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Recent decadal trends of deoxygenation in the global ocean interior have

resulted in the expansion and shoaling of oxygen minimum zones (OMZs).

When the OMZs upper bound nears the euphotic zone a unique community of

phytoplankton, residing in extremely low light (<0.1% surface irradiance) and

dissolved oxygen concentrations (<1-2 mmol kg-1), can appear. In this mini-

review paper we synthesize our current understanding of the phytoplankton

community that resides in an OMZ chlorophyll maximum (OMZ-CM), below the

depths of the deep chlorophyll maximum found in permanently and seasonally

stratified regions, and its role in OMZ biogeochemical cycles. Uncultivated basal

lineages of the cyanobacterium Prochlorococcus dominate this community,

forming an OMZ-CM that can contribute to integrated stocks of chlorophyll a, in

some cases with a similar magnitude to the deep chlorophyll maximum.

Photosynthesis by Prochlorococcus in the OMZ-CM provides a significant

source of oxygen, that fuels the aerobic oxidation of nitrite and organic matter,

impacting elemental biogeochemical cycling, including that of carbon and

nitrogen. Yet, on a global scale, there is a lack of understanding and

quantification of the spatial distribution of these OMZ-CM, their stocks of

phytoplankton, their influence on fluxes of carbon and nitrogen, and how

these may respond to climate change. Monitoring the dynamics of the OMZ-

CM and biogeochemical cycles in OMZs is challenging, and requires a

multidisciplinary approach, combining ship-based observations with

autonomous platforms, satellite data, and conceptual models. Only then can

the implications of enhanced deoxygenation on the future marine ecosystem

be understood.
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1 Introduction

Phytoplankton growth is dependent on light and nutrient

availability (Bristow et al., 2017). In stratified open ocean regions,

a typical vertical profile of phytoplankton is characterised by a deep

chlorophyll maximum (DCM) that forms where there is above

minimum light and nutrients to support photosynthesis and growth

(Mignot et al., 2014; see Figure 1B). In contrast to well-oxygenated

mixed (Figure 1A) and stratified waters (Figure 1B), regions

characterised by sluggish circulation, long ventilation times

(Pacific and Atlantic Ocean Oxygen Minimum Zones (OMZs)),

and high rates of oxygen utilisation (Indian Ocean OMZ)

(Karstensen et al., 2008; Keeling et al., 2010), can form OMZs

(see Figure 1C). In some cases, the OMZ upper bound can approach

the photosynthetically active euphotic zone, supporting the growth
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of an uncultivated unique community of low-oxygen-adapted

phytoplankton (Figure 1C: Johnson et al., 1999; Goericke et al.,

2000; Whitmire et al., 2009; Lavin et al., 2010). This community

relies on other mechanisms, including the use of organic

compounds (see Biller et al., 2018; Coe et al., 2016 and Ulloa

et al., 2021), “helper-bacterium” (see Morris et al., 2008 and Roth-

Rosenberg et al., 2020), and fermentation, to supplement growth in

extremely low irradiance levels and oxygen depletion (Wong et al.,

2023). Due to the depth of these phytoplankton communities,

monitoring their dynamics and contributions to net stocks at a

high spatial and temporal resolution, is challenging (Cox

et al., 2023).

A 1°C rise in global temperatures since the pre-industrial period

has driven rapid oceanic changes, including shifts in oceanic

circulation, thermal states, oxygen solubility, export production,
FIGURE 1

The typical vertical distribution of irradiance (yellow dotted line), density (purple line), phytoplankton (Chl a) (green line) and oxygen (red line), and
the positions of the mixed layer depth, the deep chlorophyll maximum (DCM), the oxygen minimum zone chlorophyll maximum (OMZ-CM), and
oxygen minimum zone (OMZ) within the top 200 m of the water column in the occurrence of: (A) high latitude well-mixed ocean, (B) typical
subtropical ocean, and (C) tropical ocean with an OMZ approaching the euphotic zone.
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remineralisation, and air-sea gas exchange (Matear and Hirst, 2003;

