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Diverse nitrogen enrichments
enhance photosynthetic
resistance of Sargassum horneri
to ultraviolet radiation
Baoqi Li1†, Zhiguang Xu1†, Xiaotong Jiang1, Hongyan Wu1,
Menglin Bao1, Shasha Zang1, Fang Yan1* and Tingzhu Yuan2*

1School of Life Sciences, Ludong University, Yantai, China, 2Marine Economy Promotion Center,
Marine Ecological Civilization Comprehensive Experimental Area of Changdao, Yantai, China
In recent years, golden tides caused by floating Sargassum have induced severe

ecological disasters globally. Eutrophication is a significant factor contributing to

the massive spread of Sargassum golden tides. Furthermore, the thalli of

Sargassum that float on the ocean surface are subjected to more ultraviolet

radiation (UVR). The coupled impact of eutrophication and UVR on the

photosynthetic physiology of golden tide species remains unclear. In this

study, the thalli of Sargassum horneri, known to cause golden tide, were

cultured and acclimated to three distinct nitrogen (N) conditions (natural

seawater, NSW; NH4
+-N enrichment; and NO3

–N enrichment) for 6 days.

Subsequently, the thalli were exposed to two different radiation treatments

(photosynthetically active radiation (150 W m-2), PAR, 400–700 nm; PAR (150

W m-2) + UVR (28 W m-2), 280–700 nm) for 120 min, to investigate the

photosynthetic effects of UVR and N on this alga. The findings demonstrated

that exposure to UVR impeded the photosynthetic capacity of S. horneri, as

evidenced by a decrease in the maximum photochemical quantum yield (Fv/Fm),

photosynthetic efficiency (a) and chlorophyll content. Under diverse N-

enrichment conditions, the alga tended to adopt various strategies to mitigate

the adverse effects of UVR. NH4
+-enrichment dissipated excess UVR energy

through a greater increase in non-photochemical quenching (NPQ). While NO3
–

enrichment protected alga by enhancing N assimilation (higher nitrate reductase

activity (NRA) and soluble protein content), and maintained a stable energy

captured per unit reaction center for electron transfer (ET0/RC) and a higher

net photosynthetic rate. Although different N enrichments could not completely

offset the damage caused by UV radiation, they secured the photoprotective

ability of S. horneri in several ways.
KEYWORDS

Sargassum horneri, nitrogen source, ultraviolet radiation, chlorophyll fluorescence,
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1 Introduction

Golden tides are characterized by the explosive growth of

Sargassum seaweeds after they detach and float on the surface of

the sea (Smetacek and Zingone, 2013). Since the 21st century, the

Caribbean, West Africa, and Gulf of Mexico have witnessed the

emergence of gold tides in the species Sargassum fluitans (S.

fluitans) and Sargassum natans (S. natans) (Schell et al., 2015;

Van Tussenbroek et al., 2017; Wang et al., 2019). Golden tides of S.

horneri have also been recorded in the East China Sea, Yellow Sea,

and South Korea (Hwang et al., 2016; Qi et al., 2017; Xing et al.,

2017; Liu et al., 2018). The decay of algae following golden tide

outbreaks leads to the release of toxic substances that negatively

impact local marine ecosystems (Caselle et al., 2018) and,

consequently, affects fisheries, aquaculture, and coastal tourism in

the area (Williams and Feagin, 2010; Zhang et al., 2019). The highly

frequent occurrence of golden tides has garnered the interest of

various segments of society (Byeon et al., 2019; Xiao et al., 2021).

Human-induced ozone holes have led to more UVR reaching

Earth’s surface. Although studies have shown that the size of ozone

holes has been decreasing since 2010 (Solomon et al., 2016), a hole

three times the size of Greenland was observed over the Arctic in

2020 (Witze, 2020). The enhancement of UVR was expected to

continue for some time (Bais et al., 2015). UVR can significantly

reduce the growth and pigmentation of macroalgae (Gao and Xu,

2008; Schmidt et al., 2010), impede electron transfer rates, and

reduce maximum photochemical quantum yield (Gao et al., 2019).

UVR increases the permeability of cell membranes (Sobrino et al.,

2004), damages proteins and DNAmolecules (Ruhland et al., 2007).

Furthermore, it can lead to cell death (Agustı ́ and Llabrés, 2007).

Macroalgae have evolved various photoprotective mechanisms to

mitigate the detrimental effects of UVR, such as the production of

UV-absorbing compounds (Mayalen et al., 2009; Rautio and

Tartarotti, 2010), heightened non-photochemical quenching to

dissipate excess light energy (Goss and Lepetit, 2015), accelerated

synthesis and interconversion of D1 proteins (Wu et al., 2011),

enhancement of antioxidant system efficiency (Xu et al., 2022), and

various other adaptations. During the golden tide, the lack of

seawater shielding results in increased exposure of seaweeds

floating near the water surface to UVR (Tedetti and Sempéré,

2006). However, there is currently a dearth of research on the

response of golden tide algae to UVR.

