-containing organisms in aquatic

environments may vary due to changes in the characteristics of

aquatic areas and changes in climatic conditions, particularly

temperature regime (Dvoretsky et al., 2023; Pereira et al., 2023).

There are methods for estimating chlorophyll concentrations in

water using drifting buoys and spot measurements (Hill et al.,

2022). However, while these methods are effective for point-based

studies, they may not be practical for large-scale monitoring over

large areas. Satellite remote sensing allows for large-scale

assessment of chl-a concentration, providing continuous

monitoring of aquatic ecosystem functioning with a focus on the

carbon balance of territories.

Traditional approaches to Chl-a prediction have relied on the

use of multivariate statistical regression models that relate remotely

sensed data to actual Chl-a measurements (Martinez et al., 2020).

Usually, these algorithms use reflectances in chlorophyll-a-

associated bands of light, derived from low-level satellite

products, and classical ML regression algorithms for modeling

(Hu et al., 2021). In modern applications, deep learning

algorithms have become the preferred modeling method. This

includes heuristics, convolution-based approaches (Ye et al.,

2021), and time series forecasting methods that have become

widely used for different water bodies’ assessment (Rajaee and

Boroumand, 2015; Cho and Park, 2019; Shamshirband et al., 2019).

The northern seas, including the Barents Sea, are the subject of

intensive oceanographic and ecological research (Alvarez-

Fernandez and Riegman, 2014; Alvera-Azcárate et al., 2021).

However, the analysis of Chl-a in these regions is limited by the

peculiarities of the northern climate. One of the main difficulties in

monitoring chl-a concentrations in the northern oceans, as well as

other indices derived from optical sensor measurements, is the

limited availability of satellite data. In northern latitudes, most of

the year is characterized by short days or even total darkness due to

the polar night. Even during the months when sunlight is available,

its intensity is insufficient to provide adequate illumination

underwater due to the low angle of incidence of the rays. In

addition, part of the sea surface is covered by ice in winter, which

severely limits the availability of data. As ice melting is a long

process, even at the end of the polar night, data cannot be obtained

from a large area of the sea surface. Moreover, a dense cloud cover is

typical for these regions.

The vast majority of works on prediction of chlorophyll

concentration using remote sensing in marine waters are

currently presented for tropical and temperate Earth belts, where

satellite data are well available (Rousseaux and Gregg, 2017; Cen

et al., 2022). Because of the above limitations, the analysis and

prediction of chlorophyll concentration in the waters of the North

Pole are mainly based on in situmeasurements (Desmit et al., 2020),
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which allow studies only for localized regions. Only a small number

of works focused on the determination of chlorophyll concentration

in the regions of the north and south poles of the Earth on the basis

of remote sensing data. For example, Zhang et al. (2023) propose to

use space-based lidar measurements as an alternative data source

for predicting chl-a concentration in polar regions. Machine

learning approaches have been successfully applied and proven

effective in related fields such as environmental, agricultural (Van

Klompenburg et al., 2020; Guo et al., 2021, 2022, 2023), and forestry

(Illarionova et al., 2022) studies.

Simulation-based approaches exist to estimate chl-a

concentrations, one of which is the mechanistic site-based

emulation of a global ocean biogeochemical model (MEDUSA)

(Hemmings et al., 2015) that can be coupled to the Nucleus for

European Modelling of the Ocean (NEMO) (Madec et al., 2017)

state-of-the-art ocean model. This method uses statistical and

functional relationships with NEMO outputs to estimate the chl-a

concentration at the ocean surface. The approach integrates 1-D

simulators and statistical uncertainty quantification to predict

surface chlorophyll levels based on model parameters. This

increases the efficiency of comprehensive parametric analyses,

thereby improving the accuracy and reliability of global ocean

biogeochemical models such as NEMO. While this approach is

expected to yield more accurate predictions compared to the

machine learning method, it is also characterized by increased

computational complexity and higher time requirements.

To address the existing limitations, this paper proposes a

method for predicting 8-day averaged chl-a concentrations in

marine areas based on ocean and atmospheric weather data. As a

reference data, we use chlorophyll-a measurements derived from

the Moderate Resolution Imaging Spectroradiometer (MODIS). We

combine Weather Research & Forecasting (WRF), NEMO, and

MODIS data to create a new set of features for developing machine

learning algorithms further. These data sources are preferred

because they provide clues for further predictions, even in the

absence of information from spectral satellite observations. The

experiments involve two approaches focusing on pixel-based and

patch-based forecasting. Machine learning methods based on

gradient boosting and deep learning algorithms are considered.

