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This study aims to investigate the seasonal and spatial distribution of surface

phytoplankton communities in the Baltic Sea, using pigment analysis and

hydrological parameters. Data were collected during six oceanographic

campaigns between 2005 and 2008, including high-performance liquid

chromatography (HPLC) pigment characterization and hydrological

measurements. The first part of this comprehensive study was focused on the

HPLC phytoplankton pigment dataset in relation to hydrological conditions. The

research highlighted the importance of high-quality input data for accurate

taxonomic analysis. Several unsupervised machine learning approaches, such as

hierarchical cluster analysis (HCA), principal component analysis (PCA), and

network-based community detection analysis (NCA), were used to analyze the

data and identify phytoplankton communities based on biomarker pigments. Five

main phytoplankton communities were identified: diatoms, dinoflagellates,

cryptophytes, green algae, and cyanobacteria. The results evidenced distinct

seasonal patterns, with diatom blooms dominating in spring, cyanobacterial

blooms in mid-summer, and haptophyte and dinoflagellate peaks occurring in

late summer and autumn. While PCA and NCA provided consistent insights into

community structure, HCA offered less clarity in distinguishing between groups.

The results of the statistical analysis were then compared with those of traditional

approaches such as CHEMTAX and region-specific bio-optical algorithms,

providing new perspectives on the taxonomic composition of phytoplankton

groups. This study provides valuable insights into phytoplankton dynamics in the

Baltic Sea and the effectiveness of different analytical approaches in understanding

community structure, providing metrics that can enhance current and future

advancements in remote sensing, including support for hyperspectral ocean

color remote sensors.
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1 Introduction

Phytoplankton play a crucial role in the marine ecosystem, acting

as primary producers that form the base of the aquatic food web. The

phytoplankton community composition influences the marine food

chain and the regional carbon cycle. Monitoring phytoplankton

distribution is important not only for aquatic sciences but also due

to growing societal needs. Human activities, such as overfishing,

pollution, and nutrient loading, severely threaten aquatic ecosystems

(Lotze et al., 2006). Environmental factors such as temperature, light

availability, nutrient concentrations, and water currents significantly

influence phytoplankton dynamics. The unique brackish water

conditions of the Baltic Sea, with salinity levels ranging from

almost fresh in the Bothnian Bay (Schmelzer et al., 2008) to more

saline in the southern regions (Axe and Sahlsten, 2001), create a

diverse environment that supports a wide variety of phytoplankton

species. Seasonal variations lead to distinct phytoplankton blooms,

particularly in spring and summer, which are crucial periods for

primary productivity. Increased eutrophication has led to more

frequent harmful algal blooms in coastal areas, raising public

concern, as these blooms affect recreation, fisheries, and drinking

water supplies.

Recent technological advancements, including satellite remote

sensing and high-performance liquid chromatography (HPLC), have

enhanced the monitoring and understanding of phytoplankton

communities. This approach includes abundance-based, spectral-

based, and ecological-based methods (Nair et al., 2008; Brewin

et al., 2010; IOCCG, 2014). In recent years, there has been

encouraging progress in investigating the composition of biomarker

pigments and the correlation between pigments and cell size.

This research has been carried out using extensive datasets of

phytoplankton pigments, which have been characterized by HPLC

(Vidussi et al., 2001; Uitz et al., 2006; Brewin et al., 2010; Hirata et al.,

2011; Mouw et al., 2017; Sun et al., 2022). HPLC is a powerful

analytical technique used to separate, identify, and quantify analytical

components in a mixture. In the context of phytoplankton research,

HPLC allows for the precise characterization of pigment composition

in discrete natural water samples, distinguishing among a wide range

of pigment molecules. The relative abundance of various

phytoplankton groups can be inferred by analyzing the specific

pigment composition (as detailed in Supplementary Table S1),

providing insights into the presence and abundance of different

phytoplankton groups and ecological dynamics of phytoplankton

communities. These approaches facilitate the categorization of

phytoplankton into distinct size groups and are often based on the

widely used CHEMTAX tool. CHEMTAX employs matrix

factorization and known pigment ratios to determine the

composition of taxonomic groups and has been already used in the

Baltic Sea context (Schlüter et al., 2000, 2004, 2016).

Numerous studies have investigated the taxonomic composition

of phytoplankton communities in the Baltic Sea (Wasmund et al.,

1998; Wasmund and Uhlig, 2003, 2008, 2011; Olli et al., 2011;

HELCOM, 2018). They have traditionally relied on methods such

as light microscopy and flow cytometry. However, it has become clear
Frontiers in Marine Science 02
that relying solely on discrete in situ observations to monitor

phytoplankton communities is not sufficient. This is mainly due to

the lack of comprehensive and extensive spatiotemporal datasets.

Tools based on biomarker pigments can help track phytoplankton

distribution and composition, providing essential data for managing

the health of the Baltic Sea ecosystem and addressing issues such as

harmful algal blooms. While several studies have investigated the

chemotaxonomic characterization of Baltic phytoplankton

communities based on pigment relationships (Schlüter et al., 2000;

Stoń-Egiert and Ostrowska, 2022) and the development of bio-optical

algorithms (Meler et al., 2020), most of these investigations have been

tailored to the Southern Baltic Sea. There remains a noticeable gap in

research on the wider Baltic Sea basin.

The present study aimed to evaluate data analysis methodologies

that can be applied to investigate the relationship between

phytoplankton community structure and pigment composition in

the whole Baltic Sea. This study was based on a complete dataset that

provided adequate spatiotemporal coverage of this basin and

included measurements of HPLC pigments and physical variables.