Keeling et al., 2010; Winder and Sommer, 2012; Hoegh-Guldberg

et al., 2018). Enhanced thermally-driven stratification limits deep

vertical mixing, isolating oxygen-rich surface waters from oxygen-

depleted subsurface waters (where O2 <60 mmol kg-1), intensifying

and forming OMZs (Reid, 1965; Diaz, 2001; Franz et al., 2012;

Márquez-Artavia et al., 2019). OMZs are host to a diverse

assembledge of anaerobic microorganisms and organosulfer-based

heterotrophs (Ulloa et al., 2012; Wright et al., 2012; Callbeck et al.,

2021). The anaerobic microbial community aids the transformation

of nitrate, nitrite, and ammonium through two dominant, oxygen-

sensitive processes that form N2, anaerobic ammonium oxidation

and denitrification (Lam and Kuypers, 2011; Ulloa et al., 2012). The

formation of N2 in OMZs is responsible for around 30-50% of fixed

nitrogen loss in the global ocean (Codispoti et al., 2001). Nanomolar

dissolved oxygen (DO) rates in OMZs support denitrification – the

sequential reduction of nitrate to gaseous N2O and N2 via nitrite, and,

nitric oxide (Lam and Kuypers, 2011) – yet, may be limited by the

availability of organic matter (Ulloa et al., 2012). Denitrification has

been found to be the dominant pathway of N2 production, however,

anammox contributes significantly to N2 formation in the upper parts

of the OMZ (Lam and Kuypers, 2011). The deficient levels of oxygen

and nitrate in OMZs, can also promote enhanced rates of sulfate

reduction (Canfield et al., 2010; Callbeck et al., 2021). Sulfate

reduction in OMZs, alongside organic matter oxidation and

sulfidogenisis, produces sulfide which is then oxidized by sulfide-

oxidizing nitrate-reducing bacteria (Canfield et al., 2010; Callbeck

et al., 2021). Projected expansions (Keeling et al., 2010) and shoaling

(Gilly et al., 2013) of OMZs to shallower depths may alter OMZ

biogeochemical cycling.

Our understanding of low-oxygen-adapted phytoplankton

physiology (Wong et al., 2023), and their role in biogeochemical

cycling and evolution is improving (Garcia-Robledo et al., 2017;

Aldunate et al., 2020, 2022; Ulloa et al., 2021), however, many

questions remain that can only be addressed by improved

monitoring. This mini review aims to provide a summary on the

current state of knowledge on the distribution of low-oxygen-

adapted phytoplankton and their contribution to integrated

phytoplankton stocks and anoxic biogeochemical cycles, whilst

highlighting future work needed to advance understanding as

projected shoaling of OMZs (Long et al., 2019) may enhance the

presence of low-oxygen-adapted phytoplankton in a future ocean.
2 Distribution of phytoplankton

Optimal environmental conditions for phytoplankton

community growth are expected to vary seasonally with cycles of

light, stratification and ocean mixing, influencing phytoplankton

and OMZ distribution (Figure 2: Cox et al., 2023; Winder and

Sommer, 2012). At low latitudes, DCMs are a permanent and

frequent feature as a result of light/nutrient availability and

water-mass stability, yet at higher latitudes DCMs are seasonally

dependent (see Figure 2; Cornec et al., 2021). The formation of a

chlorophyll-a maximum below the traditional DCM, and near to

(i.e. within suboxic regions) or within the upper bound of an OMZ
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(hereafter defined as an OMZ-CM, see Figure 1C) has been

observed in low latitudes, such as the Eastern Tropical North

Pacific (ETNP), the Eastern Tropical South Pacific (ETSP) and

the Arabian Sea (see Figure 2; Goericke et al., 2000; Cepeda-Morales

et al., 2009; Garcia-Robledo et al., 2017), and can vary seasonally

(see Figure 2 and Cox et al., 2023; Wong et al., 2023).