The research is carried out for the waters of the Barents Sea.
2 Materials and methods

2.1 Study area

The region of interest covers the Barents Sea and Kara Sea. This

area is characterized by distinctive patterns in the dynamics of

atmospheric and oceanic processes, which are determined by the

geographical location and special properties of the region

(Smedsrud et al., 2013). The average depth of the Barents Sea is

twice that of the Kara Sea, and the average depth of the Kara Sea is

approximately 110 m. The Barents Sea is usually warm and saline

enough (due to the circulation of Atlantic currents) to never freeze

in winter. On the other hand, the Kara Sea is frozen in winter and

covered by thick ice (sometimes reaching 5 m deep). Close to land,
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there is a strong freshwater outflow and possible biogens that could

affect microbial growth. The Novaya Zemlya archipelago influences

atmospheric dynamics and produces gusts of cold wind directed

towards the continent. During the months of October to February,

there is a polar night and the flux of solar radiation is almost zero.

Chl-a concentration values were extracted for the period from 1

January 2019 to 31 December 2022 for an area between the values

23.0° to 71.0° East and 63.0° to 78.0° North. The spatial areas

containing the coordinates of the points for which variable values

are available from the atmospheric numerical simulation model

(WRF) and the ocean numerical simulation model (NEMO) are

shown in Figure 1. The intersection of these areas represents the

region of interest.
2.2 Data collection

We created a dataset from the outputs of numerical models that

we had previously computed—atmospheric numerical simulation

based on the WRF (Skamarock et al., 2019) model and ocean

numerical simulation based on the NEMO (Madec et al., 2017)

model—in order to train the machine learningmodel to forecast chl-a

concentration. Coordinated modeling of ocean and atmosphere can

provide coordinated dataset with less mutual numerical instabilities.

Furthermore, the data provided by the numerical models are of

relatively high spatial resolution compared to the Global Forecast

System (GFS) National Centers for Environmental Prediction,

National Weather Service, NOAA, U.S. Department of Commerce

(2015) and Glorys–Mercator’s ocean data analysis and forecast

European Union-Copernicus Marine Service (2016), which are
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used as initial and boundary conditions for the numerical

simulations. Moreover, there is a successful example

(Verezemskaya et al., 2021) of configuration of these two particular

models in the northern latitudes done in relatively high resolution 1/

12° based on the NEMO ORCA12 grid (Barnier et al., 2015). This

modeling makes it possible to take into account the influence of

additional data, such as the characteristics of atmospheric and ocean

dynamic processes on forecasting the concentration of chlorophyll-a.

Chl-a concentration values are derived from the free database of

Ocean Biology Distributed Active Archive Center (OB.DAAC)

NASA’s Ocean Biology Processing Group (2024), which is based

on observations fromMODIS. It comprises aggregated satellite Chl-

a values in mg/m3, calculated using a combination of color index

(CI) (Hu et al., 2019) and ocean color (OC) (O’Reilly and Werdell,

2019) algorithms from an empirical relationship derived from

measurements of Chl-a and the blue to green reflectance ratio

(Rrs). Geospatial data are available with a pixel size of 4,638 m. In

this paper, we get 8-day daily averages of Chl-a from OB.DAAC.

The data are presented as two-dimensional arrays of values

recorded in netCDF (.nc) format.

A numerical modeling dataset for the atmosphere was obtained

using WRF version 4.4.2. WRF is a state-of-the-art atmosphere

model designed for both research and numerical weather prediction

that allows extensive configuration (Skamarock et al., 2019). As the

initial and boundary conditions, the model uses the open source

GFS product in the 1/4° resolution. Outputs were calculated in the

region of interest from the early 2019 through the end of 2022. We

created a local domain configuration and computed the output of

the WRF model for the period of interest. The computations took

approximately 2 weeks on 360 cores. Outputs contain arrays of 2D
FIGURE 1

Study area, MODIS spatial data loading domains, and WRF and NEMO simulation domains.
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and 3D variables with hourly resolution data packed into netCDF