The identification of phytoplankton communities through various

statistical data analysis methods was applied to the HPLC pigment

dataset, representative of different sub-regions of the Baltic Sea, and

collected over 5 years, in conjunction with optical property

measurements. The dataset was subjected to three types of

statistical analysis: hierarchical cluster analysis (HCA), principal

component analysis (PCA), and network-based community

detection analysis (NCA). The insights gained from these analyses

were then compared with those derived from traditional approaches,

such as CHEMTAX (Mackey et al., 1996), and region-specific bio-

optical algorithms for estimating phytoplankton functional type

(PFT) and size (PSC) composition (Brewin et al., 2010; Hirata

et al., 2011).
2 Materials and methods

2.1 Field dataset

The datasets were collected between 2004 and 2008 during six

bio-optical oceanographic campaigns: three covering the Southern

Baltic Sea, Gdansk Bay, and the Pomeranian Bay (May and

September 2004 and April 2005) and three in the Northern Baltic

Proper, Gulf of Finland, and the Bothnian Sea (July 2006, August

2007, and August 2008) (Figure 1). The whole Baltic Sea dataset

(BA) is composed of 273 stations.

Sea-surface temperature (SST) and salinity were measured using

the SBE 911 Conductivity Depth Temperature (CTD) system

(SeaBird, Alifax, Bellevue, Washington, USA). The water was

sampled using a Niskin bottle at surface depth (1 m below the sea

surface) and pre-filtered through a 150-mmmesh (Kartel, LABWARE

Division, Milan, Italy). The filters (GF/F filters, F 25 mm, 0.7-mm
pore size,Whatman, Dassel, Germany) for HPLCmeasurements were

preconditioned under constant mild vacuum (not exceeding 0.5 bar),

flash frozen in liquid nitrogen, and successively stored a −80°C.
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2.2 Phytoplankton pigment dataset

HPLC samples were analyzed at the Joint Research Centre of

the European Commission (JRC).

The JRC method is described in detail in Canuti (2023). The

HPLC was calibrated with pigment standards (DHI Lab Products,

Hørsholm, Denmark). The calibration curves and consequently the

compound quantification cover a range of concentrations from a

dilution close to three times the signal-to-noise ratio (SNR)

concentration to the standard concentration, as described by

Hooker et al. (2005). The compounds below the limit of detection

(LOD) were considered unidentified. The JRC follows strict quality

control measures for the analysis of phytoplankton pigments using

HPLC and regularly participates in inter-laboratory exercises and

inter-comparison activities to assess the uncertainties associated

with marine pigments (Hooker et al., 2010; Canuti et al., 2016, 2022,

Canuti, 2023).

Twenty-two pigments were quantified for all stations

(Supplementary Table S1): 19′-hexanoyloxyfucoxanthin (Hex),

19′-butanoyloxyfucoxanthin (But), alloxanthin (Allo), fucoxanthin

(Fuco), peridinin (Peri), diatoxanthin (Diato), diadinoxanthin

(Diadino), zeaxanthin (Zea), divinyl chlorophyll a (DVChl a),

monovinyl chlorophyll a (MVChl a), monovinyl chlorophyll b

(MVChl b), divinyl chlorophyll d (DVChl b) chlorophyll c1 + c2
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(TChl c1c2), chlorophyll c3 (TChl c3), neoxanthin (Neo),

violaxanthin (Viola), prasinoxanthin (Pras), lutein (Lut), carotene

(Caro), pheophorbide a (Pheo), pheophytin a (Phy), and

chlorophyllide a (Chlide a).

The pigments considered for the clustering statistical analysis

were 16 of those determined by HPLC, and total chlorophyll a

(TChl a) is the sum of MVChl a, DVChl a, and Chlide a. Of the

other pigments, Pheo, Phy, Chlide a, and DVChl a, were excluded

because they were detected in concentrations lower than the LOD

for more than 95% of the stations. MVChl a was not included

among pigment objects of statistical analysis because it is

considered a redundant accessory pigment (i.e., is a component of

TChl a). Similarly, for total chlorophyll b (TChl b), the choice of

considering the sum of MVChl b and DVChl b pigments (i.e., TChl

b) instead of their separate contribution was due to the lack of

chromatographic separation: it was not possible to discriminate the

MV and DV components for all the sampling stations.

The pigment compositions and their relative proportions in

phytoplankton cells are distinctive features of different classes of

algae and cyanobacteria, so pigments may serve as unique

taxonomic identifiers for phytoplankton (Wright et al., 1991).

Certain carotenoids, which are quantitatively dominant, are

considered taxonomic markers of phytoplankton. Fuco is a

marker for diatoms, Zea for blue-green algae (cyanobacteria), Allo
FIGURE 1

Spatial distribution of measuring stations in 2004–2008 shows the location and the associated TChl a (mg/m3) concentration.
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for cryptophytes, Hex for prymnesiophytes, Pras for prasinophytes,

Per for dinophytes, and TChl b, Neo, and Lut for green algae

(Chlorophyceae). Determining the phytoplankton community

structure based on pigment compositions and concentrations has

become a standard practice (Mackey et al., 1996; Rodriguez et al.,

2002). However, some pigments (i.e., Fuco) are common to multiple

phytoplankton groups (Supplementary Table S1), and experiments

have shown that the qualitative and quantitative proportions of

pigments can vary even within cells of organisms from the same

class, so it is acknowledged that using a pigment as a marker for a

specific group remains a simplification (Jeffrey et al., 1997, Seppala,

2009, Roy et al., 2011).
2.3 Methods in data analysis

2.3.1 Hierarchical cluster analysis
A hierarchical cluster analysis was performed on the HPLC

pigment dataset using all 16 pigments described above after

normalization to TChl a (i.e., using ratios of Fuco: TChla). This

method uses Ward’s linkage method (the inner squared distance)

based on the correlation distance (1 − R, where R is Pearson’s

correlation coefficient between phytoplankton pigment ratios), as in

Latasa and Bidigare (1998) and Catlett and Siegel (2018). A linkage

cutoff distance of 1 was used to divide the resulting dendrogram

into distinct phytoplankton community clusters. The correlation

distances between samples were then used to assign each sample to

one of the resulting clusters.

2.3.2 Principal component analysis
Empirical orthogonal function (EOF) analysis serves as a valuable

tool for exploring potential spatial patterns of variability and their

temporal evolution (Anderson et al., 2008; Barrón et al., 2014;

Bracher et al., 2015; Kramer et al., 2020). In the field of statistics,

this analysis is recognized as PCA. Essentially, PCA decomposes a

dataset into mathematically orthogonal (independent) modes, which

can be interpreted as distinctive patterns or structures within the data.