In recent years, rapid economic development has resulted in

increased nutrient inputs to global coasts (Neori et al., 2004),

leading to a more serious eutrophication problem that poses a

growing threat to coastal ecosystems (Bricker et al., 2008). Nitrogen

(N) is a crucial element required for the growth of macroalgae

(Paliwal et al., 2017). The concentration of N in natural seawater is

typically low and subject to significant seasonal variation, which

often constitutes a limiting factor for the growth of macroalgae

(Hwang et al., 2004). In general, N deficiency exacerbates the

detrimental effects of UVR on algal photosynthesis (Davison

et al., 2007). However, an adequate supply of nitrate-N (Xu et al.,

2023a) for S. horneri or ammonia-N (Xu and Gao, 2012) for

Gracilaria lemaneiformis tends to mitigate this inhibitory effect on
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photosynthesis. Macroalgae can absorb a diverse array of inorganic

and organic forms of N, with NO3
- and NH4

+ as the primary

sources of N. Variations in the uptake and utilization of these N

sources frequently lead to disparities in physiological processes,

including growth, biochemical constituents, and nutrient uptake in

macroalgae (Sun et al., 2015). The growth rates of Porphyra

haiyanensis and Porphyra yezoensis are higher under NH4
+-N

treatments, whereas Porphyra leucostica exhibits better growth in

NO3
–N environments (Carmona et al., 2006). However, the precise

similarities and differences in the roles of various N sources in the

response of S. horneri to UV stress remain unclear.

S. horneri, a species of Heterokontophyta phylum, Fucales

order, Sargassaceae family, and Sargassum genus, is widely

distributed along the western coast of the Pacific Ocean and plays

a crucial role in coastal seaweed ecosystems. It provides habitat,

baiting, and reproduction sites for various marine organisms

(Terawaki et al., 2003). Due to its high adaptability and rapid

growth, S. horneri often becomes an invasive species (Sfriso and

Facca, 2013), affecting local ecosystems (Byeon et al., 2019).

Sargassum golden tides were observed off the northern coast of

Taiwan Island in China in 2012 (Komatsu et al., 2014) and offshore

Jiangsu Province in China in 2017 (Zhuang et al., 2021).

Eutrophication serves as a critical trigger for the emergence of

golden tide blooms, which tend to occur in eutrophic offshore or

upwelling waters characterized by elevated NO3
–N concentrations

(Smetacek and Zingone, 2013; Wang et al., 2019). In coastal regions,

mariculture generates wastewater, primarily from fish excrement

and feed residues, which typically contain high levels of N

(primarily in the form of NH4
+-N), phosphorus (P), and

suspended solids (Song et al., 2018). Considering that floating S.

horneri exposed to more UVR frequently blooms in eutrophic

waters, we speculate that both enrichments of NO3
–N and NH4

+-

N in eutrophication may enormously alleviate the stress of UVR on

the photosynthesis of this alga. To verify this hypothesis, the effects

of UVR and different N enrichments (NO3
–N and NH4

+-N) on the

photosynthetic activity of this alga were examined, and some

protection strategies related to energy capture, absorption,

transfer, and heat dissipation were also partially investigated in

this study. The aim was to provide evidence to support the

underlying mechanism responsible for the formation of

Sargassum golden tides in eutrophic seawater.
2 Materials and methods

2.1 Materials

In April 2022, S. horneri was sampled from a natural population

in Lidao Bay, Rongcheng City, Shandong Province (37°15’ N, 122°

35’ E). The collected samples were transported to the laboratory

within 2 h in a low-temperature incubator set at 5°C. Healthy and

uniform individuals were selected and cleaned using autoclaved

seawater to remove algae attached microorganisms. To eliminate

the influence of transportation process, thalli were precultured in

natural seawater (salinity: 28 psu) in illumination incubator (MGC-
frontiersin.org
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250P, Yiheng Technical Co. Ltd. Shanghai, China) for 24 h.

Referring to Dai et al. (2024), the photosynthetically active

radiation (PAR) provided by LED tubes was set at 100 mmol

photons m-2 s-1 with a light and dark period of 12 h:12 h, and the

temperature was maintained at 18°C. Culture media were aerated

continuously with ambient air at a rate of 2 L min-1. After 24-h

preculture, algae were used for subsequent experiments.
2.2 Experimental design

Referencing to the N concentration in seawater during S.

horneri gold tide (Qi et al., 2017), three distinct N treatments

were established by incorporating NaNO3 or NH4Cl liquor into the

natural seawater.
Fron
(1) Natural seawater (NSW): The NO3
–N concentration was 5

mmol L-1, and the NH4
+-N concentration was 1.7 mmol L-1;

(2) NH4
+-N enriched seawater (NH4

+): NH4Cl was added to

the natural seawater to a final concentration of 200 mmol L-

1 of total inorganic N.

(3) NO3
–N enriched seawater (NO3

-): NaNO3 was added to the

natural seawater until the final concentration of total

inorganic N was 200 mmol L-1.
The inorganic P concentration was set at 15 mmol L-1 in all

treatments through the addition of NaH2PO4 to prevent P

limitation during the experiment. Moreover, the seawater was

replaced every two days, while the remaining conditions were the

same as those employed in the temporary culture.