files. Every WRF file before preprocessing contains 96 timesteps—

24 for the ocean model forcing of the previous day and 72-h

forecast. For convenience, data were interpolated from the

computational grid to the MODIS grid. WRF files contain the

following variables:
Fron
• SWDNB—shortwave solar radiation flux near surface,

• LWDNB—longwave solar radiation flux near surface,

• T2—temperature of the air at the height of 2 m,

• RAINNC—accumulated total precipitation near surface,

• U10—U component of the wind speed at a height of 10 m,

• V10—V component of the wind speed at a height of 10 m,

• P—atmospheric pressure at a height of 2 m,

• ALBEDO—albedo coefficient of the surface, and

• Q2—specific air humidity at a height of 2 m.
Numerical modeling dataset of the ocean was calculated with

the NEMO (Madec et al., 2017) ocean model version 4.0 with the

Drakkar configuration that is created as a joint effort between

leading European ocean research facilities (Barnier et al., 2015).

This configuration is widely used in the ocean modeling community

for high-resolution ocean modeling (Rieck et al., 2015;

Verezemskaya et al., 2021). The ocean model was additionally

tuned for the region of interest. As initial and boundary

conditions for the ocean NEMO uses Glorys and as a forcing

(atmospheric boundary conditions), it uses previously computed

WRF data. The spatial resolution of the domain is approximately 3–

4 km 1/12° and outputs are written every hour. Outputs are

represented on the computational grid ORCA12 (Barnier et al.,

2015). Local domain configuration and interpolated atmosphere

forcing WRF were prepared to run the NEMO ocean model. The

calculations took approximately 1 week of CPU time on 128 cores.

Data were later interpolated to the MODIS grid, same as the

atmosphere model for convenience of use. Outputs are netCDF

files with 3D variables that were cut to 2D variables (near surface

level values). For the dataset, the following variables are used:
• sosstsst—temperature of the sea water near surface,

• sosaline—salinity of the sea water near surface,

• vozocrtx—U component of currents near surface, and

• vomecrty—V component of currents near surface.
Compared to MODIS data, the unique advantage of WRF and

NEMO may be in time scale and the spatial continuity. In order to

keep data sources related to each other and because of the daily

resolution of MODIS Chl-a data, we took 0-, 24-, 48-, and 72-h time

steps of our predictions for WRF and 0- and 24-h time steps

for NEMO.

In addition, data on sea ice concentration available in the

National Snow and Ice Data Center (Fetterer et al., 2017)

database were used. Concentration values were used for

data analysis.
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2.3 Data preprocessing

The WRF and NEMO numerical simulation data were

interpolated onto a grid in a geographic coordinate system

corresponding to the MODIS Chl-a product coordinate grid. The

preprocessed data were combined into a set of netCDF (.nc) files.

Each file in the set contains daily mean chlorophyll concentration

values over an 8-day period; NEMOmodel predictions for days 0, 1,

2, and 3; andWRF model predictions for days 0 and 1. The day with

index 0 was taken as the day before this 8-day period. Only points

within the NEMO simulation area (the region within the blue

border in Figure 1) were used for analysis and modeling.

Time-independent spatial attributes were also used: latitude,

longitude, and shortest distance to the coastline, which was

calculated for each point within the region of interest. The later

dataset was packed into daily files with an 8-day step. The total

amount of features was 40, among them:
• 18 WRF features (2 values for each of the 9 features: days 0

and 1),

• 16 NEMO features (4 values for each of the 4 features: days

0, 1, 2, and 3),

• lat—latitude,

• lon—longitude,

• water_depth—water depth,

• coast_dist—shortest distance to the coastline,

• doy—day of the year, and

• chlor_a_prev—Chl-a of the preceding days.
A file structure of the resulting dataset is shown in Figure 2 to

illustrate the principle of combining NEMO and WRF modeling

data with MODIS data. Figure 3 shows the average number of

missing Chl-a values for the region of interest as well as the number

of points with high ice concentration (greater than 50%). As can be

seen from the figure, the data for the region of interest are

completely missing for the months from October to February.

These months are the period of insufficient illumination for

observations in the visible optical range. For this reason, these

months are completely absent from the dataset we collected. Ice

formation in the study area begins in November and continues until

February, and beginning from March, ice melting occurs. It can be

observed that for regions with high ice concentration, observations

for chlorophyll concentration values are missing. The remaining

omissions are due to other reasons, notably cloud cover.