We defined X as the pigment matrix, where each row (M)

corresponds to a sampling station and each column (N)

corresponds to the 16 variables (i.e., the 16 pigments normalized by

TChl a). The standardized matrix X underwent singular value

decomposition (SVD) to derive the PCA modes:

X = UoVT,   where xij =ok=1, Nuikskvkj (1)

In this equation, V is an N × N matrix containing the pigment

concentration data, U is an M × N matrix containing the principal

components, S is an N × N matrix containing the singular values

along the diagonal, and k represents the index of the PCA mode

(with a length of N).

The columns of X are the principal components. We refer to the

columns of U as the loadings, representing the directions (or weights)

in the original variable space that defines each principal component.

Eigenvalues and eigenvectors are used to compute the principal

components. The eigenvalues represent the amount of variance

explained by each principal component, and the corresponding
Frontiers in Marine Science 04
eigenvectors (columns of U) represent the direction of maximum

variance in the original variable space. Typically, the majority of

variance, or “power”, is captured by the first few modes. We focus on

visualizing and summarizing the key features of these original 16

variables through the presentation of the top principal components

(PCs). It is worth noting that PCA does not impose any preconceived

assumptions about the underlying covariance of pigments.

2.3.3 Network-based community
detection analysis

The initial step in constructing a network within the pigment’s

dataset involves defining a similarity matrix between the pigment

ratios, which are treated as the network’s features in this context.

We adopted the absolute value of Pearson’s correlation coefficient, a

common method for assessing co-expression (Allocco et al., 2004),

as our evaluation metric. This approach results in the creation of a

weighted, nearly fully connected graph with minimal zero values in

the similarity matrix, thus limiting the identification of specific

interaction clusters.

To establish a graph based on pairwise similarities, a

straightforward strategy was used: we connected all pairs of nodes

with non-zero similarity values and assigned edge weights

corresponding to these similarity values. In our specific case, we

first transformed the HPLC pigment dataset into a symmetrical

adjacency matrix. Each node, or vertex, represents a sampling

station, while edges connecting two nodes indicate the correlation

across pigments between these stations—essentially, the

relationship between any two of the 273 sampling sites. The edge

weights provide insight into the strength of these connections, with

Pearson’s correlation coefficients serving as the means to describe

the associations between nodes, primarily based on the normalized

pigment ratios to TChl a. Based on this assumption, we can describe

the similarity matrix as follows:

sij = corr(xi, xj)
�
�

�
� (2)

where sij is the similarity matrix, corr(xi,xj) is Pearson’s

correlation coefficient between nodes (sampling sites), and xi and

xj are concentrations of the pigments at the different sampling sites.

However, Mason et al. (2009) provided evidence that utilizing the

absolute value of the correlation may obscure biologically significant

insights in unsigned networks. To quantify the strength of

connections between features (i.e., pigment ratios), we employed an

adjacency matrix, denoted as A = [aij]. This matrix A was constructed

by applying a threshold to the similarity matrix S = [sij].

In reference to the weighted gene co-expression network

analysis (WGCNA) algorithm for network construction (Zhang

and Horvath, 2005), which was designed for datasets of similar

dimensions, we employed the following power function to evaluate

the strength of connections between nodes:

aij = (sij)
b (3)

where the power b is the soft thresholding, with the default

value b = 6 for the unsigned network.

Subsequently, the analysis of the network’s community

detection was performed on the adjacency matrix denoted as aij.
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This analysis was conducted using the undirected modularity

method from NetworkX (Hagberg et al., 2008) in Python. To

partition the community effectively, we employed Louvain’s

algorithm (Blondel et al., 2008). This algorithm identifies the

optimal number and type of communities that maximize the

network’s modularity score.

Modularity, in this context, is a metric that falls within the range

of −0.5 to 1, indicating the density of edges within communities

compared to edges that extend outside of communities. It quantifies

the level of connectedness within the network’s communities. A

modularity score of 0.3 or higher is considered substantial,

signifying strong interconnections among sites within each

community and weaker connections between different groups.

The modularity output provides a community assignment for

every sampling site within the matrix, reflecting the interrelatedness

of the considered pigment ratios. To assess the taxonomic relevance

of each community, we relied on the mean ratios of biomarker

pigments within these communities: for the samples in the

community, we considered the pigment with the highest ratio to

TChl a, and then we assigned the community to the taxa where this

pigment is predominant (i.e., where Fuco: TChl a is the highest

ratio, and the sample is assigned to Diatoms).
3 Results

The HPLC pigment dataset for surface samples for cruises BA01

to BA06 covered a wide range of environmental and ecological

conditions (Table 1). The lowest average surface temperature and the

highest average surface concentration of TChl a (11.5 mg/m3) were

found in April (BA03). Additionally, contemporary high mean ratios

of both Fuco: TChl a and Peri: TChl a were observed in these surface

samples, indicating a higher presence of diatoms and dinoflagellates

compared to other research cruises. July and August (BA04–05 in

2006 and 2007) had the warmest mean surface waters of the cruises,

together with the second-highest mean TChl a concentration.

During this period, mean Zea: TChl a ratios were at their highest,

suggesting a higher proportion of pico-phytoplankton, which

includes cyanobacteria. September (BA02) and late August (BA06)

had intermediate mean surface water temperatures. Notably, BA02

exhibited the highest mean TChl b:TChl a ratio, a biomarker

pigment indicative of all green algae. Conversely, BA01, BA03, and

BA04 had the lowest mean TChl b:TChl a ratios, suggesting a

reduced presence of green algae during these cruises.

In addition to the quality control measures introduced in

Section 2.2, the criteria established by Aiken et al. (2009) for

evaluating the quality of datasets used in the development of bio-

optical algorithms (Hirata et al., 2011) were also applied to ensure

internal consistency within each oceanographic campaign. The

relationship between log-transformed TChl a and the sum of

accessory pigments (TAcc; Trees et al., 2000) was independently

verified for each of the six oceanographic campaigns before

proceeding with the data analysis and indicated determination

coefficients above 0.97 (Supplementary Figure S1).