Daily measurements of the maximum photochemical quantum

yield (Fv/Fm) of algae were performed to ensure their healthy state.

Following six consecutive days of incubation, the Fv/Fmof the thalli

stabilized (Supplementary Figure S1A), which served as evidence

that S. horneri had acclimated to the incubation environment.

Two radiation treatments were obtained using a solar simulator

(Sol 1200, Hönle GmbH, Germany) and two types of filters
tiers in Marine Science 03
(Nantong, China), and the emission spectrum of the solar

simulator compared with sunlight and transmittance of two types

of filter were shown in Figure 1. Thalli that were cultivated under

various conditions of N acclimatization were exposed to two

radiation treatments, PAR (400–700 nm, 150 W m-2) and PAR

+UVR (280–700 nm, 150Wm-2 + 28Wm-2), for 2 h to simulate the

high UVR on the seawater surface in the afternoon (Xu et al., 2023a,

Xu et al., 2023b). The irradiance levels were set according to the

radiation on the sea surface when the golden tide of S.horneri

bloomed (Qi et al., 2017; Xu et al., 2022), and measured by a

radiometer (PMA 2100, Solar Light, USA). During culture, the

quartz tubes with thalli were placed in a water bath, and the

temperature was controlled at 18°C by a low-temperature

thermostatic bath (YRDC-0506, Yarong, China).
(1) PAR treatment: The quartz tubes were covered with ZJB-

400 filters, which effectively blocked solar radiation below

400 nm, thereby restricting the thalli within the tubes to

receive PAR only within the range of 400–700 nm.

(2) PAR+UVR treatment: The quartz tubes were covered with

ZJB-280 filters, thereby exposing the thalli to photons in the

PAR+UVA+UVB range (280–700 nm).
The relevant photosynthetic indices were then measured.
2.3 Fv/Fm and NPQ determination

The maximum photochemical quantum yield (Fv/Fm) and non-

photochemical quenching (NPQ) were determined using a hand-held

chlorophyll fluorometer (AP-C100, Photon Systems Instruments,

Czech Republic) to measure the fluorescence of 0.1 g fresh weight

(FW) of algae thalli that had been exposed to different radiation

treatments for 2 h and then dark-adapted for 15 min in a dark

environment. Fv/Fm also was measured during the process of pre-

acclimation for difference N enrichments. The Fv/Fm and NPQ values

were calculated using the following equations (Lacour et al., 2023):
A B

FIGURE 1

The emission spectrum of the solar simulator compared with sunlight (A) and transmittance of two types of filters (B).
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(Fv=Fm) = (Fm − Fo)=Fm

NPQ = (Fm − Fm
0
)=Fm

0

Where Fo is the minimum fluorescence under dark adaptation

with a light source irradiance (approximately 0.15 mmol photons m-

2 s-1), Fm is the maximum fluorescence was obtained with a

saturated light (4000 mmol photons m-2 s-1) in the dark-adapted

state. The maximum fluorescence (F
0
m) of the algae in the light-

adapted state was measured using saturated light (4000 mmol

photons m-2 s-1).
2.4 Determination of rapid chlorophyll
fluorescence induction and JIP test

Radiation-treated algae (0.1 g FW) was subjected to a 15-min

period of dark acclimation, after which the fast chlorophyll

fluorescence induction curve (OJIP curve) of the algae was

de te rmined us ing a doub le -modula t ion ch lorophy l l

fluorometer (FL6000, Photon Systems Instruments, Czech

Republic). The fluorescence signals were recorded with a

scanning time that ranged from 10 μs to 2 s and were labeled

as O, J (at about 2 ms), I (at about 30 ms), and P. To show the

obvious OJIP phase, the horizontal coordinate time was changed

to a logarithmic form to directly observe the J and I points and

infer the state of the PSII reaction center. The OJIP curve

provides information on the light energy absorbed per unit

reaction center (ABS/RC), the light energy dissipated (DI0/

RC), the energy captured per unit reaction center for the

reduction of QA (TR0/RC), the energy captured per unit

reaction center for electron transfer (ET0/RC), the degree of

closure of active reaction centers at 2 ms (VJ), the initial slope

(M0), and the degree of opening of active reaction centers at 2 ms

(Y0). These parameters were calculated according to the method

described by Strasser et al. (2000).

VJ = (FJ − F0)=(Fm − F0)

M0 = 4� (F300ms − F0)=(Fm − F0)

Y0 = 1 − VJ

ABS=RC = M0 � (1=VJ )� (1=jP0)

TR0=RC = M0 � (1=VJ )

ET0=RC = M0 � (1=VJ)�Y0

DI0=RC = (ABS=RC) − (TR0=RC)
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2.5 Determination of photosynthetic
pigment and UV-absorbing
compound contents

After 2-h radiation exposure, thalli (0.2 g FW) were

homogenized with a methanol solution and fixed with 10 mL of

the solution. The mixture was kept at 4°C for 24 h in the dark and

then centrifuged at 4°C for 10 min at 5000 rpm. The absorbance of

the supernatant was measured at wavelengths ranging from 250 to

750 nm using an ultraviolet spectrophotometer (UH-5300, Hitachi,

Japan), and the photosynthetic pigment contents were calculated

according to Xu and Gao (2012).

