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Transcriptome responses to
benzo[a]pyrene in liver slices of
sub-arctic fish species
Nadja R. Brun*†, Fekadu Yadetie †, Hanna Todal Liestøl ,
Odd André Karlsen and Anders Goksøyr

Department of Biological Sciences, University of Bergen, Bergen, Norway
Due to the expanding oil-related activities, the arctic and sub-arctic marine

environments are increasingly vulnerable to oil-related pollution such as

accidental oil spills. These cold-water ecosystems harbor many fish species that

are both ecologically and economically important such as the pelagic polar cod

(Boreogadus saida), capelin (Mallotus villosus), and benthic long rough dab

(Hippoglossoides platessoides). The latter two are much less studied and it is

crucial to characterize their responses to oil-related contaminants and develop

molecular biomarkers and genomic resources for future monitoring. In this study,

liver slice preparation and culture methods were used to characterize the

transcriptome responses (using RNA-seq) in capelin and long rough dab to

exposures of the polycyclic aromatic hydrocarbon (PAH) compound benzo[a]

pyrene (BaP). The liver slice culture and exposure experiments were performed

onboard a research vessel in the Barents Sea. Strong up-regulation of genes involved

in biotransformation, particularly the aryl hydrocarbon receptor signaling pathway

was observed in both species. A comparison of the number of differentially

expressed genes (DEGs) with previously published polar cod exposures indicates

that the latter respondedmore strongly (higher number of genes), suggesting higher

uptake and bioconcentration of BaP in the fatty liver tissue, although other factors

such as differences in clearance rate could potentially affect the responses. This

study provides new genomic resources and gene expression biomarkers in capelin

and long rough dab, enhancing our understanding of their response mechanism to

oil-related contaminants.
KEYWORDS
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Introduction

Oil-related activities are expanding into the arctic and sub-arctic marine environments,

making them increasingly vulnerable to oil-related pollution, such as accidental oil spills.

Globally, an estimated 13% of the undiscovered oil resources are in the Arctic and tens of

oil and gas fields have been identified in the region (Harsem et al., 2011). The Barents Sea is

an area of particular interest, as the Norwegian Offshore Directorate estimates 61% of
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undiscovered resources in Norwegian territorial waters to be found

there and has awarded 78 new production licenses in the past 10

years (Norwegian Offshore Directorate, 2024). Increased traffic and

industrial activities in the harsh climate of the Arctic region may

increase the likelihood of an oil spill, posing considerable risk to the

sensitive Arctic ecosystem (Nevalainen et al., 2017; Nong

et al., 2018).

In addition to the risk of accidental oil spill, PAH

contaminations in the Arctic region may come from atmospheric

deposition, increased traffic, and crude-oil contaminated produced

water discharges from offshore petroleum installations (Beyer et al.,

2020). Although baseline levels of PAHs such as BaP in fish from

Arctic and sub-Arctic regions are low or undetectable (Nahrgang

et al., 2013; Jörundsdóttir et al., 2014), PAH contaminations have

been detected in fish species near offshore installations in the North

Sea, causing concerns about the possible effect of crude oil

contamination in the sub-Arctic regions due to increasing oil-

related activities (Beyer et al., 2020).

The Arctic and sub-Arctic cold-water environments are home

to a wide array of fish species, many of which have both ecological

and commercial significance. Among these species are the pelagic

polar cod (Boreogadus saida) and capelin (Mallotus villosus) as well

as the demersal long rough dab (Hippoglossoides platessoides). Polar

cod and capelin are fish species in the arctic and sub-arctic food

web, linking lower trophic levels to higher-level predators such as

sea birds and marine mammals (Hop and Gjøsæter, 2013). While

the Polar cod is an arctic species, capelin is the most abundant in

sub-arctic regions (Hop and Gjøsæter, 2013). Long rough dab is a

bottom-dwelling species that is among the most abundant in the

Barents Sea of the sub-Arctic region (Walsh, 1996).

Although the effects of pollutants on temperate fish species have

been widely studied, fewer studies have focused on how cold-water

species respond to pollutants such as oil spills (Beyer et al., 2020).