The multivariate statistical and network analyses on the HPLC

datasets were mainly based on the correlation among the pigments of
Frontiers in Marine Science 05
this dataset. Pearson’s coefficient (R values) was selected as the

correlation coefficient (Kramer and Siegel, 2019), and the

correlation matrix, associated with both absolute concentrations

and ratios to TChl a, was calculated for the 16 pigments chosen for

further evaluation (Supplementary Figure S2). The ratio correlations,

which had a normalized coefficient, were chosen, as they minimized

the variance among the pigment concentration magnitude.
3.1 Hierarchical cluster analysis

The pigments used for the hierarchical clustering were the 16

selected from the HPLC dataset (see Section 2.2). In the present

study and in agreement with Catlett and Siegel (2018), the addition

of Caro did not significantly change the cluster assignment in

the HCA.

The hierarchical cluster analysis of the BA dataset illustrated the

presence of five distinct groups of phytoplankton pigments that

significantly influence the co-variability of the dataset (Figure 2).

These dominant groups were diatoms, dinoflagellates, haptophytes,

green algae, and cyanobacteria. Within the mixed nano-

phytoplankton community, three sub-clusters were identified:

haptophytes, a combination of cryptophytes of dinophyta, and

green algae. The identification of the haptophyte community

cluster was based on observations of But, Hex, and TChl c3. This

pigment group was believed to represent a haptophyte community

based on previous observations during early spring and late autumn

blooms in the Baltic Sea (Blanz et al., 2005; Hällfors, 2004). The

pigments Neo, Lut, and Viola were predominantly associated with

green algae, with Viola specifically found in the euglenophytes. A

third cluster, including Allo, representative of the red algae, and Peri,

characteristic of dinophyta, suggested the coexistence of cryptophytes

and dinophyta in the nano-size fraction. It was noteworthy that there

was a substantial linkage distance between these clusters and Zea,

TChl b, and Fuco. Based on previous findings (Vidussi et al., 2001),

Fuco was assumed representative of all diatoms (microfraction),

while Zea and TChl b were considered representative of the pico-

eucaryote fraction (cyanobacteria).

Previous studies (Stoń-Egiert et al., 2010; Stoń-Egiert and

Ostrowska, 2022) in the southern Baltic region have identified the

dominance of various phytoplankton groups recognizable in our

cluster analysis, including cyanobacteria, Dinophyceae,

Cryptophyceae, Chlorophyceae, and Euglenophyceae.

A separate analysis was performed for each campaign

(Supplementary Figure S3). The prevalence of Fuco and Zea,

which are indicative of Euglenophyceae, was most pronounced

during campaign B05, which extensively covered the Gulf of

Finland. In the first three campaigns conducted in spring (BA01

and BA03) and early autumn (BA02) that were dedicated to the

Southern Baltic Sea, Pomeranian Bay, and Gdansk Bay, Fuco was in

a separate and dominant cluster, suggesting the dominance of

diatoms in this area. The 2010 study by Stoń-Egiert, conducted

on phytoplankton pigment data and microscopy samples collected

during 12 campaigns in the Southern Baltic Sea and Gdansk Bay

regions between 1999 and 2005, confirmed that diatoms are the

primary components of phytocenoses in this area of the Baltic Sea.
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The proportion of Dinophyceae in the total biomass ranged from

7.5% in autumn within the gulfs to 59.2% in early summer in the

open Baltic. The contribution of diatoms to the total phytoplankton

biomass in early summer in open waters was 23.5%.
3.2 Principal component analysis

The composition of the phytoplankton community was

evaluated via a PCA on the phytoplankton pigment

concentrations, which were normalized by TChl a concentration.

PCA, combined with HCA, enabled us to establish connections

among the identified groups and the spatiotemporal variations

observed in the BA dataset. The eigenvector loadings for the most

influential PCA modes are displayed in a bar plot (Figure 3). We

examined the amplitude function (AF) associated with every mode.

The amplitude function, as previously utilized by Anderson et al.

(2008), served as an indicator of the community structure pattern

intensity in both spatial and temporal dimensions (Figure 3). When

the AF values were near zero, it indicated that the PCA mode was

less important for the current time and location. The present study

examined the leading quartile of modes for evaluating community

composition in the BA dataset, as they collectively explained 67.4%

of the community structure’s variability. Our observations of the

first two modes’ high variability were akin to the results by Kramer

et al. (2020) on a dataset with a comparable number of observations

collected during four oceanographic campaigns in the North

Atlantic Ocean. However, the distinctive features of the Baltic Sea,

including a high presence of humic acids from rivers, were likely to
Frontiers in Marine Science 06
result in greater variability within the dataset than would be

observed in more homogeneous aquatic systems, such as the

North Atlantic Ocean. In Mode 1 (Figure 3A), which accounts for

29.3% of the variance, there was a strong positive correlation

between TChl c1–c2 associated with dinoflagellates and

cryptophytes. Conversely, pigments associated with green algae,

cyanobacteria (Zea), and pico-phytoplankton exhibited a strong

negative correlation with Mode 1. The spatial distribution showed

negative patterns associated with cyanobacteria at mid-range

latitudes and positive patterns associated with dinoflagellates at

southern latitudes, thereby supporting this interpretation. Mode 2

(Figure 3B) explained 17.5% of the dataset variance and was

positively correlated with pigments related to diatoms (Fuco) and

haptophytes and moderately correlated with cyanobacteria. Mode 3

(Figure 3C) was negatively correlated with cyanobacteria and

strongly correlated with green algae and nano-fraction pigments.