The relative content of UV-absorbing compounds (UVACs)

was expressed as the ratio of the peak height (H) at 340 nm of the

absorption curve in the UV region to FW of the algae (Helbling

et al., 2004).
2.6 Measurement of net
photosynthetic rate

A portable photosynthesizer (TARGAS-1, Lufthansa Technik

Group Ltd., USA) was utilized to measure net photosynthetic rate.

Following a 2-h treatment with varying UV radiation, thalli (0.2 g FW)

were taken and placed in the reaction chamber of the photosynthesizer

for 10-min measurement. The chamber’s area was set to 1 cm2, the

temperature set to 18°C, and the light level provided by LED tubes was

set to 700 mmol photons m-2 s-1, according to radiation treatments of

PAR and PAR+UVR. The net photosynthetic rate of the algae was

expressed as the rate of CO2 reduction per unit time in the reaction

chamber of the photosynthesizer (mmol CO2 s-1 g-1). The CO2

concentration at the beginning of measurement is the ambient

concentration (400 ppmv).
2.7 Measurement of nitrate
reductase activity

The nitrate reductase (NR) activity was assayed in thalli under

different radiation or N treatments, according to Corzo and Niell

(1991) and Anıb́al et al. (2014). A total of 0.1 g FW radiation-treated

algae was added to a reaction medium solution comprised of 0.1 mol L-

1 phosphate buffer (pH 7.5), 10 mmol L-1 glucose, 1 mmol L-1 EDTA,

200 mmol L-1 NaNO3, and 0.1% propanol. In the reaction solution, O2

was removed by charging N2 for 2 min to prevent the generated NO2
-

from being oxidized to NO3
-. The reaction was then allowed to proceed

at 30°C for 1 h in the dark. The alga was removed from the reaction

solution and the amount of NO2
- generated in the solution was

measured. The amount of NO2
- generated by the alga per unit time

was utilized to express the nitrate reductase activity (mg g-1 h-1).
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2.8 Determination of soluble
protein content

A total of 0.5 g FW of the thalli was collected, ground by adding

distilled water to a mortar, mixed, and subsequently centrifuged at

4000 rpm for 10 min. The concentration of soluble proteins in the

extract was determined by the Bradford method (Bradford, 1976).

soluble protein content (mg g−1) = (M� V)=(1000�W)

where M is the soluble protein concentration of the extract (mg
mL-1), V denotes 10 mL of the extract, and W is the FW of the

algae (g).
2.9 Measurement of soluble
carbohydrates content

At the end of the experiment, approximately 0.2 g of FW thalli

from each culture condition was ground using a mortar and

distilled water. The extraction solution was heated in a water bath

at 70°C for 30 min. After cooling the extract to room temperature, it

was centrifuged at 4000 rpm for 10 min. The concentration of

soluble carbohydrates in the extract was determined using the

phenol-sulfuric acid method (Kochert, 1978), and the soluble

carbohydrate content was calculated as follows:

soluble carbohydrate content (mg g−1) =  (M� V)=(1000�W)

where M is the soluble carbohydrate concentration (mg mL-1), V

is the 25 mL extract, and W is the FW of the algae (g).
2.10 Data analysis

All the measurement results were expressed as mean ± SD (n ≥

3). Data were analyzed and organized using Excel and SPSS 24.0,
Frontiers in Marine Science 05
and graphs were created using GraphPad Prism 8 and Origin 2021.

All data conform to normality test and variance homogeneity test.

Two-way ANOVA (Duncan) was performed to analyze the

interaction between N and UV radiation, with a significance level

of P< 0.05. Two-way ANOVA analysis results were presented in

‘Supplementary Material’ (Supplementary Table S1 for Fv/Fm and

NPQ; Supplementary Table S2 for Vj, M0, Y0, ABS/RC, TR0/RC,

DI0/RC, and ET0/RC; Supplementary Table S3 for Chla, Car, and

UVACs; Supplementary Table S4 for net photosynthetic rate;

Supplementary Table S5 for nitrate reductase activity;

Supplementary Table S6 for soluble protein and soluble

carbohydrates). After two-way ANOVA analysis, we conducted

independent sample t test for the UV radiation and one-way

ANOVA for the nitrogen source. In the graphs, different

lowercase letters indicate significant differences between

treatments. The symbol * indicates significant differences between

the UV radiation treatments.
3 Results

3.1 Maximum photochemical quantum
yield (Fv/Fm) and non-
photochemical quenching

The effects of various N acclimations followed by UV radiation

treatments on Fv/Fm and non-photochemical quenching (NPQ) of

S. horneri are illustrated in Figure 2. The results of the two-way

analysis of variance (ANOVA) indicated that UV radiation had a

significant independent effect on Fv/Fm (P = 0.003). The exposure to

UV radiation for 2 h resulted in a significant reduction in the Fv/Fm
of S. horneri under PAR+UVR treatment compared with PAR

treatment (P< 0.05). Specifically, under the PAR+UVR treatment,

the Fv/Fm of S. horneri treated with natural, NH4
+-N-enriched, and

NO3
–N-enriched seawater cultures were 72.22%, 64.02%, and

67.78%, respectively, lower than that of the PAR treatment.
A B

FIGURE 2

Effects of 2-h UV radiation treatments on the maximum photochemical quantum yield (Fv/Fm, (A)) and non-photochemical quenching (NPQ, (B)) of
S. horneri after grown under different N conditions for 6 days. NSW, natural seawater culture; NH4