Figure 4 shows examples of MODIS chlorophyll-a observations

extracted for specific dates in 2021 in 32-day increments. By

comparing these plots with the distance of the points from the

coastline (Figure 5), it is clear that high chlorophyll concentrations

are characteristic of coastal areas. It has been long observed in the

field that the majority of the world’s most productive marine

ecosystems are found within coastal environments and owe their

productivity, diversity, and wealth of life to their terrestrial

adjacency (Bierman et al., 2011). This increase in concentration
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near the coasts is related to various processes occurring on land,

such as biogenic runoff (Anderson et al., 2002). Such factors were

not taken into account in the configuration of the WRF and NEMO

simulations though NEMO accounts for freshwater runoff for

nonbiological variables (for example, salinity). As this work

evaluates the possibility of predicting chlorophyll concentration

based on weather and atmospheric data, such other contributions

are beyond the scope of this study. For further investigation, we

limited the upper limit of the chlorophyll concentration to a value of

10 mg/m3, which is typical for coastal lines of marine areas

(Schalles, 2006).
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In this paper, a split into training and test samples was

performed to train and evaluate machine learning models using a

dataset for each coordinate of the region of interest. The dataset is

represented by 102 snapshots, each corresponding to a different 8-

day interval and containing numerical values for spatially

distributed variables at points in the region of interest,

comprising over 130k unique coordinates (latitude and longitude

pairs). Data for the time period from 1 January 2019 to 30 June 2022

were used to train the model, and data from 1 July 2022 to 31

December 2022 were used for testing. We have followed the

common practice of choosing the test period for predictive
FIGURE 3

Average proportions of missed MODIS Chl-a values and high ice concentration values in the region of interest by month for the period January 2019
through December 2022.
FIGURE 2

Example of a merged dataset file for a specific observation date.
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models at the end of the time interval, which prevents data leakage

from the future for estimating the model’s predictive ability for the

new period. Figure 6 shows the distribution of chlorophyll

concentration values for the interval from 0 to 10 mg/m3.
2.4 Machine learning and deep
learning methods

The paper compares the performance of classical machine

learning algorithms and the neural network approach.

2.4.1 LightGBM
LightGBM’s (Ke et al., 2017) implementation of the gradient

boosting decision tree method was used as the classical machine
Frontiers in Marine Science 06
learning algorithm. One of the most important capabilities of

LightGBM is its ability to handle missing values in features, both

in the training period and in the prediction period. When Chl-a of

preceding days is used as one of the input features for the model,

missing data are inevitably observed for a large number of

coordinates. Therefore, when using this feature, we excluded from

training all coordinates where the preceding value is unknown. At

the same time, when making predictions for the region of interest,

we use all its coordinates regardless of the presence of gaps in the

preceding values. In the case of the gradient boosting machine, if

there are no gaps in the training data, the gaps in the test data follow

the majority direction for the decision tree (the direction with the

largest number of observations). The following parameters of the

LightGBM model were used: number of boosted trees equal to 100,

learning rate equal to 0.1, and tree depth without limit. An
A

B

D

E

F

GC

FIGURE 4

Examples of MODIS 8-day mean Chl-a and single-day ice concentration observations in the study area for the year 2021 in 32-day increments.
(A) 14 March, (B) 15 April, (C) 17 May, (D) 18 June, (E) 20 July, (F) 21 August, (G) 22 September.
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important parameter of the framework used is the “class weighting”,

which allows us to perform a probability calibration of the model; it

adjusts the weights inversely proportional to the frequencies of the

target continuous values in the input data. The gradient boosting

model was trained to make pixel-by-pixel predictions. The data

were converted to a tabular format, where each row corresponds to

the values of the features in a single coordinate.
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2.4.2 Resnet-18
A neural network model based on the ResNet-18 (He et al., 2016)

architecture was developed and trained using the PyTorch library.

This architecture has proven to be effective for environmental spatial

forecasting creation (Cheng et al., 2022; Shadrin et al., 2024). The aim

of this study was to solve the regression problem. Therefore, the

model was input with spatial data in the form of patches of 33 × 33
FIGURE 6

Distribution of chl-a concentration values for the interval from 0 to 10 mg/m3 in train and test sets.
FIGURE 5