These fish species also have different life history traits (slower

growth, later maturation, greater allocation of energy resources

towards reproduction than growth) that may affect how they

respond to contaminants. Moreover, some Arctic and sub-Arctic

species store fat in the liver (e.g. polar cod and Atlantic cod), which

may affect the accumulation and responses to lipophilic

contaminants (Dabrowska et al., 2009). It is thus important to

develop robust methods and genomic resources that can effectively

characterize the responses of the Arctic and sub-Arctic species to

relevant contaminants.

Transcriptome analyses have previously been useful in

toxicological studies of crude oil-related contaminants in polar

cod (Nahrgang et al., 2009, 2010; Song et al., 2019; Yadetie et al.,

2021) and Atlantic cod (Yadetie et al., 2018; Aranguren-Abadıá

et al., 2022). However, transcriptomic resources and biomarkers

that facilitate the study of contaminant effects have not been

established for the less-studied capelin and long rough dab.

Physiologically, capelin eggs respond to heavy fuel oil with

decreased hatching success and malformations such as

craniofacial abnormalities and reduced body size (Frantzen et al.,

2012; Tairova et al., 2019). Such toxicological studies will benefit
Frontiers in Marine Science 02
from the use of molecular biomarkers that may better detect sub-

lethal effects and link molecular initiating events to observed apical

endpoints in the adverse outcome pathway framework (Ankley

et al., 2010; Sørhus et al., 2017). Little is known on the response of

long rough dab to oil pollution but being a bottom-dwelling fish, it

can be vulnerable to the harmful effects of contaminated sediments

(Jonsson and Björkblom, 2011). Crude oil is more persistent in

sediments as shown for the Deepwater Horizon oil spill (Liu et al.,

2012) and bottom-dwelling fish are useful for evaluating

toxicological effects. For example, the flatfish Southern flounder

has been useful to study the effects of sediments contaminated with

Deepwater Horizon oil (Brown-Peterson et al., 2015). Thus,

developing genomic resources and molecular biomarkers for long

rough dab will facilitate its use in environmental pollution

monitoring in the sub-Arctic region.

The primary objectives of this study were threefold: first, to

sequence liver transcriptomes for capelin and dab; second, to

elucidate the transcriptome responses elicited by benzo[a]pyrene

(BaP) in these species and identify candidate biomarkers; and third

to compare the transcriptome responses observed in capelin and

dab with previously published data from polar cod (Yadetie et al.,

2021), which store fat in the liver. To this end, liver slices (Eide et al.,

2014; Yadetie et al., 2021) of the fish species were prepared and

exposed to BaP, on board a research vessel in the northern Barents

Sea, and transcriptome responses were investigated using RNA-seq

and qPCR. PAHs such as BaP that can activate the aryl hydrocarbon

receptor (AhR) are among the most toxic components of crude oil

and most biomarker assays for oil contaminants are based on the

AhR activity (Hylland et al., 2006; Pampanin and Sydnes, 2013;

Honda and Suzuki, 2020). Therefore, we used BaP as a model

compound representing one of the most toxic components of crude

oil to map transcriptome responses and develop biomarkers of

crude oil contamination.
Method

Capelin and long rough dab sampling

All fish were sampled by trawling (permitted by the Directorate

of Fisheries, Norway) on board R/V Kronprins Haakon during the

Nansen Legacy research cruise to the Northern Barents Sea in

August 2019. Capelin and long rough dab were sampled

opportunistically at station P2 (77.5156°N, 33.9343°E) during a

trawl that served multiple sampling purposes for other projects. See

Supplementary Figure S1 for location details and Supplementary

Table S1 for biometric details. Female polar cod were collected at

station P3 (78.7°N, 34.0°E) and the data of this species was

previously published (Yadetie et al., 2021). After trawling, the fish

were either kept in 500 L tanks with running seawater at ambient

seawater temperature or kept on ice. One by one, live fish were

euthanized by a quick blow to the head before dissecting the liver

aseptically for slicing. This procedure does not require ethical

approval as the fish are killed before the experiment.
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Preparation and culture of precision-cut
liver slices