+: NH4
+-N-enriched culture; NO3

-: NO3
–N-

enriched culture. Different letters above the error bars indicate significant differences between the different N-source treatments (P< 0.05, one-way
ANOVA). The symbol * indicates significant differences between the UV radiation treatments (P< 0.05, t-tests). Vertical bars represent ± SD of the
means (n = 3).
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The effects of UV radiation and N on the NPQ of S. horneri

were independent (P = 0.009 for UV radiation, P = 0.001 for N),

without significant interaction between them (P = 0.225). Under

natural seawater culture conditions, UVR significantly increased the

NPQ of S. horneri to 1.62 times that of the PAR treatment

(Figure 2B). In contrast, under NH4
+-N and NO3

–N-enriched

culture conditions, there was no significant difference between the

PAR and PAR+UVR treatments (P>0.05). Under the same UV

radiation conditions, N enrichment also elevated the NPQ of S.

horneri. When the cultures were enriched with NH4
+-N or NO3

–N,

the NPQ of S. horneri was 2.72 and 1.71 times higher, respectively,

than that of the natural seawater culture under PAR treatment, and

1.90 and 1.12 times higher, respectively, than that of the natural

seawater culture under PAR + UVR treatment. Furthermore, the

NPQ of S. horneri cultured with NH4
+-N enrichment was

significantly higher than that cultured with NO3
–N enrichment in

both UV radiation treatments (P< 0.05).
3.2 Rapid chlorophyll fluorescence
induction and JIP test

The chlorophyll fluorescence induction curves of OJIP for N-

adapted S. horneri after various UV radiation treatments are

depicted in Figure 3. The O phase of S. horneri in natural

seawater following PAR+UVR radiation was higher than that of

the other treatments, suggesting that UVR radiation reduced the

number of active reaction centers in the photosystem II (PSII).

Under N enrichment conditions, UVR treatment resulted in

significantly lower fluorescence in the O, J, I, and P phases in S.

horneri than PAR treatment.
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There was no significant effect of different forms of N and UV

radiation on the VJ, M0, and Y0 of S. horneri (P > 0.05).

Furthermore, there was no significant interaction between UV

radiation and N condition (P > 0.05). Under natural seawater

culture conditions, the PAR+UVR treatment resulted in a

significant increase in the VJ of S. horneri by 23.66% compared

with the PAR treatment. However, under N enrichment conditions,

there was no significant difference between the PAR+UVR and PAR

treatments (P > 0.05). Additionally, there were no substantial

differences in M0 and Y0 caused by different N form enrichments

or UV radiation treatments (P > 0.05).

There was a significant main effect of both UV radiation and

different N forms on ABS/RC (P = 0.001 for radiation, P = 0. 001 for

N) and DI0/RC (P = 0.001 for radiation, P = 0.001 for N).

Additionally, there also were significant interaction effects

between UV radiation and N on both ABS/RC (P = 0.001) and

DI0/RC (P = 0.001). However, no significant main effect (P > 0.05)

was observed for TR0/RC and ET0/RC. Under natural seawater

culture, UVR increased the ABS/RC and DI0/RC of S. horneri by

2.30 and 2.94 times, respectively, compared to the PAR-treated

group. In the context of NO3
–N enrichment, PAR+UVR treatment

elevated the levels of ABS/RC and DI0/RC by 44.98% and 69.97%,

respectively, compared with PAR treatment. However, no such

differences were observed in the NH4
+-N-enriched culture (P >

0.05). Furthermore, under PAR+UVR treatment conditions, the

ABS/RC of S. horneri in the natural seawater culture was observed

to be 2.07 and 1.47 times higher than that of NH4
+-N-enriched and

NO3
–N-enriched cultures, respectively. Additionally, the levels of

DI0/RC in NH4
+-N-enriched and NO3

–N-enriched cultures

increased by 145.43 and 56.81%, respectively, compared with

natural seawater, and these differences were statistically significant
A B C

D E F

FIGURE 3

OJIP curves of S. horneri cultured in natural seawater (A), ammonia-enriched (B), and nitrate-enriched (C) with different UV radiation treatments,
and relative variable fluorescence (VJ), initial slope of the OJIP fluorescence induction curve (M0), degree of opening of active reaction centers (Y0),
energy fluxes for absorption per reaction center (ABS/RC), energy fluxes for trapping per reaction center (TR0/RC), energy fluxes for dissipation per
reaction center (DI0/RC), and energy fluxes for electron transfer from QA to QA