Finally, PCA Mode 4 explained 9.5% of the total variance and was

negatively correlated with nearly all pigments except Fuco and But,

which served as markers for diatoms. Mode 4 (Figure 3D) indicated

a dominance of diatoms when the amplitude function was positive

and was specifically found in the Gulf of Finland. This result

suggests that Mode 4 has the potential to separate diatoms from

other groups. Furthermore, this mode showed a negative

correlation with all other groups. The PCA suggested a similarity

with one aspect of the HCA, namely, the prevalence of diatoms in

campaigns BA01–03. However, identifying the dominant

community was not consistently possible. In the HCA, TChl b

was associated mostly with pico-fraction, while in the PCA, TChl b

was more correlated with the green algae, in terms of variations.
TABLE 1 Summary of the relevant variables and diagnostic pigments: average TChl a ratios for surface samples of BA01–BA06 campaigns.

Parameters

Campaign BA01 BA02 BA03 BA04 BA05 BA06

Sampling period May 2004 Sept. 2004 April 2005 July 2006 Aug. 2007 Aug. 2008

Sampling area SB, GB, PM NP, GF NP, GF BS

Max Mean Min

N. samples 50 51 62 21 37 45

Latitude (°N) 65.4 57.1 53.9 54.7 54.7 54.7 59.0 60.9 61.4

Longitude (°E) 27.2 19.5 14.2 18.5 17.7 17.6 22.4 20.8 22.1

Temperature (°C) 20.7 12.8 3.4 9.0 16.9 5.5 19.4 17.1 15.7

Salinity (PSU) 7.8 6.2 1.7 6.9 7.0 6.9 5.6 5.1 4.6

TChl a (mg/m3) 60.222 5.107 0.272 2.846 2.894 11.514 4.025 3.129 2.929

Zea : TChl a 0.071 0.141 0.014 0.164 0.139 0.089

TChl b:TChl a 0.070 0.216 0.043 0.069 0.084 0.104

Fuco: TChl a 0.141 0.091 0.135 0.125 0.143 0.134

Allo : TChl a 0.093 0.045 0.105 0.045 0.081 0.109

Peri: TChl a 0.011 0.015 0.180 0.041 0.010 0.016

Diadino : TChl a 0.029 0.023 0.124 0.072 0.069 0.049

Hex : TChl a 0.004 0.002 0.000 0.024 0.028 0.013
Southern Baltic Sea (SB), Gdansk Bay (GB), Pomeranian Bay (PM), Northern Baltic Proper (NP), Gulf of Finland (GF), and Bothnian Sea (BS).
Zea, zeaxanthin; Fuco, fucoxanthin; Allo, alloxanthin; Peri, peridinin; Diadino, diadinoxanthin; Hex, 19′-hexanoyloxyfucoxanthin.
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3.3 Network-based community
detection analysis

The Louvain partition method (Dugué and Anthony Perez,

2015; Traag et al., 2019) was utilized to identify the phytoplankton

communities within the BA dataset network by optimizing its

modularity. Modularity acts as a metric for differentiating intra-

community connections. In the case of the pigment ratio network of

the BA HPLC dataset, the modularity score reached 0.4. This

emphasized the significant similarity observed among samples

grouped within the same community and denoted a robust

differentiation between various community types using

this approach.

The employed network-based method for detecting

communities successfully revealed the existence of five prominent

phytoplankton pigment communities. To determine the taxonomic

classification of each major phytoplankton pigment community, we

assessed the mean pigment-to-TChl a ratio of five key biomarker

pigments for each community (Table 2). The most relevant

community exhibited the highest average Zea ratios, indicating

elevated concentrations of picoplankton and cyanobacteria, which

were predominant across most of the stations. The second

community registered the highest average Fuco ratio. In the third
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community, the highest ratio of TChl b was detected, typically

associated with green algae. The fourth community known for the

highest Peri ratio was representative of dinoflagellates. Lastly, the

fifth group presented the highest Allo ratio, which was considered

representative of the Cryptophyta (nano-fraction). The classification

attained through community analysis was subsequently compared

with the one derived from the implementation of the Phytoplankton

Functional Types (PFTs) algorithm on the Baltic Sea dataset (Brewin

et al., 2010; Hirata et al., 2011; Meler et al., 2020) that partially

confirmed the results of the network-based analysis. The equations

used for the PFT calculations are summarized in Table 2. It has to be

recalled that one of the assumptions of the PFT model is that the

diagnostic pigments sum (SDP) is considered equal to TChl a. It has
to be noticed that, while in the PFT classification, TChl b was

assigned to two different groups (i.e., green algae and Pico-

eukaryotes); in the network-community classification, the partition

with predominance of TChl b was assigned to green algae;

consequently, in network-community classification, no pico-

eukaryote fraction was present. In the PFT classification, Allo was

considered only within the nanoplankton size class, while no

functional group was associated specifically with cryptophytes.

These are the main differences that could be found between the

network-community partition and the PFT approach. Ultimately, it
FIGURE 2

Hierarchical clustering of phytoplankton pigment ratios to TChl a for the Baltic dataset. The major pigment communities (micro-, nano-, and pico-
phytoplankton) are identified based on a linkage distance cutoff of 1.0 (red dashed line). The suggested phytoplankton cell size classes for each
group are delineated with brackets.
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is noteworthy that, adhering to the PFT analysis, no station was

identified as dominated by haptophyte PFT.

The spatiotemporal arrangement of the samples in the NCA

(Figure 4A) illustrated that dinoflagellate and diatom communities

were predominantly present in the Baltic Sea with a significant

concentration observed in the Southern Baltic Sea and Gdansk Bay.

Notably, the prevalence of these two communities varied with the

changing seasons. However, prokaryotic and pico-eukaryotic

communities were distributed over a wider range of latitudes,

including different temperature and salinity conditions.

