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The spatial pattern of leaf stoichiometry is critical in predicting plant palatability

and ecosystem productivity and nutrient cycling rates and thus is amajor focus of

community ecological research. Coastal wetlands as vital blue carbon

ecosystems, with high possibility to be vulnerable to plant invasion, studies

focused on stoichiometry and its pattern are important to unveil the elements

cycling process. However, previous studies have mainly focused on

stoichiometry in terrestrial ecosystems, there are few studies conducted on

coastal wetland ecosystems, especially the studies that compare leaf

stoichiometry between native and non-native plants in coastal wetlands. In this

study, we compared the latitudinal patterns of leaf nutrient contents and their

stoichiometric ratios between native and non-native plant species across coastal

wetland ecosystems and investigated whether leaf stoichiometric patterns were

driven by climatic factors. We used a compiled global data set of 954 records to

conduct a systematic meta-analysis. The results showed that there were

significant differences in latitudinal patterns of leaf carbon (C) and nitrogen (N)

contents and C:N ratio between native and non-native species, as well as

significant differences in leaf C, N, and phosphorus (P) contents. For native

species, we found significant latitudinal patterns in leaf C, N, and P contents

and C:N and C:P ratios, whereas for non-native species, we found significant

latitudinal patterns in leaf N content and C:P and N:P ratios. Mean annual

temperature of the data collection site was a significant predictor of leaf

stoichiometry of native plants but only of leaf N content and C:P ratio of non-

native plants. Thus, we demonstrated spatial heterogeneity in leaf

stoichiometries between native and non-native plants in coastal wetlands,

indicating that such differences should be emphasized in future

biogeochemical models and plant-herbivore interaction studies owing to the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1425587/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1425587/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1425587/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1425587/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1425587&domain=pdf&date_stamp=2024-07-03
mailto:zhangyz@sio.org.cn
https://doi.org/10.3389/fmars.2024.1425587
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1425587
https://www.frontiersin.org/journals/marine-science


Zhang et al. 10.3389/fmars.2024.1425587

Frontiers in Marine Science
important role of wetland plants in global C, N, and P cycles. Our findings

increase understanding of plant-related nutrient and elements cycling in coastal

wetlands, as well as improve predictions of plant growth rates and vegetation

productivity across large scales under plant invasion scenarios.
KEYWORDS

biogeography, coastal wetlands, leaf stoichiometry, latitudinal spatial patterns, mean
annual temperature, native plants, non-native plants
Introduction

Latitudinal gradients in biotic interactions are a classic paradigm in

ecology (Kinlock et al., 2018; Zvereva and Kozlov, 2022). The spatial

heterogeneity of both biotic and abiotic factors is largely responsible for

latitudinal gradients in plant traits (Abdala-Roberts et al., 2016; Reese

et al., 2016; Moreira et al., 2018). For example, plant defensive traits are

greater at low latitudes than at high latitudes, mainly due to stronger

biotic interactions at low latitudes (Anstett et al., 2014). However, the

cost of resource acquisition may also be a key driver of latitudinal

variation in plant defenses (Kooyers et al., 2017). Leaf stoichiometry

(i.e., leaf carbon (C), nitrogen (N), and phosphorus (P) contents) is also

one of the most important plant traits and is an effective predictor of

plant palatability, ecosystem function and nutrient cycling rates, and

role of plants in global biogeochemical models (Kattge et al., 2009;

Chen et al., 2013; Koerselman and Meuleman, 1996; Elser et al., 2003;

Güsewell, 2004; Joshi and Vrieling, 2005; Kerkhoff et al., 2006;

Leishman et al., 2007; Kattge et al., 2009; Li et al., 2009; Ehrenfeld,

2010; Huang et al., 2010; Kurokawa et al., 2010; Kitajima et al., 2012;

Funk, 2013; Funk and Cornwell, 2013; Heberling and Fridley, 2013;

Cronin et al., 2015; Funk et al., 2017; Ju et al., 2017; Kooyers et al., 2017;

Kinlock et al., 2018; Fox and Weisberg, 2019; Ju et al., 2019; Guo et al.,

2020; Harvey and Leffler, 2020; Liu et al., 2020; Hu et al., 2021; Guo

et al., 2023; Guo et al., 2024; Liu et al., 2021; Zhang et al., 2021).

However, we lack a sufficiently comprehensive research on latitudinal

patterns of leaf stoichiometry.