- per reaction center (ET0/RC) of S. horneri in cultures incubated in
natural seawater (D), NH4

+-N-enriched (E), and NO3
–N-enriched (F) conditions. Vertical bars represent ± SD of the means (n = 3).
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(P< 0.05) between the groups. However, no significant differences

(P > 0.05) were observed in the TR0/RC and ET0/RC levels of S.

horneri under various N forms and UV radiation treatments.
3.3 Photosynthetic pigments and UV-
absorbing compounds

The results of the two-way analysis of variance indicated that

UV radiation had a significant main effect on all three parameters (P

= 0.002 for Chla, P = 0.004 for Car, P = 0.001 for UVACs). Under

natural seawater culture conditions, PAR+UVR treatments

increased the content of Car in the algae (Figure 4). Conversely,

this phenomenon was not observed in NH4
+-N-enriched or NO3

–

N-enriched cultures (P > 0.05). UV radiation significantly increased

the content of UVACs in algae under natural seawater culture and

NH4
+-N-enriched culture conditions, with increases of 25.67%,

29.73%. UVACs were not significantly affected (P > 0.05) by N

culture condition under the PAR+UVR radiation treatment.
3.4 Net photosynthetic rate

The impact of various N and UV radiation treatments on the

net photosynthetic rate of S. horneri is depicted in Figure 5. The

results of the two-way analysis of variance revealed that only UV

radiation had a significant main effect (P=0.001) on the

photosynthetic rate. UVR demonstrated a significant (P< 0.05)

inhibitory effect on the net photosynthetic rate of S. horneri in

algae under natural seawater culture and NH4
+-N-enriched

culture conditions. Under the PAR+UVR treatment, the net

photosynthetic rate of S. horneri was reduced to 60.44%,

56.34%, and 77.69% of the level observed under PAR

treatment in natural seawater, NH4
+-N-enriched, and NO3

–N-

enriched cultures , respect ively . Addit ional ly , the net

photosynthetic rate of S. horneri cultured with NO3
–N

enrichment was significantly higher than that of the NH4
+-N

enrichment group in the PAR+UVR treatment (P > 0.05).
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3.5 Nitrate reductase activity

There was an interaction between the UV radiation and N (P =

0.001). Notably, NRA of the NH4
+-N-enriched cultured S. horneri

was significantly lower than that of the other N treatments under

both UV radiation treatments (Figure 6). Under PAR treatment, the

NRA of the NO3
–N-enriched cultured alga increased by 102.17%

compared that with of the natural seawater. In contrast, the NRA of

NH4
+-N-enriched cultured alga decreased by 35.44%. Under the

PAR+UVR treatment, the NRA of NH4
+-N-enriched and NO3

–N-

enriched cultured alga decreased to 29.32% and 70.61%,

respectively, in natural seawater. UVR significantly suppressed the

NRA of NO3
–N-enriched seawater-cultured S. horneri (P< 0.05),

while this phenomenon was not observed in the other treatments.
A B C

FIGURE 4

Effects of different N and UV radiation on chlorophyll a (A), carotenoids (B), and UV-absorbing compounds (C) in S. horneri. NSW, natural seawater
culture; NH4

+: NH4
+-N-enriched culture; NO3

-: NO3
–N-enriched culture. Different letters above the error bars indicate significant differences

between the different N-source treatments (P< 0.05, one-way ANOVA). The symbol * indicates significant differences between the UV radiation
treatments (P< 0.05, t-tests). Vertical bars represent ± SD of the means (n = 3).
FIGURE 5

Effect of different N and UV radiation treatments on the net
photosynthetic rate of S. horneri. NSW, natural seawater culture;
NH4

+: NH4
+-N-enriched culture; NO3

-: NO3
–N-enriched culture.

Different letters above the error bars indicate significant differences
between the different N-source treatments (P< 0.05, one-way
ANOVA). The symbol * indicates significant differences between the
UV radiation treatments (P< 0.05, t-tests). Vertical bars represent ±
SD of the means (n = 3).
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3.6 Soluble proteins and
soluble carbohydrates

Figure 7 shows the impact of various N and UV radiation

treatments on the levels of soluble protein and soluble carbohydrates

in S. horneri. The results of the two-way analysis of variance indicated

that only N had a main effect on soluble protein (P = 0.001). Both N

enrichments led to significant increases in the level of soluble proteins

in algae compared to natural seawater culture, regardless of UV

radiation treatments (P< 0.05). Neither nitrogen enrichment nor

UVR significantly affected the soluble carbohydrate content (P > 0.05).
Frontiers in Marine Science 08
3.7 The main effect of UV radiation and
different N source

Figure 8 shows UV radiation have main effect on Fv/Fm, NPQ,

Chla, Car, UVACs, and net photosynthetic rate of S. horneri.

Among them, UV radiation significantly reduced the Fv/Fm and

net photosynthetic rate. Meanwhile, Car and UVACs contents were

increased by UV radiation.

N-source has a main effect on NPQ and soluble proteins. NPQ

in the NH4
+ enrichment treatment exhibited the highest value.