The precision-cut liver slices (PCLS) were prepared as

described previously (Yadetie et al., 2021). For long rough dab,

liver samples were collected from six female fish but one replicate

was excluded from the analysis due to insufficient cell viability as

assessed by MTT and LDH assay (n = 5 per group). The liver was

rinsed and placed in ice-cold PCLS buffer (Supplementary Table

S2). A small block (ca. 2x2x2 cm) of liver sample from each fish

was cut and glued (Loc-tite® Super Glue) on the specimen plate

of a Leica vibratome VT1200 (Leica, Wetzlar, Germany) and

sliced into 300 mm thick slices at a speed of 0.9 mm/s and

amplitude 3 mm. The slices were then transferred to a petri

dish with ice-cold culture medium (Leibowitz-15 medium, Life

Technologies™ Gibco®, Paisley, UK) supplemented with 10%

charcoal-stripped and heat-inactivated fetal bovine serum and

1% penicillin-streptomycin-amphotericin (10,000 U/mL

potassium penicillin, 10,000 mg/mL streptomycin and 25 mg/mL

amphotericin B, Sigma-Aldrich). The slices from each fish were

cut into smaller (approximately 4 × 4 mm) pieces using a sterile

razor blade and divided into 12-well culture plates containing the

growth medium. For capelin, the liver was too small to slice with a

vibratome. Instead, 24 liver samples were manually cut into

approximately 1 mm3 pieces using a sterile razor blade and put

into 12-well culture plates (all slices from a single liver per well,

n = 6 per group). All liver pieces were subsequently preincubated

at 10°C for 2 h in the culture medium (Supplementary Table S3)

before exposure.
Experimental design and exposure of
the PCLS

A paired sample design was chosen for long rough dab as

described previously (Yadetie et al., 2021), with 5 biological

replicates per treatment group. For capelin, the liver was too small

for paired sample design, and thus an independent sample design was

chosen where replicates in each treatment group represented different

individual fish. The slices were treated with dimethyl sulfoxide

(DMSO; solvent control), low, medium, and high concentrations of

BaP (0, 0.1, 1, and 10 mM, respectively) with an equal concentration

of DMSO (0.2%) across treatment groups. The BaP concentrations

were selected based on our experience with ex vivo exposures

covering concentration ranges that enable to identify biomarker

candidates and are beyond the naturally occurring BaP

concentrations in arctic sediments (Lakhmanov et al., 2022; Stich

and Dunn, 1980). All samples were cultured in 12-well plates (Costar,

Corning, New York, USA) in 2 mL of culture medium and incubated

at 10°C on a horizontal shaker (50 rpm) for 72 h. After 72 h in

culture, slices were collected and either used directly in an MTT assay

or snap-frozen in liquid nitrogen for RNA extraction. The samples as

well as the media (for measurement of lactate dehydrogenase; LDH)

were stored at −80°C until further processing.
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RNA extraction and sequencing

Total RNA was extracted from frozen slices in TRI Reagent

using a motorized handheld tissue homogenizer according to the

manufacturer’s protocol (Sigma-Aldrich, St. Louis, MO, USA).

RNA purity and concentration were confirmed using a

NanoDrop ND-1000 spec t rophotometer (NanoDrop

Technologies, Wilmington, DE, USA) and Agilent 2100

bioanalyzer where all samples passed a RIN value of ≥ 6.8

(Agilent Technologies, Santa Clara, CA, USA). Library

preparation using Poly(A)+RNA and sequencing (Illumina

NovaSeq 6000) were performed at Novogene (Cambridge, UK).

Briefly, for each sample, Poly(A)+RNA was purified from 1 mg total
RNA using poly-T oligo-attached magnetic beads and fragmented

using divalent cations under elevated temperature. After first strand

and second strand cDNA synthesis, size selected cDNA library

(150–200 bp) was PCR amplified and sequenced to generate 150-bp

paired-end sequences using the Illumina NovaSeq 6000 platform.
De novo assembly, quantification and
differential expression analysis of capelin
and long rough dab transcriptome

For long rough dab and capelin, de novo transcriptome

assembly and quantification were performed by Novogene as

described before (Yadetie et al., 2022). Briefly, after clean raw

RNA-seq reads and quality filtering, de novo transcriptome

assembly was performed by combining all reads (from both

control and exposed samples) for each species, using the Trinity

software (Grabherr et al., 2011). The longest transcript from each

cluster was selected as “unigene”. Subsequent analyses were

performed with the unigene reference assembly for each species.

The unigene assemblies were annotated using BLAST+ searches in

the databases NT, NR, KO, SwissProt, Pfam, GO, and KOG. For

each species, the clean reads from individual samples were mapped

to the respective reference assembly and quantified using Bowtie2

and RSEM (Li and Dewey, 2011). The summary of the quality

controls and assembly statistics can be found in Supplementary

Tables S4–S6. The distribution of transcriptome lengths for each

species are depicted in Supplementary Figures S2 and S3.