Comparing the outcomes of the NCA with the communities

identified through PFT analysis (Figure 4B), a remarkable

similarity in the spatiotemporal distribution of the samples within

each community was observed for all the campaigns except for the

BA02 and BA05 campaigns. For the BA02 campaign, the PFT

analysis assigned part of the stations to the pico-eucaryotes instead

of to the cryptophytes, and in the BA05 campaign, the NCA

identified no diatoms among the sampling stations, while the PFT

analysis did. Moreover, the number of samples assigned to each

community was quite consistent , except for diatoms

(Supplementary Table S1). To enhance the differentiation of

communities identified by PCA, the results of the PCA were

integrated with the communities recognized through the NCA

(Figure 5). Comparing the amplitude function of the first two

modes, we can separate the pico-eucaryote community in the case

of the NCA, while the outcome was not so evident in the case of the
FIGURE 3

The loadings corresponding to the principal component modes are shown in panels (A–D) for the Baltic dataset. The pigment order was the same
as that for the hierarchical cluster analysis (HCA) to facilitate comparisons. The model number is shown above each plot, together with the
percentage of variance explained by that mode. The loadings are color-coded based on the main taxonomic groupings: blue for cyanobacteria-
pico, red for diatoms-micro, orange for green algae-nano, green for haptophytes-dinoflagellates-nano, and orange for euglanophytes-nano. In
panels (aa), (bb), (cc), and (dd) corresponding to each mode are presented the amplitude function (positive in blue and negative in red)
corresponding to the logTChl a concentration (scale left side) by each campaign. The latitude is represented by the continuous line on each plot
(scale right side).
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TABLE 2 Phytoplankton functional types (PFTs), diagnostic pigments,
and their taxonomic association.

PSCs/PFTs Diagnostic
pigments

Estimation formula

Micro (>20 μm) Fuco, Peri 1.41 (Fuco + Peri)/SDP

Nano (2–20 μm) Hex (Xn 1.27 Hex + 1.01 TChl b + 0.35 But
+ 0.60 Allo)/SDP

Pico (0.2–2 μm) Zea, Hex,
TChl b

(0.86 Zea + Yp 1.27 Hex)/SDP

Diatoms Fuco 1.41 Fuco/SDP

Dinoflagellates Peri 1.41 Peri/SDP

Haptophytes But, Hex (Nano-Green Algae)

Green algae TChl b 1.01 TChl b/SDP

Prokaryotes Zea 0.86 Zea/SDP

Pico-eukaryotes Hex, TChl b (Pico − Prokaryotes)

Prochlorococcus sp. DVChl a 0.74 DVChl a/TChl a

SDP 1.41 (Fuco + Peri) + 1.27 Hex + 1.01
TChl b + 0.35 But + 0.60 Allo +
0.86 Zea
Xn = 0.5 and Yp = 0.5 for TChl a 0.04 mg/m3. Yp increasing at 1 at TChl a = 0.01 mg/m3. Xn
increasing at 1 at TChl a = 0.08 mg/m3.
PSCs, phytoplankton size classes; Fuco, fucoxanthin; Peri, peridinin; Hex, 19′-
hexanoyloxyfucoxanthin; But, 19′-butanoyloxyfucoxanthin; Allo, alloxanthin; Zea,
zeaxanthin; DVChl a, divinyl chlorophyll a; SDP, diagnostic pigments sum.
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PFT application, where the pico-eucaryotes were mixed with

diatoms. Similarly, the dinoflagellate community looks better

isolated in the NCA than in the PFT.

In network analysis, particularly in ecological studies,

understanding the underlying structure and relationships within a

community is crucial. One method to achieve this is through the

computation of a minimum spanning tree (MST). The outcomes of

a spanning tree resulting from a matrix modularity analysis can

provide insights into the community structure and relationships

within the phytoplankton community as well, revealing hierarchical

or structural aspects of the network (Supplementary Figure S4). In

terms of community detection, this could indicate that the central

community played a more significant role or stronger connections

with other communities compared to the peripheral community. In

our case, the community (2) that dominated the center was the one

with predominant Allo pigments. This was interpreted as the

dominance of cryptophytes. At the center, the network showed

more nodes and denser connections, while the sparser community

in the peripheral [community (0)] was dominated by TChl b.

However, it should be noticed that the other three communities—

Prokaryotes, dinoflagellates, and diatoms—were widespread among

the leaf, in between the center and the peripheral, thus suggesting

the cross-diffusion of these pigments among various phytoplankton

species present in the Baltic Sea.

We compared the results of machine learning analysis with the

outcome of the CHEMTAX (Mackey et al., 1996) community

classification. As the initial input of the CHEMTAX matrix, we used

the pigment ratios developed for the southern Baltic (Schlüter et al.,

2000). As the southern Baltic populations could not be considered

representative of the whole basin, we established a different matrix for

each campaign (Supplementary Figure S5) considering each campaign
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belonging to a separate cluster. However, the ratios used in the

generated matrix applied to the Northern and Central Baltic

campaigns were not verified by microscopy counts, thus lacking

robustness. Applying CHEMTAX to our dataset and accordingly to

the matrix used for the community identification, we obtained

information on seven groups (Dinophyceae, Diatoms, Cryptophytes,

Cyaonophytes, Chlorophyceae, Euglenophytes, and Prasinophytes)

instead of the five identified through our statistical approaches.

According to the CHEMTAX analysis, the cryptophytes’ fraction

dominated in three campaigns (BA01, BA03, and BA05), and this

partially confirmed the analysis through the network community.

However, the cyanobacteria were present in a smaller fraction of

stations, while in all other analyses, they were predominant in the

BA05 and BA06 campaigns. The diatoms, which are the most

representative community according to the PFT analysis, are

present in percentages lower than 17%.
4 Discussion

The present study examined the surface phytoplankton

community distribution in the Baltic Sea, derived from HPLC

datasets covering different seasons and different areas of the Baltic

Sea. The dataset underwent different statistical analyses to assess the

phytoplankton community composition based on the predominance

of diagnostic pigments representative of a phytoplankton group

or species.

In the Baltic Sea, the typical seasonal cycle of phytoplankton

species succession follows a well-established pattern. When

comparing our results with previous findings, the BA cruises

reflected this seasonal progression of phytoplankton communities.
FIGURE 4

The group distribution from network analysis (A) compared with phytoplankton functional type (PFT) distribution (B). Colors indicate major
taxonomic groups: diatoms (red), dinoflagellates (green), green algae (orange), Prokaryotes (cyan), pico-eucaryotes (blue), and cryptophytes (gold);
the continuous line indicates the latitude (left axis) and the position related to TChl a concentration (right axis).
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A spring diatom bloom and a mid-summer cyanobacterial bloom

were followed by a late summer to autumn peak of haptophytes and

dinoflagellates. In the BA campaigns, spring and early summer

cruises showed an abundance of samples from the diatom

community, coinciding with the spring phytoplankton bloom.