NO3
- and NH4

+ enrichment culture significantly increased the

soluble protein content, but there was no difference between

them (Figure 9).
4 Discussion

In our previous study, it has been found that S. horneri can

alleviate the UVR induced stress through several pathways,

including accelerated synthesis and interconversion of D1

proteins, enhancement of antioxidant system efficiency (Xu et al.,

2022). However, due to the fact that gold tide typically occurs in

eutrophic offshore (Smetacek and Zingone, 2013), the impact of

high concentrations of nitrogen on UVR effects should not be

ignored. In this study, various nitrogen enrichments enhanced the

relative growth rate of S. horneri (Supplementary Figure S1B). After

2 h UV radiation, the Fv/Fm and net photosynthetic rate of S.

horneri have been significantly inhibited. Under the condition of

nitrogen enrichment, S. horneri can resist the damage caused by

UVR by increasing NPQ. At different radiation treatments, the

enrichments of two nitrogen source showed different

photoprotection strategies, indicating that UVR and nitrogen

source had significant interaction.

Nitrogen serves as the nutritional foundation and external

stimulus for plant development (Crawford, 1995), and elevated

nitrogen levels commonly promote macroalgal growth. This study

demonstrated that various nitrogen enrichments enhanced the
A B

FIGURE 7

Effects of different N and UV radiation treatments on Soluble proteins (A) and Soluble carbohydrates (B) in S. horneri. NSW, natural seawater culture;
NH4

+: NH4
+-N-enriched culture; NO3

-: NO3
–N-enriched culture. Different letters above the error bars indicate significant differences between the

different N-source treatments (P< 0.05, one-way ANOVA). The symbol * indicates significant differences between the UV radiation treatments (P<
0.05, t-tests). Vertical bars represent ± SD of the means (n = 3).
FIGURE 6

Effects of different N and UV radiation treatments on the nitrate
reductase activity (NRA) of S. horneri. NSW, natural seawater culture;
NH4

+: NH4
+-N-enriched culture; NO3

-: NO3
–N-enriched culture.

Different letters above the error bars indicate significant differences
between the different N-source treatments (P< 0.05, one-way
ANOVA). The symbol * indicates significant differences between the
UV radiation treatments (P< 0.05, t-tests). Vertical bars represent ±
SD of the means (n = 3).
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relative growth rate of S. horneri. Furthermore, nitrogen source-

enriched cultures can increase soluble protein content in the algal

body, thereby storing more N sources for the alga (Martıńez and

Rico, 2008). This may be related to the activity of nitrate reductase

(NR), NR is an inducible enzyme, and the availability of substrate

nitrate-nitrogen typically enhances its activity (Kaur et al., 2017).

Given that nitrate-nitrogen uptake involves the action of nitrate

reductase and consumes a substantial amount of energy (Pritchard

et al., 2015), ammonia-nitrogen-enriched nitrogen uptake is more

energy-efficient, seemingly leading to a potential increase in growth.

The soluble carbohydrate content did not increase with increasing

N concentration, which may be because algae prioritize protein

under N-sufficient conditions, and soluble carbohydrates were
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primarily carbon metabolites that were affected by photosynthetic

carbon fixation rather than nitrogen.

S. horneri floating on the sea surface may be susceptible to

increased levels of UVR. In this study, the Fv/Fm of S. horneri in the

PAR+UVR radiation treatment was significantly lower than that

under the PAR treatment, suggesting that UVR induced strong

photoinhibition on S. horneri. Nonetheless, compared to Sargassum

muticum, another species of Sargassum genus that have not been

observed to form gold tides, the inhibition of UVR on S. horneri was

relatively mild. The Fv/Fm of S. muticum exposed to 2 h UV

radiation was more severely reduced (to less than 0.2) (Xu et al.,

2023b). UVR radiation mainly damaged water oxidation complexes

in the PSII reaction center, where electrons were transferred to P680
+

A B

FIGURE 9

Effects of N-source on NPQ (A) and Soluble proteins (SP, B) of S. horneri. NSW, natural seawater culture; NH4
+: NH4

+-N-enriched culture; NO3
-:

NO3
–N-enriched culture. The symbol * indicates significant differences between the treatments (P< 0.05, one-way ANOVA). Vertical bars represent

± SD of the means (n = 6).
A B C

D E F

FIGURE 8

Effects of UV radiation on Fv/Fm (A), NPQ (B), Chla (C), Car (D), UVACs (E), and net photosynthetic rate (NPR, F) of S. horneri. The symbol * indicates
significant differences between the PAR and PAR+UVR treatments (P< 0.05, t-tests). Vertical bars represent ± SD of the means (n = 9).
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(Ivanova et al., 2008), leading to the formation of excessive reactive

oxygen species (ROS). Consequently, the transfer of electrons to the

secondary electron acceptor QA could not be accomplished within

the specified time frame, leading to the accumulation of ROS and

subsequent damage to algae. Moreover, the oxidized state of the

electron acceptor QA may degrade pigments, resulting in decreased

photosynthetic activity (Sharma et al., 2020). The elevated values of

VJ in S. horneri subjected to UVR in this study presented an increase

in the closure of the active reaction centers. The energy absorbed

and dissipated per unit reaction center of S. horneri exposed to UVR

treatment was significantly higher than that of S. horneri exposed to

PAR treatment. It has been reported that photosynthetic organisms

tend to increase ABS/RC and DI0/RC to maintain a stable ET0/RC,

thus maintaining the functional integrity of the photosynthetic

system when subjected to high excitation energies (Giovagnetti

et al., 2014). Therefore, the reduction in the net photosynthetic rate

caused by UVR might be attributable to a decrease in the number of

active unit reaction centers.