In stratified regions where an OMZ exists, the oxic surface layer

(typically 0 - 50 m) and the anoxic deep waters (where oxygen is

absent; typically 100 - 1000 m) is separated by a suboxic zone

(where there is oxygen deficiency; typically 50 – 100 m) (Wong

et al., 2023). The depth and abundance of OMZ-CMs is dependent

on OMZ thickness and region (Sarma et al., 2020; Wong et al.,

2023). In the ETNP, the OMZ-CM depth has been found to vary

between 80 - 160 m, remaining below the upper bound of the OMZ

found between 80 - 116 m (see studies by Goericke et al. (2000);

Cepeda-Morales et al. (2009); Garcia-Robledo et al. (2017);

Aldunate et al. (2020); Cox et al. (2023)). Similarly, in the ETSP,

OMZ-CMs have been identified under the upper bound of the OMZ

at depths between 68 - 130 m (Garcia-Robledo et al., 2017; Aldunate

et al., 2020), and in the equatorial Pacific, between 86 - 128 m

(Márquez-Artavia et al., 2019). However, due to the seasonal

variation in physical mechanisms governing the Arabian Sea –

including convection mixing, coastal upwelling and open ocean

upwelling – the presence of OMZ-CMs is seasonally and temporally

variable (Goericke et al., 2000; Sarma et al., 2020).
3 OMZ-CM community composition

Cyanobacteria, specifically Prochlorococcus, are reported to

dominate over other phytoplankton communities in the OMZ-

CM (Goericke et al., 2000; Lavin et al., 2010). Prochlorococcus’

ability to thrive in low-light conditions (see Figure 1C) was initially

attributed to the physiological acclimation observed in natural

assembledges through flow cytometry and high-performance

liquid chromatography (Johnson et al., 1999; Goericke et al.,

2000). Distinct adaptations to light enable Prochlorococcus to

occupy the entire euphotic zone, which can be explained by

ecotype adaptation to differing light optima for growth (Moore

et al., 1998). Cells at the base of the euphotic zone in low irradiances

are termed low-light (LL) adapted ecotypes, and those closer to the

surfaces are termed high-light (HL) adapted ecotypes (Biller et al.,

2014). Prochlorococcus’ pigment traits of divinyl chlorophyll-a and

b, and a-carotene, alongside potential use of organic compounds to

supplement carbon and energy requirements, aid survival in

extremely low irradiances (Ulloa et al., 2021). More recent

molecular techniques have also revealed the existence of novel

OMZ-specific Prochlorococcus lineages (Lavin et al., 2010; Ulloa

et al., 2021). In OMZ-CM, the majority of the phytoplanktonic

community is thought to be Prochlorococcus ecotypes AMZ I

(formerly LLV), AMZ II (formerly LLVI), and AMZ III (Lavin

et al., 2010; Ulloa et al., 2021), found only in oxygen-depleted

regions (Ulloa et al., 2021). Ulloa et al. (2021) suggest that certain

adaptations to oxygen depletion are ancestral, implying that

Prochlorococcus may have originated in a low-oxygen subsurface

ocean. Other genetic properties of the AMZ ecotypes, including a
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hybrid-cluster protein, a cognate regulator of the anaerobic family,

and a gene encoding an iron-sulfur cluster repair protein, may

support adaptations to low-oxygen environments (Ulloa et al.,

2021). However, these distinct OMZ-specific Prochlorococcus

lineages are uncultivated, with little known about their physiology

and distribution.