Differential expression analysis between DMSO control and 10

mM BaP-treated groups was performed using the edgeR package

(Robinson et al., 2010). Differential expression analysis was

performed using paired tests for liver slices from long rough dab,

as described previously (Yadetie et al., 2021), whereas an unpaired

test was used for capelin groups with statistically independent

samples. Genes with adjusted p-values (padj) < 0.05 and fold-

change (FC) ≥ 1.5 for up-regulated and FC ≤ 0.67 for down-

regulated were considered differentially expressed. The venn

diagram was plotted using Plotly. The RNA-seq raw and processed

data files have been deposited in the ArrayExpress database at EMBL-

EBI (http://www.ebi.ac.uk/arrayexpress) under accession numbers

E-MTAB-13934 (capelin) and E-MTAB-13932 (long rough dab).
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Quantitative polymerase chain reaction

Quantitative polymerase chain reaction (qPCR) assays were

performed as described previously (Yadetie et al., 2018) using

primers targeting cytochrome P450 family 1 subfamily A (cyp1a),

aryl hydrocarbon receptor repressor b (ahrrb), and fibroblast growth

factor 7 (fgf7) protein-coding genes (Supplementary Table S7).

Briefly, cDNA was synthesized from 1.0 mg of each total RNA

sample in 20 mL reactions using iScript cDNA Synthesis Kit (Bio-

Rad, Hercules, CA, USA). qPCR was performed with diluted (1:20)

cDNA and 0.5 mMof the forward and reverse primers using a BioRad

CFX96 real-time PCR detection system (Bio-Rad Laboratories). All

quality controls were run as previously described and the expression

levels were analyzed by comparing treated samples to controls using

the DDCq method (Schmittgen and Livak, 2008) followed by log2

transformation. The data was plotted using GraphPad PRISM 10.
Viability assay

The supernatants of the PCLS cultures were frozen in liquid

nitrogen for subsequent viability analysis based on LDH activity

using the Cytotoxicity Detection Kit (Roche Molecular Diagnostics,

Mannheim, Germany). The results are depicted in Supplementary

Figure S4. For the long rough dab PCLS cultures, additionally, MTT

assays were performed following the protocol described in Yadetie

et al., 2018. For capelin, no MTT assay was possible as the liver was
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too small for slicing appropriate sizes for this assay. As no

spectrophotometer was available onboard the research vessel, the

color change was evaluated by eye and pictures were taken.
Results and discussions

Differentially expressed genes

In capelin, a total of 82 genes (with known human orthologs)

were identified as differentially expressed genes (DEGs; Figure 1).

Since independent samples (biological replicates) were used in the

case of capelin, an unpaired independent test was applied to identify

DEGs. For long rough dab, since slices from the same fish could be

used in both the control and BaP-treated groups, a paired test was

applied in the statistical analysis, as described before (Yadetie et al.,

2021). The number of DEGs identified for long rough dab (with the

same cutoff described above for capelin) was 189 (Figure 1).

A comparison of the DEGs shows 14 shared genes between

capelin and long rough dab including the Ahr-pathway genes cyp1a

and ahrrb (Figure 1). The cyp1a and ahrrb genes are among the top

induced genes used as biomarkers for Ahr pathway-activating

compounds such as BaP and crude oil (Yadetie et al., 2018, 2021;

Strople et al., 2023). A higher number of DEGs was identified for the

long rough dab, which might be related to the use of paired design,

which reduces confounding factors providing better statistical

power. It is also possible that the manual capelin slicing resulting
FIGURE 1

Venn diagram of the differentially expressed genes in polar cod, long rough dab, and capelin liver slices exposed to 10 mM BaP. Only DEGs of human
orthologs were included. Previously published data from polar cod was included for comparison (Yadetie et al., 2021).
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in thicker liver tissue was less optimal for culture and exposure.

Furthermore, in the case of capelin, the whole liver was used per

sample which may contain more diverse cell types such as

endothelial cells from larger blood vessels and biliary ducts that

are less likely to be included in the thin liver slices of long

rough dab.