Additionally, the net photosynthetic rate of S. horneri enriched

in nitrate-nitrogen was greater than that of ammonia-nitrogen-

enriched S. horneri under UVR. Although the activity of nitrate-

nitrogen-enriched NR is significantly reduced by exposure to UVR

conditions, but the advantage of nitrate-nitrogen lies in its superior

storage capacity. Studies have demonstrated that algal cells can store

nitrate-nitrogen in vesicles following uptake. The intracellular and

extracellular nitrate-nitrogen concentration ratio can reach 1000:1

(Narvarte et al., 2023), which ensures an ample supply of nitrogen

required for other physiological processes such as photosynthesis

and carbon fixation in algal cells. Xu and Gao (2012) have reported

in Gracilaria lemaneiformis that high levels of UVR can disrupt the

molecular structure of NR and reduce its activity. However, it has

also been shown that NR can absorb UVR, function as a

photoreceptor for UVA, and utilize UVA for algal photosynthesis

and growth (Gao and Xu, 2008; Xu and Gao, 2009). UVR can act as

an environmental factor in controlling the carbon and nitrogen

cycles. UVR has been shown to promote NRA in the brown algae

Fucus spiralis and Ulva olivascens (Viñegla et al., 2006). However,

the effect of UVR on NRA is species-specific (Huovinen et al., 2007)

and depended on the level of UVR. The soluble protein content of

nitrogen-enriched S. horneri exposed to UVR in this study was

lower than that of the visible light treatment, which may be

attributable to the inhibition of NR activity.

Macroalgae have evolved protective mechanisms under UV

stress. Non-photochemical quenching (NPQ) is a process that

converts excess light energy into thermal energy, thereby

protecting the PSII reaction centers from UV radiation damage

through heat dissipation. This study found that both UV radiation

and an increase in nitrogen concentration led to an increase in NPQ

in S. horneri and that the greater the NPQ, the greater the

photoprotective ability of the algae (Goss and Jakob, 2010; Jahns

and Holzwarth, 2012). It has been suggested that a higher NPQ is
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associated with the accumulation of zeaxanthin (Garcıá-Mendoza

et al., 2011), which plays a role in the lutein cycle and can either

dissipate energy or accelerate the repair of damaged cells in algae

(Zudaire and Roy, 2001). In this study, ammonia-nitrogen-enriched

cultured S. horneri exhibited a higher NPQ and greater

photoprotection than nitrate-nitrogen enrichment. This may be

due to the facts that NPQ can be rapidly induced in seconds or

minutes (Garcıá-Mendoza and Colombo-Pallotta, 2007), and

ammoniacal nitrogen affects the DpH (Ruban et al., 2004). The

results of the ammoniacal nitrogen incubation of S. horneri ABS/RC

and DI0/RC were significantly lower than those of the other

treatments, which may have an indirect effect of increasing excess

excitation energy. Carotenoids, which function as antennae

pigments, not only capture light energy, but also quench singlet

oxygen and other reactive oxygen species (Singh et al., 2010),

protecting algal cells from damage. It has been documented that

exposure to UVR can induce the synthesis of UV-absorbing

compounds (UVACs) in algae (Xu and Gao, 2012; Navarro et al.,

2014). In this study, exposure to UVR radiation resulted in increases

in the contents both of Car and UVACs in S. horneri (Figure 9),

which suggested that the alga took protective measures to safeguard

its body against UV-induced damage.
5 Conclusion

After the golden tide outbreak, S. horneri floating on the surface

received more UVR radiation. The findings of this study revealed

that exposure to UVR resulted in impairment of the PSII reaction

center in S. horneri, leading to a decrease in the Fv/Fm and electron

transfer rate. Hence, the net photosynthetic carbon fixation rate of

S. horneri was considerably reduced, ultimately leading to the

inhibition of photosynthetic activity. The detrimental effects of

UVR were alleviated by amplification of NPQ and accumulation

of UV-absorbing substances in algal cells. In this study, exposure of

nitrate-enriched cultured S. horneri to UVR, ABS/RC, and DI0/RC

was elevated to sustain a stable ET0/RC. Consequently, the net

photosynthetic rate of nitrate-enriched cells was higher than that of

ammonia-enriched cultured S. horneri. Cultured S. horneri enriched

with ammonia exhibited a higher rate of NPQ and more robust

photoprotective capabilities than cultured S. horneri enriched with

nitrate. These results may contribute to explaining that the floating

S. horneri under UVR stress can still form golden tide in

eutrophic seawater.
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