Leaf C is a major component of carbohydrates, representing

starch reserves and CO2 fixation capacity (Rogers et al., 2004), and it

is also strongly correlated with cellulose and hemicellulose contents

(Kitajima et al., 2012). Leaf N is a major component of amino acids

and proteins, and thus, high leaf N indicates high nutrient levels,

which lead to high decomposition rates and palatability to

herbivores (Schädler et al., 2003; Kurokawa et al., 2010). In

addition, many secondary metabolites are also nitrogenous

compounds, which can have major effects on plant–insect

interactions (Waller, 2012). Leaf P is an important component of

nucleotides in genetic materials (e.g., DNA) and energy-transfer

compounds (e.g., ATP) (Ågren, 2008; Guo et al., 2020). The leaf

stoichiometric ratios of these critical nutrients (i.e., C:N, C:P, and

N:P) have been used to indicate ecosystem nutrient limitation

(Koerselman and Meuleman, 1996; Güsewell, 2004). Thus, studies
02
of latitudinal patterns in leaf nutrient contents and stoichiometric

ratios can significantly improve our understanding of ecosystem

processes, including productivity, detritivory and decomposition,

herbivory, and energy flow (Güsewell, 2004; Banks and Frost, 2017;

Zhang et al., 2021; Guo et al., 2023).

Native and non-native plants have different resource allocation

strategies; for example, non-native plants can grow faster and use

resources more efficiently than native plants (Huang et al., 2010;

Heberling and Fridley, 2013). Because of the differences in

strategies, there may be large differences in leaf stoichiometry

between non-native and native plants, which can lead to greater

competitive capacity of non-natives (Harvey and Leffler, 2020; Zhu

et al., 2020). Plant invasions by non-natives are an important

component of anthropogenic global climate change and are

considered one of the most serious environmental problems (Sala

et al., 2000; Vilà et al., 2007; Bradley et al., 2010). At the scale of

communities and ecosystems, plant invasions can threaten native

community species richness and diversity and alter ecosystem C

and N cycling and affect ecosystem structure and function

(Ehrenfeld, 2010; Vilà et al., 2011; Pysěk et al., 2012). Therefore,

we consider plant stoichiometry to be a useful functional trait for

explaining and predicting the status of plant invasions at large

scales. However, the differences in biogeographic patterns of leaf

stoichiometry between native and non-native plants have not been

systematically studied.

Coastal wetland ecosystems are currently one of the most fragile

and sensitive ecosystems worldwide and are severely threatened and

damaged by invasive plants (Li et al., 2009). In China, for example,

coastal salt marshes have suffered from serious plant invasions, and

non-native Spartina alterniflora has taken over all coastal wetlands

in the country (Ju et al., 2017; Xu et al., 2022; Ning et al., 2024).

Similarly, over the past century, the invasive plant Phragmites

australis has steadily invaded the coastal salt marshes of North

America, causing severe damage to native plant communities

(Silliman and Bertness, 2004; Minchinton et al., 2006; Ning et al.,

2021). The few empirical studies that investigated the leaf

stoichiometry of salt marsh plants found significant latitudinal

differences in leaf stoichiometry patterns between exotic and

native plants (Cronin et al., 2015; Zhang et al., 2021). However,

previous studies are all limited to a few model species, and the

results may not be generalizable across species. Therefore, a
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systematic cross-species comparative study is needed on the spatial

patterns of leaf nutrient contents and stoichiometric ratios of native

and non-native plants across global coastal wetland ecosystems.