Shortest distance to the coastline in the region of interest.
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pixels, and the model was trained to predict the value of chlorophyll

concentration in the center pixel of the patch. All values input to the

model were scaled using min–max normalization. For land

coordinates, feature values defined for sea coordinates only were set

to −1. Gaps in the previous chlorophyll concentration values were

filled by interpolation. Then, only those patches were selected for the

model that contained at least one water pixel and had no gaps for any

value. To improve the robustness of the model, instead of partitioning

each file into patches with a fixed grid, new offsets were generated for

each training epoch to slice the patches. The ResNet-18 model

architecture was adapted to handle the input data, with the number

of input channels equal to the number of features. An Adam

optimizer with an initial learning rate of 10−3 and a step scheduler,

which reduced the learning rate by a multiplier of 0.2 every 10 epochs,

was chosen to optimize the learning process. The mean squared error

was used as a loss function. The model training process was

performed for 50 epochs with patch updates and batch size equal

to 256.
2.5 Evaluation metrics

To assess the quality of model forecasts, a comparison is made

between actual data and forecasted values. For regression tasks, the

following set of metrics is often used: MAE (mean absolute error),

RMSE (root mean square error), MAPE (mean absolute percentage

error), and R2 (coefficient of determination). All metrics were

calculated in the per-pixel format. If ŷ i is the predicted value of

the ith pixel, yi is the corresponding true value and �yi is the

arithmetic mean of all yi, then RMSE (Equation 1), MAE

(Equation 2), MAPE (Equation 3), and R2 (Equation 4), estimated

for n pixels, are determined as follows:

RMSE(y, ŷ ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(1)

MAE(y, ŷ ) =
1
no

n

i=1
jyi − ŷ ij (2)
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MAPE(y, ŷ ) =
1
no

n

i=1

yi − ŷ ij j
yi

(3)

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �yi)

2 (4)
3 Results

3.1 Training of the models

The goal of the study is to develop an approach to forecast chl-a

concentration for the next 8 days based on available atmospheric,

oceanic, and remote sensing data. MODIS measurements of the

chl-a concentration were selected as reference data for model

development and its quality assessment. Moreover, MODIS data

from the preceding period are used as features to forecast chl-a

concentration for the succeeding days. The presence of dense cloud

cover justifies the consideration of not only visible remote sensing

measurements collected by the MODIS satellite but also data from

NEMO and WRF models to generate additional features for

analysis. These data include modeled measurements of

atmospheric and oceanic systems for several upcoming days. The

total number of features was 40. In addition to MODIS, WRF, and

NEMO, an additional feature related to the distance to the coast and

the day of the year is considered. The change in the quality of model

performance when excluding some attributes from the training set,

particularly the value of chlorophyll concentration for the previous

period and the distance to the shore, was assessed.

Two machine learning approaches were employed to process

the collected data. The first approach utilized a classical machine

learning algorithm, LightGBM, which was applied to process

individual pixels without considering their context. In contrast,

the deep neural network approach incorporates the spatial

distribution of neighboring pixels into consideration.

The change in the values of error and R2 metric during Resnet-18

model training is presented in Figure 7. Loss and R2 converge, and the

fluctuations in their values are due to the fact that a new grid is
A B

FIGURE 7

MSE loss and R2 versus epoch during the Resnet-18 model training. (A) MSE loss, (B) R2.
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generated at each epoch for training and validation to extract patches

from the data snapshots. TheR2 value (0.687) of the validationmeasure

is significantly higher than that of the test on the whole region (0.406)

because the validationmetric is calculated on a randomly selected set of

patches sliced with a step equal to the patch size, while for the test, all

possible patches are used with a step of 1 pixel.
3.2 Assessing the quality of models

Experiments with different input features were conducted for

these two machine learning models, and the resulting metrics are

presented in Table 1 for the test dates. The median value serves as a

baseline, representing the performance of a prediction strategy

where all samples are assigned the median value of the chl-a

concentration in the train set. As expected, this baseline approach

yields relatively high errors across all metrics. A negative R2 value of

–0.191 indicates the complexity in the distribution of

target variables.

Using the full set of features in the LightGBM model gives the

most favorable results, with the lowest RMSE equal to 1.398, MAE

equal to 0.834, and the highest R2 equal to 0.578, indicating superior

predictive performance compared to other models. In particular,

the Resnet-18 model with the full set of features shows competitive

performance compared to its LightGBM counterpart. In particular,

it achieves the lowest MAPE equal to 0.528, indicating its

effectiveness in reducing prediction errors and maintaining

consistency across different data points. Moreover, even the

weakest of the presented deep learning models showed better

MAPE values than any of the presented variations of classical

machine learning models. The simultaneous deterioration of R2

and improvement of MAPE when moving from classical learning

models to deep learning models suggests that the model loses

explanatory power but achieves greater predictive accuracy, which

may indicate the greater practical utility of the model for making

accurate predictions. For the LightGBM model, the standard

deviations for all metrics were calculated from 20 runs of training

the model with different random states. The following standard

deviation values were obtained: s(RMSE) = 8.2 × 10−3, s(MAE) =

6.8 × 10−3, s(MAPE) = 0.018, and s(R2) = 4.9 × 10−3, which

confirms the statistical significance of the results obtained. The
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achieved values of the R2 metric are comparable to the values

obtained for the northern marine regions by Zhang et al. (2023).
3.3 Feature importance analysis