Comparison of the DEGs from the two species with DEGs from

polar cod PCLS from experiments with a similar design (10 mMBaP

exposure; Yadetie et al., 2021) shows that the two species in the

current experiment have a much lower number of DEGs. This is

possibly related to the higher lipid content of the polar cod liver,

although other factors such as differences in metabolic rate may

affect the responses. Alternatively, species differences in AhR

sensitivity may contribute to the differences in DEGs.

The RNA sequencing was performed only from the highest

concentration of BaP (10 mM) and DMSO groups. To evaluate

concentration responses, the expression of selected genes (cyp1a,

ahrrb, and fgf7) that were highly upregulated by BaP in this and

other experiments (Yadetie et al., 2018, 2021; Strople et al., 2023)

was quantitated using qPCR. Figure 2 shows that the three genes

were significantly upregulated in the highest BaP concentration

groups in both species. The cyp1a gene was significantly

upregulated also in the lower (0.1 mM and 1 mM BaP)

concentration groups for capelin. None of the other capelin qPCR

analyzed genes were significantly affected in the 0.1 mM and 1 mM
BaP groups (Figure 2A). In long rough dab, none of the genes were

significantly affected in the 0.1 mM and 1 mM BaP concentration

groups (Figure 2B), which may suggest lower responses to BaP than
Frontiers in Marine Science 05
capelin, although a higher number of DEGs were detected in the

former (Figure 1).
Pathway enrichment analysis

Pathway enrichment analysis of the DEGs showed that the

Ahr pathway was activated in capelin (Table 1). In addition to

the Ahr pathway, only two other WikiPathways, namely

Glycerophospholipid Biosynthetic Pathway and B Cell Receptor

Signaling Pathway, were significantly enriched (Table 1). In long

rough dab, the Ahr pathway was not among the top list, although

the top enriched Nuclear Receptors Meta-Pathway includes the

Ahr-signaling pathway (Fijten et al., 2023), also evidenced by the

presence of cyp1a and ahrrb in the gene list populating this enriched

pathway (Table 2). Other enriched pathways in long rough dab

include the NRf2-signaling and Cysteine and methionine

catabolism related to oxidative stress responses (Ma, 2013; Bin

et al., 2017). BaP is known to induce oxidative stress that may lead

to activation of the NRf2 pathway (Ma, 2013). Overall, the pathways

enriched in both species in this study relate to the activation of Ahr-

signaling pathways and are consistent with known broad

toxicological effects of this pathway that include oxidative stress

responses, immune responses, and lipid metabolism (Lee et al.,

2010; Ma, 2013; Rothhammer and Quintana, 2019). Comparison of

enriched Wikipathways for capelin, long rough dab (Tables 1, 2),

and polar cod (Yadetie et al., 2021), shows that the main Ahr-

related pathways were enriched in all three fish, while there are
FIGURE 2

qPCR analysis of cyp1a, ahrrb, and fgf7 mRNA levels in (A) capelin (n = 6) and (B) long rough dab liver slices (n = 5) exposed to 0.1-10 mM BaP as
indicated. Error bars indicate the mean ± SD of the individual values. Asterisks indicate significant differences to DMSO controls (*p < 0.05;
**p < 0.01; ***p < 0.001).
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pathways that are affected exclusively in each organism

(Supplementary Figure S5). For example, oxidative stress and

various signaling pathways are exclusive to long rough dab and

polar cod, respectively (Supplementary Figure S5). Induction of

oxidative stress in long rough dab is consistent with the well-known
Frontiers in Marine Science 06
effects of BaP (Briedé et al., 2004). Although a much longer list of

genes was affected in polar cod, oxidative stress-related pathways

were not significantly enriched.

Enriched pathways may indicate disturbed physiological

processes and may provide a mechanistic link to apical endpoints.

The Ahr pathway is emblematic of the detoxification of xenobiotic

compounds and its enrichment has been linked to developmental

abnormalities such as cardiac malformation (Incardona et al., 2009;

Tang et al., 2020) and circadian rhythm disturbances (Shen et al.,

2019). In long rough dab, the enriched pathways are often related to

oxidative stress which can have various adverse physiological

outcomes or be resolved at the cellular level as adaptive

responses. Thus, some of the activated pathways can suggest

physiological consequences for exposed fish, and genes from these

pathways may be used as biomarker genes once the link is

established, for example by an AOP.