Here, we report a meta-analysis of the spatial patterns of leaf

stoichiometry between native and non-native plants in coastal

wetlands. Plants of the same identity in the same latitude face

similar environmental factors, which may result in co-occurring

plants with similar ecological strategies (Hu et al., 2021; Guo et al.,

2024). This provides an opportunity to conduct cross-species spatial

analyses of leaf stoichiometry. In this study, we integrated a data set

of leaf stoichiometry from global coastal wetland ecosystems for

cross-species ecological modelling. The effect of temperature on leaf

stoichiometry was analyzed using linear regression. We

hypothesized the following: (1) there are significant differences in

leaf stoichiometry between native and non-native plants in coastal

wetlands; (2) there are significant differences in spatial patterns of

leaf stoichiometry between native and non-native plants in coastal

wetlands; and (3) any differences between native and non-native

plants are primarily related to differential responses to climatic

factors (mainly temperature). We aim to increase understanding of

patterns in two kinds of plant leaf stoichiometries and nutrient

cycling in coastal wetlands, as well as improve predictions of

biogeochemical models across large scales.
Materials and methods

Data collection

We first used a comprehensive dataset of leaf stoichiometry for

coastal wetland plants containing six leaf stoichiometric traits (C, N,

P, C:N, C:P and N:P) with 698 data points from 205 sites (Hu et al.,

2021). This dataset was primarily collected from typical coastal

wetlands (including tidal salt marshes and mangroves), and

excluded studies of seedlings. This dataset also excluded data
Frontiers in Marine Science 03
from significant disturbances and experimental treatments (e.g.,

grazing and reclamation), as well as data from greenhouses and

common gardens (Hu et al., 2021). We then added some additional

studies from recent years with data based on salt marshes on the

east coast of China (Xu et al., 2020; Liu et al., 2020). In total, the data

set contained 954 records. For all data, we also recorded the name of

the plant species and the original location of the data. We used

temperature as the climatic factor in the study and extracted mean

annual temperature using recorded site information at

worldclim.org. We did not include precipitation as a climatic

factor in this study, because the focus was on salt marsh

ecosystems, which have almost regular tides and are mostly less

water-limited. We also determined plant identity (native or non-

native) for all plant species in the data set using Plants of the World

Online (powo.science.kew.org). In the end, our dataset contained

740 data points for native plants and 214 for non-native

plants (Figure 1).
Statistical analyses

As the sample size (N) of the six leaf stoichiometric traits is

inconsistent, we performed separate analyses for the six leaf

stoichiometric traits in subsequent data analyses. We used the

average of the values of leaf element contents (C, N and P) and

their ratios (C:N, C:P and N:P) for each species within each site. We

then tested the normality of the distributions for these plant

characteristics and found that none followed a normal distribution.

To normalize the distribution of residuals, all leaf characteristics were

log10-transformed to meet the assumption of normality. To

determine whether leaf stoichiometries were affected by plant

identity (native and non-native) and latitude, we used the lme4

package for linear mixed models (LMMs) to analyze each leaf

stoichiometric character (C, N, P, C:N, C:P and N:P). LMMs could

accurately assess the effects of different factors on the response
FIGURE 1

Map of original study sites of native and non-native plant leaf stoichiometry across global coastal wetlands. Several studies that only provided
latitude without longitude were not included in the map. The sample size (N) was reported.
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variables by including interactions (Bolker et al., 2009). Each model

included plant identity, latitude, and their interaction as fixed effects

and plant species as a random effect (Bates et al., 2015). Inclusion of

plant species as a random effect to separately consider correlations for

the same plant species and to account for these interdependencies

when fitting the model. The significance of fixed effects in a model

was assessed by the Type II Wald chi-squared test using the CAR

package (Fox andWeisberg, 2019). To further compare differences in

latitudinal patterns of leaf stoichiometry between native and non-

native plants, linear regression was used to fit the relations between

latitude and leaf stoichiometry for each plant type. To investigate the

response of leaf stoichiometry to mean annual temperature (MAT),

we used linear regression to fit the relations between MAT and leaf

stoichiometry for each plant type. All analyses were performed using

R v3.6.2 (R Core Team, 2019).
Results

Effects of plant identity and latitude on
leaf stoichiometry

In the LMM models, the effect of plant identity was significant

for leaf C, N, and P (Table 1), indicating significant differences in

leaf stoichiometry between native and non-native plants in coastal

wetlands. Latitude was significant for leaf C and N and C:N ratio,

indicating significant relations of those variables with latitude

(Table 1). Plant identity × latitude interactions were significant

for leaf C and C:N ratio, indicating significant latitudinal differences

in the relations of the two characteristics between native and non-

native plants.