We analyzed the feature importance for the classical machine

learning model in the setup with all available features. The conducted

study is intended to improve explainability of the achieved results and

to help in further studies. Feature importance derived from LightGBM

is shown in Figure 8. Latitude and longitude are among the most

significant features. The reason is the strong correlation between

distance to the coastal line and chl-a concentration. Generally, the

higher chlorophyll concentration occurs near the particular regions of

the shore. However, latitude and longitude are more informative

features than just a coastal distance due to patterns in biochemical

conditions associated with marine currents and other processes. U and

V components of the wind speed at a height of 10 m also affect the

model’s forecasting. It allows assessing the spread velocity and direction

of flows in upcoming days. One of the most important attributes is

atmospheric pressure, the influence of which on chlorophyll is

complex. It can be assumed that changes in pressure lead to changes

in weather conditions and illumination, which affect phytoplankton

growth and plant photosynthesis. Nevertheless, the joint contribution

of the all selected features is significant for the ultimate results.
3.4 Visualization of the results

The visual assessment results for the best LightGBM and best

Resnet-18 models are shown in Figures 9, 10, respectively. The results

are presented for similar data to allow comparison of the results of the

two approaches. The absolute error is calculated by subtracting the

ground truth Chl-a values from the predicted Chl-a values.

It can be observed that the ML-based model performs well in

identifying clusters of points with high chlorophyll concentration,

but at the same time, it tends to predict, on average, higher values

than the actual values, especially in the coastal region. In contrast,

the DL-based algorithm has a smaller error over a larger area of the

region of interest and provides more accurate predictions for areas

further from the coast, but misses areas of high concentration and

predicts lower values than the actual values. The reduction in the

number of points for which prediction is performed in the region of

interest in the case of the DL model is due to the operation of the

algorithm for selecting the patches fed to the model input: patches

that do not contain gaps in the 33 × 33 square surrounding the pixel

with the target Chl-a value are selected. On the border of this region,

some pixels do not contain the values of NEMO variables.
4 Discussion

In the geo-spatial tasks, the spatial context usually plays a vital

role (Illarionova et al., 2021). Therefore, we compared two

approaches that involve or ignore it. The main advantage of the

classical machine learning model is its faster training and inference
TABLE 1 Experimental results for the chl-a concentration estimation on
the test subset using different models.

Model RMSE MAE MAPE R2

Median value 2.351 1.178 0.772 −0.191

LightGBM without previous Chl-a 1.482 0.939 1.004 0.526

LightGBM without coastal distance 1.416 0.849 0.868 0.567

LightGBM with full set of features 1.398 0.834 0.832 0.578

Resnet-18 without previous Chl-a 1.531 0.921 0.826 0.448

Resnet-18 without coastal distance 1.604 0.877 0.556 0.395

Resnet-18 with full set of features 1.588 0.855 0.528 0.406
The bold font is for the best values.
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process in comparison with deep neural network. Moreover, the

shorter amount of tunable parameters makes it easier to develop an

ML-based approach. Although DL-based solutions require a finer

adjustment, in various geo-spatial tasks, they have proven to

outperform the classical approaches.

Despite the continuous improvement of MODIS products and

remote sensing tools in general, there are uncertainties and biases in

the data acquisition process. The quality is strongly influenced by the

angle of coverage and the angle of incident light (Barnes and Hu,

2016) and other factors. In addition, as the final chlorophyll

concentration values are determined from an empirical relationship,
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some additional discrepancies are possible. It has been repeatedly

shown that the credibility of MODIS chlorophyll concentration

products in offshore waters is poor and significantly overestimated

(Darecki and Stramski, 2004; Harshada et al., 2021). Therefore, the

error of remotely sensed chlorophyll concentration data in coastal

waters is very large and, in fact, MODIS Chl-a for these regions

characterizes the concentration of terrestrial suspended particulates

rather than the true chlorophyll concentration. Alternative data

sources can complement and improve the accuracy of satellite-

derived chlorophyll estimates. In situ measurements from

oceanographic buoys, research vessels, and autonomous underwater
A B

D E F

C

FIGURE 9

Comparison of ground truth and LightGBM model predicted values of Chl-a for individual snapshots from the data. (A) Ground truth, (B) prediction,
and (C) absolute error for 8 days starting 19 July 2022, and (D) ground truth, (E) prediction, and (F) absolute error for 8 days starting 5
September 2022.
FIGURE 8