Photosynthesis by OMZ-CM Prochlorococcus provides a

significant source of oxygen that fuels nitrite and organic matter

oxidation (Garcia-Robledo et al., 2017). Rapid consumption of

produced oxygen by aerobic microbial communities maintains

the anoxic environment (below detection limit at nanomolar

levels) (Tiano et al., 2014; Garcia-Robledo et al., 2017). Aerobic

respiration in extremely low dissolved oxygen concentrations is

suggested to be a common phenomenon that is initiated when the

microbial community residing in the anoxic environment is

exposed to oxygen concentrations of nanomolar to a few

micromolar (Tiano et al., 2014). Garcia-Robledo et al. (2017)

coined the oxygen production and rapid consumption, the

‘cryptic oxygen cycle’, that demonstrates aerobic metabolisms can

occur near the upper bound of the OMZ in a dimly lit environment,
Frontiers in Marine Science 04
as hypothesized by Ulloa et al. (2012). Seasonal trends of biological

productivity can modulate this cryptic oxygen cycle, with microbial

blooms intensifying during spring and summer, increasing

anaerobic consumption and particle export to mid-depths (Long

et al., 2021).
4 Controls of dissolved
oxygen concentrations

Dissolved oxygen dynamics are controlled by physical,

biological and biogeochemical processes that are sensitive to

natural and anthropogenic forcing (Altieri and Diaz, 2019;

Grégoire et al., 2021). Primary factors controlling DO

concentrations include: (1) air-sea exchange, (2) water-mass

venti lation, (3) temperature-controlled solubil ity, (4)

phytoplankton primary production, and (5) export production

and associated remineralisation (Matear and Hirst, 2003; Keeling

et al., 2010; Engel et al., 2022). The upper ocean DO concentrations

are affected by oxygen solubility, ocean circulation, air-sea
FIGURE 2

Seasonally estimated, global distribution of three environments for phytoplankton growth. Situations where the mixed layer is deeper than the
euphotic zone are seen in purple (see Figure 1A, mixed waters); situations where the euphotic zone is deeper than the mixed-layer are seen in blue
(see Figure 1B. stratified waters), and situations where the euphotic zone is deeper than the mixed-layer (stratified waters), but the depth of the
upper OMZ nears the euphotic zone (depth of the 60 mmol L−1 isoline reaches the 0.1% light level at the surface), offering conditions for an OMZ-
CM to form are seen in green (see Cox et al. (2023) and Figure 1C). This figure was inspired by Keeling et al. (2010). The figure was produced using
climatologies of mixed layer depth (Monthly Isopycnal & Mixed-layer Ocean Climatology; Schmidtko et al., 2013), euphotic depth (derived by using
NASA MODIS diffuse attenuation products at 490 nm (https://oceancolor.gsfc.nasa.gov), and the models of Morel et al. (2007), and the depth of the 60
mmol L−1 isoline from the World Ocean Database, 2018 (Garcıá et al., 2019).
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interactions and phytoplankton primary production (Oschlies,

2019). Whilst primary production increases DO concentrations

within the ocean surface, oxygen solubility in water is inversely

related to temperature, resulting in oxygen loss due to ocean

warming under climate change (Matear and Hirst, 2003; Garcia

et al., 2005; Keeling et al., 2010; Schmidtko et al., 2017; Oschlies

et al., 2018; Wu et al., 2022). The thermal sensitivity of oxygen

solubility is thought to explain up to 50% of oxygen loss in the

upper 1000 m and 15% of the overall observed global oxygen loss

since 1960 (Matear and Hirst, 2003; Keeling et al., 2010; Schmidtko

et al., 2017; Oschlies et al., 2018). Warming at the surface also

increases stratification, reducing ocean circulation (Oschlies, 2019).

Changes to ocean circulation in response to climate change is

thought to account for the other ≤ 50% oxygen loss in the upper

ocean, whilst contributing up to 98% to oxygen loss in the ocean

interior (>1000 m) (Oschlies, 2019). It is thought that reduced

ocean ventilation and circulation are responsible for around 85% of

the current overall global oxygen loss (Schmidtko et al., 2017;