Stoń-Egiert et al. (2010) reported that diatoms accounted for

approximately 50% of the total phytoplankton biomass in the

Gdansk Bay in spring and that the composition of the

phytoplankton community varied with increasing distance from

the river mouth, with a notable presence of dinophytes (ranging

from 10% in the vicinity of the river mouth to 40% in more distant

regions of the Gulf). The aforementioned studies have

demonstrated the presence of diatoms (Fuco pigment) in the

initial BA01–03 campaigns that focused on the Southern Baltic

Sea and Gdansk Bay. Both the analysis by single campaign and a

combined analysis of these datasets have shown the presence of

green algae during this period. In early summer, dinoflagellates

became an important part of the community alongside diatoms.

The transition from late summer to early autumn (BA05–06 and

B04, respectively) was dominated by samples from the haptophyte

community, with some cyanobacteria present as the bloom wanes.

These results are in agreement with previous findings on

cyanobacteria cycle in the Baltic Sea.

Conventional pigment-based methods such as CHEMTAX

assume linear independence of pigments and require pre-defined

knowledge of pigment contributions to individual phytoplankton
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groups. In the context of the Baltic Sea study, the dataset’s collinearity

and dynamic conditions challenge the linear independence of

pigment assumptions, making the methods used here more suitable

for capturing the phytoplankton community composition. In our

initial data analysis, we applied different statistical tools and

unsupervised machine learning techniques, including HCA, PCA,

and NCA, to the HPLC dataset. The aim was to assess the consistency

and coherence of the results derived from these analyses. To validate

the robustness of our chemotaxonomic data analysis, we compared

the outcomes with alternative models and algorithms commonly used

in characterizing chemotaxonomic composition (PFT). Additionally,

we cross-referenced our findings with results from prior studies

conducted in the Baltic region.

TChl b is a pigment present in Euglenophyta, Chlorophyta, and

Prasinophytes, and, as DVChl b, can contribute to pico-eukaryotes

(Supplementary Table S1). In the HCA, TChl b clustered with Zea

but not with other pigments representative of green algae (i.e., Pras,

Lut, Neo, and Viol). This suggested that TChl b primarily

contributed to the pico-eukaryote fraction rather than to green

algae. However, in the PCA, TChl b followed the behavior of Neo

and Viol in all four modes and Lut in the first three modes, while

Pras followed a distinctive path compared to TChl b in the first two

modes. The PCA interpretation suggested that TChl b is associated

as a biomarker pigment with green algae since it follows the path of

other pigments commonly present in green algae. The distinctive

behavior of Pras in the first two modes can be interpreted as a
FIGURE 5

Principal component analysis (PCA) compared to network partitioning results (shown in color): diatoms (red), dinoflagellates (green), green algae
(orange), Prokaryotes (cyan), pico-eucaryotes (blue), and cryptophytes (gold).
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characteristic of Prasinophytes, distinguishing the Prasinophytes

from the other green algae. In the NCA, and similarly to the PCA

outcome, the community linked to TChl b was composed

predominantly of green algae pigments, while Zea is associated

with a different community. In light of these considerations, the

HCA clustering appears to be the least explanatory regarding both

TChl b and green algae. Ultimately, the cryptophytes were not

clearly identified in either the HCA or PCA, while in the NCA, a

community associated with Allo was identified.

In the NCA, the initial step was the analysis of the adjacency

correlation matrix, which evidenced the presence of five areas of

strong correlation. The network was employed to identify

communities through the Louvain partition method. This revealed

a modularity value above 0.3 (0.39 in our case), indicating a

significant level of community interconnectedness, as noted by

Newman (2006), where significant interconnectedness within a

community indicated that the population assigned to each

community had many common traits. We also examined whether

the communities identified through network analysis corresponded

with those identified using other methods such as PCA and HCA,

with the limitation mentioned above regarding TChl b for HCAs. In

the network analysis, we assigned each sample to a specific

community in the network-based community detection analysis,

thus allowing us to consider the spatiotemporal distribution of the

five communities. The principal phytoplankton community

identified by PCA was composed of diatoms, dinoflagellates,

cyanobacteria, cryptophytes, and green algae, which was consistent

with the results of the network analysis (Supplementary Figure S6).

Upon comparison of HCA with the network analysis, a notable

distinction was raised: HCA failed to assign a specific cluster to TChl

b, whereas the NCA recognized TChl b as representative of a distinct

community. Furthermore, the presence of Zea was identified

differently in each analysis, with network analysis highlighting as a

key feature. It is worth noticing that, while PCA and HCA offer an

overarching perspective of the dataset, the network analysis

discreetly assigns a dominant phytoplankton community to each

station. Therefore, it appeared more beneficial to compare the results

of network analysis with PFT analysis, which similarly assigns a

dominant community to each observation (Figures 4, 5). Comparing

the two methodologies, the difference between NCA and PFT

analysis was more evident for the BA02 and BA06 campaigns. If

in BA02 we compare the outcome of the PFT with the NCA, the PFT

assigned 22 stations to pico-eucaryotes whether the NCA assigned

them to cryptophytes: considering the season and the temperature

condition (Table 1 and Figure 6), these 22 stations are more likely to

associate these stations with cyanobacteria (i.e., PFT assignment). In

the case of B02, the PFT assignment is more coherent with the

environmental conditions. Conversely, in BA06, the PFT assigns to

the diatom community the stations that, for the environmental

conditions (temperature and season), are more likely to be

representative of a Prokaryotes dominance (NCA assignment). In

B06, the station assignment to the phytoplankton group of NCA has

to be preferred to the PFT. Overall, it has to be recognized that a limit

of this approach was that in the network analysis—and the PFT

analysis—each sample was associated with a specific category (color)
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discretely, whereas reality is more complex than clear-cut categories.

