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Introduction: Hypoxia is a recurring problem in the fish farming industry.

Currently, it is known that the exposure of fish and fry to a hypoxic

environment induces important changes in their metabolism, compromising

not only their development but also their reproduction and mortality rates. Our

hypothesis is that hypoxia constitutes one of the etiological factors causing

deformation of the body and caudal fin in this species, as well as affecting

its growth.

Methods: We analyzed two hundred forty Salmo salar salmon fry, differentially

cultured at 100% saturation (normoxia condition) and 60% (hypoxia condition)

for 2, 4, 6, and 8 days, including a group under continuous hypoxia. We

performed diaphanization and Alcian blue staining, along with standard

histological techniques. The polyclonal anti-HIF-1a antibody was used as a

marker of hypoxia in Salmo salar, and hypoxia in these fish was associated with

the immunopositivity of this antibody.

Results and discussion: The results indicate that there is an association between

exposure to hypoxia and the deformation of the body and fin, as well as an

agreement between hypoxia and the total length of the fry and fin. Several

months after the event occurred, we were able to find and describe

angiogenesis, blood vessel disorganization, and vasodilation histologically.

Finally, hypoxic cells in the fry (HIF-1a) could be recognized and confirmed as

hypoxia sensors. All of this indicates that hypoxia not only affects the fry during

the development phase of the event, but that its results can be evident much later

and affect the fry throughout their entire ontogeny.
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1 Introduction

There are various factors capable of causing deformities in fish,

including increases in temperature (Rojas et al., 2020), deficiency of

nutrients such as phosphorus (Venegas et al., 2003), hypoxia (Shang

and Wu, 2004; Zhan et al., 2023), as well as the presence of heavy

metals (Sfakianakis et al., 2015) and wastewater discharges (Quesada

et al., 2023). The effects of these factors can be devastating, given that

they can compromise the development and physiology of fish,

affecting, for example, the caudal fin as well as other structures

(Rojas et al., 2020; Pellón et al., 2022), compromising swimming,

escape efficiency, feeding, and/or generating susceptibility to bacterial

and fungal infections (Böckelmann et al., 2010).

Hypoxia is one of the most important environmental stressors

affecting animal welfare. During their early lives, most fish are sensitive

to low levels of dissolved oxygen in the aquatic environment (hypoxia),

a sensitivity that varies depending on the stage of development (Shang

andWu, 2004; Jonz and Nurse, 2006; Podrabsky et al., 2007). Research

has widely demonstrated that hypoxia in fish slows down growth,

triggers apoptosis, and reduces fry survival. Studies have also reported

that sublethal levels of hypoxia can increase the appearance of

malformations during fish embryonic development by more than

77% (Shang and Wu, 2004). In this context, it’s crucial to

acknowledge the significance of certain markers such as

neuroepithelial cells (NECs), which are oxygen-sensing cells and are

located at the end of the primary epithelium in each gill arch (Dunel-

Erb et al., 1982; Jonz and Nurse, 2003; Saltys et al., 2006; Zaccone et al.,

2006; Reed and Jonz, 2016; Zaccone et al., 2017; Lauriano et al., 2021).

Juvenile and adult fish use a dermal skeleton with lepidotrichia, or

bony rays, connected by interrays to form their fins. Every ray comprises

two hemirays (Becerra et al., 1983; Becerra et al., 1996). The situation is

very different in post-hatching fry. At this stage of development,

lepidotrichia are not easily detectable in the caudal fin because they

are not yet ossified or calcified, do not present segmentations or

bifurcations, and the lobes or the groove between lobes are not

recognized (Rojas et al., 2015). A groove separates two lobes of

similar size when the fry reaches 30 mm in length and 950

accumulated temperature units (ATUs). Each lepidotrichia is made

up of two hemirays that are symmetrical and parallel. Each has a few

short segments that are separated by joints and joined together by

collagen ligaments. Each ray forks in the most distal region of the fin

(Rolland-Lagan et al., 2012).