Breitburg et al., 2018), whilst also impacted by decadal and

multidecadal oscillations (Matear and Hirst, 2003; Schmidtko

et al., 2017; Breitburg et al., 2018). Alongside reduced ventilation,

enhanced stratification can generate more nutrient utilisation

within surface waters, amplifying the downward flux of organic

matter (Keeling et al., 2010; Schmidtko et al., 2017), increasing

oxygen depletion (Keeling et al., 2010). Further increases in oxygen

depletion could influence the vertical distribution of phytoplankton

and the contribution of the OMZ-CM to phytoplankton stocks.
5 Monitoring the OMZ-CM

Monitoring OMZ-CM dynamics is challenging due to the depths

of OMZ-CM (around 100 m; Cox et al., 2023). Satellite remote

sensing provides insight into surface ocean physical and biological

dynamics (< 50 m) on global and synoptic scales (Groom et al., 2019).

Satellite passive ocean colour has proven useful for extrapolating

phytoplankton signals seen at the surface by the satellite to deeper

depths (Uitz et al., 2006). Although airborne lidar can observe

phytoplankton deeper in the water column (Hostetler et al., 2018;

Behrenfeld et al., 2023), and may prove useful for studying subsurface

communities in the future, the OMZ-CM is invisible to passive ocean

colour airborne sensors (Gordon and McCluney, 1975), and thus,

monitoring phytoplankton communities at depths requires in-situ

measurements. Traditionally, ship-based observations have provided

in-situ measurements below the ocean surface. Whilst important for

detailed analysis of phytoplankton at depth, ship-based

measurements are unable to provide the high spatial and temporal

coverage required to fully understand phytoplankton dynamics and

distributions in the subsurface (Chai et al., 2020; Cox et al., 2023).

Ocean robotic platforms, particularly autonomous profiling

floats, provide opportunities to observe and monitor the internal

ocean at a greater resolution on a large scale (Chai et al., 2020).

Autonomous profiling floats, such as Biogeochemical-Argo floats

(BGC-Argo floats), capture biogeochemical and physical dynamics at

depths up to 2000 m at higher spatial and temporal resolutions than

ship-based platforms, continuously collecting data for several years
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and, as of September 2019, providing on average 50 observed profiles

per 1° square globally (Ravichandran et al., 2012; Bittig et al., 2019;

Wong et al., 2020; Addey, 2022). Environmental observations taken

by optical sensors mounted on BGC-Argo floats measuring Chl a

pigment concentration and particulate backscattering (bbp) have been

used in conjunction with conceptual models to extract information

on OMZ-CM phytoplankton (Whitmire et al., 2009; Cox et al., 2023).

Cox et al. (2023) used data from a BGC-Argo float to study the

environmental characteristics, and the depth, the width, and the

concentration of the OMZ-CM peak, whilst also calculating the C:Chl

a ratio (inferred from bbp). In such study, Cox et al. (2023) found the

OMZ-CM to contribute around 45 ± 4% to chlorophyll a (Chl a) and

around 30% to integrated bbp (a proxy for phytoplankton carbon) in

the ETNP (after removing a background signal attributed to non-

algal particles). The contributions of the OMZ-CM were similar to

that of the DCM despite very low light conditions (Cox et al., 2023).

Depth-dependent variation in the bbp:Chl a ratio – used as a proxy for

the carbon:Chl a ratio – suggested that the OMZ-CM consists of very

low-light adapted phytoplankton (Cox et al., 2023). To synoptically

monitor phytoplankton and biogeochemical dynamics throughout

the water column, satellite passive ocean colour data and airborne

lidar may be useful to extrapolate vertical information derived from

autonomous profiling floats over large spatial areas (Claustre

et al., 2020).

In-vivo fluorescence is the most recorded biological property in

the open ocean, often used to understand the vertical profile and

dynamics of phytoplankton communities (Mignot et al., 2011). The

integration of fluorometers and optical backscattering sensors

onboard autonomous platforms has significantly increased the

spatial and temporal resolution of in-vivo Chl a fluorescence and

bbp data (Sauzède et al., 2015). However, it is important to consider

the limitations in these measurement techniques. Chl a fluorescence

is impacted by several factors (Sauzède et al., 2015). The range of

variation in the fluorescence-to-Chl a ratio can be up to 10-fold, a

function of community composition, photoacclimation, nutrient

limitation, light acclimation, growth phase, and non-photochemical

quenching (Seliger and Loftus, 1974; Zeng and Li, 2015; Bittig et al.,

2019). Optical backscattering sensors measure all particles in the

water, not just phytoplankton, so data can be difficult to interpret.