In separate analyses of the relations between leaf stoichiometry

and latitude for native and non-native plants, leaf C, N, and P and

C:N and C:P ratios of native plant species were significantly

correlated with latitude (Figure 2), with leaf C and C:N and C:P

ratios decreasing with increasing latitude and leaf N and

P increasing. For non-native plants, leaf N and C:P and N:P

ratios were significantly related with latitude (Figure 2), with leaf

N and N:P ratio increasing with increasing latitude and leaf

C:P ratio decreasing.
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Relations between leaf stoichiometry and
mean annual temperature

For native plants, leaf C, N, and P and C:N and C:P ratios were

significantly related with MAT (Figure 3), with leaf C and C:N and

C:P ratios increasing with increasing MAT and leaf N and P

decreasing. For non-native plants, leaf N and C:P ratio were

significantly related with MAT (Figure 3), with leaf N decreasing

and leaf C:P ratio increasing with increasing MAT.
Discussion

We investigated the spatial heterogeneity of leaf nutrient

contents and stoichiometric ratios between native and non-native

plants across global coastal wetland ecosystems. And we found

significant latitudinal patterns in leaf C and N and C:N ratio

(Table 1). For native plants, latitudinal patterns were significant

for most leaf nutrient contents and stoichiometric ratios, whereas

for non-native plants, latitudinal patterns were only significant for

leaf N and C:P and N:P ratios. In spite of this, striking differences

were also found between native and non-native plants in the

responses of leaf nutrient contents and stoichiometric ratios

to temperature.

According to several studies, non-native plants typically have

higher resource acquisition capacity than that of native plants,

resulting in significantly higher C, N, and P contents in non-

native plants than in native species (Leishman et al., 2007; Funk,

2013; Funk et al., 2017. This general conclusion is consistent with

our findings. Although there were significant differences in leaf

nutrient contents between native and non-native plants, there were

no significant differences in stoichiometric ratios (Table 1; Figure 2).

This result may be because leaf stoichiometric ratios are calculated

from leaf element contents, which can mask potential differences

between native and non-native plants. Nevertheless, our results

indicated that non-native plants have higher nutrient acquisition

capacity and thus nutrient levels than those of native plants. Such

increases in leaf C and N contents may also indicate an increase in

contents of structural substances and nitrogenous compounds,

which are most likely related to an increase in plant defenses
TABLE 1 Linear mixed models of the effects of plant identity (PI, native or non-native), latitude (L), and their interaction on leaf stoichiometry in
global coastal wetlands.

Variable
Plant identity (PI) Latitude (L) PI × L

c2 df P c2 df P c2 df P

C 10.162 1 0.001 3.962 1 0.047 5.939 1 0.015

N 11.316 1 0.001 16.155 1 < 0.001 0.396 1 0.529

P 8.719 1 0.003 0.304 1 0.582 0.757 1 0.384

C:N 1.756 1 0.185 46.098 1 < 0.001 4.697 1 0.030

C:P 0.496 1 0.482 2.392 1 0.122 0.048 1 0.827

N:P 0.438 1 0.508 2.052 1 0.152 1.781 1 0.182
df, degrees of freedom; c2, chi–squared test statistic. Significant effects are shown in bold.
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(Kitajima et al., 2012; Waller, 2012; Aljbory and Chen, 2018).

However, the results of this study do not allow an accurate

assessment of leaf palatability of coastal plants. Therefore, because

leaf stoichiometry may affect multiple plant performances, further

bioassay experiments are needed to determine leaf palatability.

Significant latitudinal patterns were detected in leaf C and N

contents and C:N ratio of coastal wetland plants but not in leaf P

content and C:P and N:P stoichiometric ratios (Table 1), which are

results partially consistent with those of previous findings in coastal

wetlands (Hu et al., 2021). This was mainly because in this study,

plant identity was set as a random effect in LMMs, and species

dependence was accounted for when assessing the significance of

fixed effects. Furthermore, our results for leaf P are not fully

consistent with those based on terrestrial ecosystems, mainly

because of the strong P limitation in terrestrial ecosystems, which

gradually increases with increasing latitude and leads to similar
Frontiers in Marine Science 05
gradients of leaf P content (Reich and Oleksyn, 2004; Tian et al.,

2018). When we further differentiated plant identities, significant

differences were detected between native and non-native plants in

latitudinal patterns of leaf nutrient contents and stoichiometric

ratios (Figure 2). With the exception of the N:P ratio, all leaf

stoichiometries of native plants showed significant latitudinal

patterns, whereas in non-native plants, only leaf stoichiometries

of N content C:P and N:P ratios showed significant latitudinal

gradients. Such non-parallel latitudinal gradients have also been

observed with native and invasive lineages of Phragmites australis, a

model species in North American coastal marshes (Cronin et al.,

2015; Bhattarai et al., 2017). Thus, our results extend the

applicability of such findings from the level of single species to

that of multiple species.