In addition, the PCA proved to be a valuable tool in analyzing

seasonal variations in phytoplankton composition. The two

approaches, PCA and NCA, could be complementary to develop a

holistic view of the dataset.

We extended our comparison between PFT and network

analysis to hydrological conditions that can influence the

observed variability in phytoplankton community structure, such

as temperature and salinity (Table 3). A parallel analysis using the

PFT algorithm yielded similar conclusions (Figure 6). In this

context, the spatiotemporal distribution of phytoplankton

communities inferred from HPLC pigments in the Baltic Sea

through network analysis aligned well with the phytoplankton

community composition that was found in previous analyses

(Stoń-Egiert et al., 2010; Stoń-Egiert and Ostrowska, 2022),

evidencing the presence of cyanobacteria at higher temperature

and salinity (Pliński et al., 2007).

Our data-driven statistical analyses on the HPLC pigment

dataset were able to identify five distinct taxonomically defined

phytoplankton communities in the Baltic Sea, characterized by five

biomarker pigments: diatoms (Fuco), dinoflagellates (Peri),

cryptophytes (Allo), green algae (TChl b), and cyanobacteria-

pico-plankton (Zea). Notably, dinoflagellates were found to be

distinct from diatoms in this regional context, a differentiation

that was not commonly observed globally (Kramer and Siegel,

2019). Samples from the six BA cruises had sufficient

concentrations of dinoflagellate pigments to allow for their clear

separation from diatoms and other red algal pigments in PCA and

network-based community detection. However, this distinction was

less clear in a hierarchical cluster analysis.
5 Conclusion

In our investigation, we used multivariate statistics and

unsupervised and supervised machine learning methods to

analyze a diverse dataset of HPLC pigment observations obtained

from Baltic Sea surface samples. We aimed to extract key insights

from these pigment observations, considering various spatial and

temporal dimensions as well as available hydrological variables. We

addressed the selection process of appropriate statistical methods

and underscored the importance of the data quality of the pigment

dataset. We also performed a comparative analysis, comparing our

results with those of alternative models and algorithms commonly

employed to characterize chemotaxonomic composition, such as

PFTs and CHEMTAX. Additionally, we compared our results with

findings from previous studies conducted in the Baltic Sea region

(Wasmund et al., 2011; HELCOM, 2018).

Our findings suggested that the network-based community

identification alongside PCA on the HPLC dataset holds promise

for effective interpretation of phytoplankton community

composition. This combined approach demonstrated the potential

to identify phytoplankton communities, even within the

complexities of basins such as the Baltic Sea. However, it has to

be acknowledged that the data-driven statistical analyses employed
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in this study had some limitations. In particular, pigment-based

methods are bound by the specific conditions under which the data

were collected. In all these approaches, we referred to the diagnostic

pigments or to the known pigment ratios to reconstruct the

phytoplankton community. As has been already remarked by
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Meler et al. (2020), all these approaches, based on diagnostic

pigments, are simplified with statistical error in the order of 20%.

A step forward in the research is integrating the analysis of the

pigment dataset with concomitant measurements of optical

features. Ultimately, these methods did not directly measure
FIGURE 6

Regression of physical parameter temperature and salinity for phytoplankton functional type (PFT) analysis and network-based analysis, all colored with
the dominant community [diatoms (red), dinoflagellates (green), green algae (orange), Prokaryotes (blue), pico-eucaryotes (cyan), and cryptophytes (gold)].
TABLE 3 Summary of the relevant variables and averaged diagnostic pigments: TChl a ratios resulting from network-based analysis.

Parameters Pico-eukaryotes Diatoms Green algae Dinoflagellates Cryptophytes

Number of stations 73 66 55 47 32

Latitude (°N) 59.4 56.6 56.2 54.8 57.7

Temperate (°C) 16.9 10.8 16.3 5.4 12.8

Salinity (PSU) 5.7 6.2 6.5 6.9 5.7

TChl a (mg/m3) 2.914 4.222 2.456 13.241 3.861

TChl a (min–max) 0.49–60.22 0.78–14.05 0.27–12.24 0.71–17.58 0.54–51.6

Peri: TChl a 0.009 0.008 0.01 0.055 0.005

Fuco: TChl a 0.088 0.112 0.038 0.026 0.032

Hex: TChl a 0.012 0.002 0.002 0 0.001

Allo: TChl a 0.037 0.044 0.033 0.033 0.057

Zea: TChl a 0.089 0.039 0.097 0.006 0.022

TChl b:TChl a 0.039 0.043 0.135 0.015 0.027
Peri, peridinin; Fuco, fucoxanthin; Hex, 19′-hexanoyloxyfucoxanthin; Allo, alloxanthin; Zea, zeaxanthin.
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phytoplankton biomass or productivity, which limited both the

derived phytoplankton communities and the potential development

of satellite algorithms. Despite these limitations, the insights gained

from these methods offered valuable metrics and datasets that can

contribute to both current and future advances in remote

sensing technologies.
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SUPPLEMENTARY FIGURE 1

The log-log co-variance TAcc/TChl a along the six Baltic Oceanographic
Campaigns, axis in log scale (mg m-3).

SUPPLEMENTARY FIGURE 2

The correlation matrix (Pearson correlation coefficient) is associated with
both absolute concentrations (bottom left) and ratios to TChl a(top right), for

the 16 pigments.

SUPPLEMENTARY FIGURE 3

Hierarchical clustering of phytoplankton pigment ratios to TChl a for each
campaign of the Baltic dataset.

SUPPLEMENTARY FIGURE 4

Spanning tree resulting from a matrix modularity analysis: Green Algae

(community 0), Procaryotes (community 1), Cryptophytes (community 2),
Dinoflagellates (community 3), Diatoms (community 4)

SUPPLEMENTARY FIGURE 5

CHEMTAX applied to the six oceanographic campaigns (initial matrix provided
in Schlüter et al., 2000). In the pies the relative biomass abundance

correspond to Dinophycacee (blue), Diatoms (orange), Cryptophytes

(green), Cyaonophytes (red), Chlorophyceae (purple), Euglenophytes
(brown) and Prasinophytrs (pink)
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