To harness these platforms to their full extent requires careful

quality control of optical data (Bittig et al., 2019; Dall’Olmo et al.,

2023), consideration of uncertainties, and understanding how

optical properties are impacted by the environment and the

particles and substances present in it (Organelli et al., 2018; Petit

et al., 2022). To interpret better the data from autonomous

platforms and to gain a more comprehensive understanding of

the OMZ-CM, there is a need to obtain cultured isolates for

physiological, biochemical and molecular analysis in the

laboratory (Mühling, 2012).
6 A changing ocean and
unanswered questions

Observations suggest deoxygenation is occurring globally at

a rate of -243 ± 124 Tmol O2 per decade in the upper ocean and
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-703 ± 244 Tmol O2 per decade in the interior ocean (Ito et al., 2017;

Schmidtko et al., 2017), alongside the shoaling of OMZs (Gilly et al.,

2013). The global oxygen inventory is negatively correlated with the

ocean heat content, due to oxygen solubility and ocean stratification

(Ito et al., 2017). Simulations by Earth System Models emphasise the

thermal sensitivity of the global ocean oxygen inventory, with further

declines predicted under all warming scenarios by 2100 (Ito et al.,

2017). Model simulations predict a 1-7% decline in the global ocean

oxygen inventory by 2100 (based on the average ocean oxygen

concentration of around 178 mmol kg-1; Sarmiento and Gruber,

2006), with decreases in oxygen solubility reported to contribute 18

– 50% (Keeling et al., 2010). Climate-induced ocean warming and

associated oxygen outgassing, alongside changes in circulation, are

suggested to cause OMZ expansion and intensification (Li et al., 2020;

Canfield and Kraft, 2022). However, recent studies have found a

weakening in upwelling and decrease in organic matter

transportation has led to an increase in DO concentration at the

Arabian Sea OMZ core (Vallivattathillam et al., 2023; Liu et al., 2024).

This recovery may be unique to the Arabian Sea due to the physical

and biological mechanisms in the region (Liu et al., 2024).

Oxygen distribution and availability structures the

biogeographic ranges of marine organisms (Long et al., 2021).

Whilst limiting for higher trophic levels, deoxygenation is

expected to benefit anaerobic microbes and low-oxygen-adapted

phytoplankton, such as some Prochlorococcus ecotypes (Long et al.,

2021). Further oceanic deoxygenation may enhance the presence of

OMZ-CMs in the global ocean, that may affect biogeochemical

cycles, elemental stoichiometry, and the regulation of atmospheric

climate conditions.

The following list identifies some of the major questions that

remain unanswered:
Fron
1. What is the distribution of low-oxygen-adapted phytoplankton

in the ocean and how does it vary seasonally and spatially?

2. What is the contribution of low-oxygen-adapted

phytoplankton to global and regional stocks of phytoplankton

and biogeochemical fluxes of carbon (e.g. primary production)

and other elements and compounds (e.g. nitrogen)?

3. How are low-oxygen-adapted phytoplankton likely to respond

to climate change and what are the implications for

biogeochemical cycles at regional and global scales?
A multidisciplinary approach is key to answering these

questions. For example, combining ocean robotic platforms with

satellite remote sensing (passive and active ocean colour), may help

address question 1. Integrating this new spatial understanding

(question 1) with conventional (ship-based) in-situ and laboratory
tiers in Marine Science 06
culture measurements on rates (e.g. primary production) may help

address question 2. Incorporating OMZ phytoplankton

communities explicitly into ecosystem models may help address

question 3.
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