Temperature is one of the most important factors included in

the complex factor of latitude. Environmental factors can influence
FIGURE 2

Leaf stoichiometry of native and non-native plant species in coastal wetlands and its relation with latitude. Panels, left side: leaf nutrient contents
and stoichiometric ratios of native and non-native plant species, with box plots indicating the median and interquartile ranges and violin plots
indicating distribution of the data with black dots outliers in the data set. The P-values indicate the significance of the effect of plant identity in linear
mixed models. Panels, right side: linear regressions of the relations between leaf stoichiometry and latitude for native and non-native plants. When
the latitude effect was significant, regression lines were plotted and associated R2, P-values and sample size (N) reported.
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plant traits independently of biotic factors and control the

accumulation and removal rates of C, N, and P in leaves at the

plant level and therefore also strongly influence plant development

and resource use strategies (Moles et al., 2014; Abdala-Roberts et al.,

2016; Tian et al., 2018; Wang et al., 2022). We found significant

differences in the responses of native and non-native plants to MAT

(Figure 3). Except for leaf N:P ratio, all native plants responded

significantly to the variation in temperature with latitude, whereas

only leaf N and C:P ratio of non-native plants responded to the

variation in temperature (Figure 3). This difference in response of

leaf stoichiometry to MAT between native and non-native plant

species is mainly because non-native plants have been introduced

for a short period of time and have not had enough time to adapt to

MAT of the introduced range (Guo et al., 2023, 2024).
Frontiers in Marine Science 06
Temperature directly affects plant physiology and thus regulates

plant traits, but it also indirectly mediates biotic factors, such as

herbivory, which can cause changes in plant traits (Pennings et al.,

2009; Moreira et al., 2018). The latitudinal gradient hypothesis of

biotic interactions suggests that biotic interactions are more intense

at low latitudes than at high latitudes (Zvereva and Kozlov, 2022;

Guo et al., 2024). The increase in intensity of interactions would

result in long-term natural selection pressure on plants at lower

latitudes for lower palatability and thus resistance to herbivorous

consumers, whereas the opposite would be true at higher latitudes

(Anstett et al., 2015; Kooyers et al., 2017). We found that compared

with non-native plants, native plants had higher leaf C and C:N and

C:P ratios and lower leaf P and N at low latitudes (Figure 2). These

results suggest that native coastal plants are less palatable at lower
FIGURE 3

Linear regressions of the relations between mean annual temperature (MAT) and leaf stoichiometry in native and non-native plants in global coastal
wetlands. When the temperature effect was significant, regression lines were plotted and associated R2, P-values and sample size (N) reported.
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latitudes than at higher latitudes, supporting the latitudinal gradient

hypothesis of biotic interactions. However, a similar latitudinal

pattern was not detected for non-native coastal plants. This result is

mainly because non-native plants have only a short history of

coevolution with local herbivores in introduced areas and have

not yet developed spatial patterns similar to those of native plants.

One caveat is our study only focus the climatic factor as MAT, we

suggest future study may have more on exploring the multifactor

effect on the leaf stoichiometry in coastal wetlands (e.g. tide

undulation, deposit sediment chemistry).

Our study is the most comprehensive study to date comparing the

latitudinal patterns of leaf stoichiometry of native and non-native

plants in coastal wetland ecosystems. We found significant spatial

heterogeneity between native and non-native plants, supporting the

previous hypothesis that plant traits of native and exotic plants show

non-parallel latitudinal gradients (Cronin et al., 2015; Bhattarai et al.,

2017). The differences in spatial patterns in this study may be due to

differences in the responses of the two types of plants to temperature

drivers. These findings support our first and second hypotheses. Leaf C,

N, P and their ratios are the vital indicators of leaf palatability, our

results imply there are differences in leaf palatability of coastal wetland

plants between high and low latitudes, which indicate that biotic

interactions (e.g. herbivory intensity) may vary across spatial scales.

Thus, this study can help increase understanding of biotic interactions

and nutrient cycling in coastal wetlands, and improve predictions of

plant growth rates and vegetation productivity across large scales, as

well as be useful in the parameterization of vegetation climate models

under plant invasion scenarios (Ågren & Andersson, 2011; Tang et al.,

2018). In addition, differences in leaf stoichiometry between native and

non-native plants can help to study the effects of exotic plants on native

plant communities and improve understanding of plant adaptation

and evolution (Kerkhoff et al., 2006).
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