In summary, we have characterized the liver transcriptome

response in the two cold-water species capelin and long rough

dab, providing transcriptomic resources and biomarkers for PAH

exposures, previously unavailable for these species. These resources

can be useful in future monitoring of the effects of Ahr-agonist

contaminants such as high molecular weight PAHs from crude oil, a

possible source of pollution due to increasing petroleum-related

activities in the Arctic region. Toxicological studies of crude oil

exposure have revealed harmful effects such as reduced hatching

success of capelin eggs and increased developmental malformations

(Frantzen et al., 2012; Tairova et al., 2019). However, according to a

recent exposure study of capelin embryos to a water-soluble fraction

(WSF) of crude oil had no observable effects on embryo

development (Nahrgang et al., 2023). Combining phenotypic

analysis such as developmental endpoints with gene expression

analysis may reveal mechanistic information underlying observed

phenotypic changes in such toxicological studies (Sørhus et al.,

2016; Aranguren-Abadı ́a et al., 2022). Comparison of the

transcriptome analysis results with previously published polar cod

exposures (Yadetie et al., 2021) indicated that polar cod responded

more strongly (higher number of genes), suggesting higher up-take

of BaP in the fatty liver tissue or species differences in AhR

sensitivity. The main enriched pathways in polar cod indicated

effects on cell signaling while pathways enriched in capelin and long

rough dab indicate immune response and oxidative stress. In all

three fish species, pathways related to Ahr signaling were

dysregulated. Future studies need to investigate the factors that

resulted in the apparent differences in the responses to BaP.
Conclusions

The sub-Arctic fish species capelin and long rough dab

responded to the exposure of a petroleum-related contaminant

with the upregulation of biomarker genes in the liver, particularly

cyp1a and ahrrb of the Ahr pathway. This study thus provides new

liver transcriptome resources and gene expression biomarkers in

capelin and long rough dab. This is relevant for biomonitoring in

these lesser-studied environments, particularly in the case of

oil spills.
TABLE 1 Pathway enrichment analysis in BaP (10 mM) exposed capelin
liver slices*.

WikiPathway Term Adjusted
P-value

Genes

Glycerophospholipid Biosynthetic
Pathway WP2533

0.04 PTDSS1,
GPD1, PIP5K1A

B Cell Receptor Signaling
Pathway WP23

0.04 PIP5K1A, GRB2,
IKBKG, CD22

Aryl Hydrocarbon Receptor
Netpath WP2586

0.04 CYP1A1,
AHRR, NCOA7

Aryl Hydrocarbon Receptor
Pathway WP2873

0.04 UGT1A1,
CYP1A1, AHRR
*Analyzed using Enrichr (Kuleshov et al., 2016).
TABLE 2 Pathways analysis in BaP (10 mM) exposed long rough dab
liver slices*.

WikiPathway
Term

Adjusted
P-value

Genes

Nuclear Receptors
Meta-Pathway WP2882

0.00057 IGFBP1, ALAS1, SLC6A13, SLC2A1,
IRS2, CES5A, CYP7A1, FOXO1,
GCLC, PRDX1, CYP1A1, AHRR,
GCLM, FGF13

Cytoplasmic Ribosomal
Proteins WP477

0.00279 RPS17, RPL21, RPL23, RPL12,
RPL27A, RPL35A, RPL39

Focal Adhesion-PI3K-
Akt-mTOR-signaling
pathway WP3932

0.031 COL1A1, NGFR, COL1A2, VWF,
KDR, SLC2A1, IRS2, PIK3CB,
FGF13, FOXO1, ITGA9

Cysteine and
methionine
catabolism WP4504

0.0225 MPST, BHMT, GCLC

NRF2
pathway WP2884

0.0251 GCLC, PRDX1, SLC6A13, SLC2A1,
GCLM, FGF13, CES5A

Transcription factor
regulation in
adipogenesis WP3599

0.0463 IRS2, PPARG, FOXO1

Blood Clotting
Cascade WP272

0.0463 FGB, VWF, FGG

Photodynamic therapy-
induced NFE2L2
(NRF2) survival
signaling WP3612

0.0463 NQO2, GCLC, GCLM

Angiopoietin Like
Protein 8 Regulatory
Pathway WP3915

0.0463 SLC2A1, IRS2, PIK3CB, MAP3K6,
CYP7A1, FOXO1

COVID-19, thrombosis
and
anticoagulation
WP4927

0.0468 FGB, FGG
*Analyzed using Enrichr (Kuleshov et al., 2016).
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