Feature importances (15 features with the highest importance values).
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vehicles provide direct observations of chlorophyll concentration at

specific locations. In addition, high-resolution models that integrate

physical and biological processes can simulate chlorophyll distribution

based on environmental parameters.

Our study presents an approach to predict chlorophyll

concentration in marine waters using a model based on ocean

and atmospheric dynamics data. A major advantage of this

approach is that, although the model is trained on satellite-

derived chlorophyll data, the input parameters of the model are

not sensitive to the illumination conditions of the input data. This

allows us to continue forecasting in conditions where satellite data

would have limited availability due to cloud cover or short day

length in winter. At the same time, the approach presented can be

used to create a model trained on more accurate data.

There are several considerations when evaluating the

generalization ability of the machine learning model used. First,

machine learning models are expected to generalize effectively as

the size of the model and training dataset increases. The NEMO

ocean model at high spatial resolution (approximately 3 km)

presents significant computational challenges when applied to

extensive regions such as the entire Arctic. These challenges arise

from mesoscale instabilities and numerical drift of WRF and

NEMO models from reference values in the middle of the study

area. The primary issue is the need to validate and consistently run

the ocean model to avoid significant deviations from in situ and

satellite data. To address model drift, statistical corrections such as

nudging are required. Similar procedures are required for the

atmospheric model, including ensuring model stability based on
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initial and boundary conditions, and maintaining physical

consistency with observations within the study area.

In addition to the challenges associated with numerical

modeling for creating large datasets, it is important to discuss the

generalizability of the machine learning model to new geographical

regions. A common approach for spatiotemporal analysis involves

training the model on data from one specific region and then testing

it on data from another region. Conducting such experiments can

provide further insight into the model’s ability to adapt to new

geographical regions. A promising avenue is to explore the optimal

amount of additional data required to support such adaptation.

However, these experiments were beyond the scope of the current

research, which primarily focused on temporal robustness

(forecasting for new dates for the same region) rather than spatial

robustness (forecasting for the same dates for different regions) of

the developed algorithm. Future studies could address these

limitations to explore the generalizability of the approach in

different geographical contexts, considering both spatial and

temporal components.
5 Conclusion

In this study, we explored and developed a machine learning-

based solution for predicting chl-a concentration in northern

marine regions. This environmental parameter is crucial for a

comprehensive understanding of the interactions between the

atmosphere and ocean. Traditional methods rely mostly on local
A B

D E F

C

FIGURE 10

Comparison of ground truth and Resnet-18 model predicted values of Chl-a for individual snapshots from the data. (A) Ground truth, (B) prediction,
and (C) absolute error for 8 days starting 19 July 2022, and (D) ground truth, (E) prediction, and (F) absolute error for 8 days starting 5
September 2022.
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measurements and may not be suitable for spatiotemporal analysis

of vast regions. Therefore, we integrated NEMO and WRF

modeling data into our solution, which proved to be effective for

reconstructing satellite-based chlorophyll-a measurements when

spectral remote sensing is limited due to polar night or cloud cover.

The Barents Sea was selected as the study area due to its unique

environmental properties, particularly the presence of warm

Atlantic water leading to largely ice-free conditions throughout

the year. Using the collected dataset for this region, we conducted a

series of experiments to determine the most relevant approach for

estimating chl-a concentration. The LightGBM model achieved the

highest accuracy with an R2 value of 0.578. However, in terms of the

MAPE metric, the Resnet-18 model outperformed the LightGBM

with a value of 0.527 (compared to 0.831 for LightGBM).

Among the most important features for concentration

prediction were longitude and latitude, wind speed, and

atmospheric pressure. In future studies, this proposed approach

can be expanded to include other northern waters and incorporate

additional biogeochemical characteristics. Overall, estimating chl-a

concentrations based on spatiotemporal modeling can serve as a

reliable indicator of ecological conditions in vast regions.
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