During fish growth, lepidotrichiae lengthen as a consequence of the

addition of new segments at their distal margin, but the length of each

segment remains constant after their formation (Christou et al., 2018).

It has been reported that the segmentation pattern of the caudal fin of

zebrafish is affected by temperature, and, as a consequence, multiple

fusions between segments occur (Christou et al., 2018).

Fish have developed various adaptation mechanisms for

hypoxic environments. The Hypoxia Inducible Factor 1 (HIF-1)

pathway controls gene expression based on oxygen levels (Semenza,

2000; Vuori et al., 2004; Rojas et al., 2007; Rytkönen et al., 2007).

This system helps the body adapt to low oxygen levels by turning on

genes that make erythropoietin and vascular endothelial growth

factor (VEGF). This makes the body’s oxygen transport system

work better and increases the growth of blood vessels in specific
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areas (Nikinmaa and Rees, 2005; Zarember and Malech, 2005;

Nanka et al., 2006).

HIF-1 is a heterodimer composed of two protein subunits, HIF-1a
and HIF-1b. The ubiquitin-proteasome system quickly degrades HIF-

1, which results in its inactivation, while the subunit’s expression is

constitutive. Under normoxia conditions, HIF-1 undergoes an oxygen-

dependent mechanism of hydroxylation on proline and asparagine

residues. Hypoxic conditions, on the other hand, causemore HIF-1a to

build up in the nucleus of cells, which controls how HIF-1 works

(Hochachka and Lutz, 2001; Zarember and Malech, 2005; Rojas et al.,

2007). Based on the aforementioned, we can infer that various HIF-1

detection systems serve as reliable indicators for identifying whether the

studied tissues have experienced low oxygen concentrations.

Our hypothesis is that hypoxia is one of the etiological factors in

the deformation of the body of the fish and the caudal fin. So, the

first goal was to find out if there is a link between being exposed to

hypoxia and body deformities, including deformities of the caudal

fin, as well as if there is a link between hypoxia and changes in the

fry’s total length and caudal fin length. The second objective was to

histologically recognize the effects of different periods of hypoxia on

the caudal fin of fry (angiogenesis). The third goal was to use

immunocytochemistry to find hypoxic cells in the fry (HIF-1a) and
see if it was possible to use the anti-HIF-1 antibody as a

hypoxia sensor.
2 Materials and methods

2.1 Animals

Around a thousand Salmo salar salmon eggs were used, which

were grown at the Aquaculture Center of the Universidad de Chile in

the city of Castro, Chiloé, Chile. An Oxyguard®monitor controlled the

culture at a constant temperature of 9°C and 100% oxygen saturation.

We measured the fry’s ages in ATUs, or accumulated thermal

units, which represent the number of days of fry development

multiplied by the water temperature. It is equal to multiplying the

fry’s development days by the temperature of the water, where 950

ATU corresponds to a larva or fry without a yolk sac, and that is at

the beginning of the first feeding. A hatching of 495 UTAs results in

a fry of 950 UTAs, which corresponds to an alevin without a

vitelline sac and marks the beginning of the first feeding.

At the time of hatching (495 ATUs), a total of two hundred and

forty fry were randomly selected and assigned to six groups of forty

individuals each (Table 1). Group H0 maintained its fry under

normoxia conditions, with 100% O2 saturation. H2, H4, H6, H8,

and CH were exposed to different periods of hypoxia (60% O2

saturation, a condition obtained by slowing the water flow).

We transferred the fry from groups H2, H4, H6 and H8 from

hypoxia to normoxia on days 2, 4, 6, and 8 post-hatching

(corresponding to 513, 531, 549, and 567 ATUs, respectively). We

maintained the CH group in hypoxic conditions from hatching

until 950 ATUs. We used 5% benzocaine (BZ-20®, Veterquimica,

Chile) to euthanize the fry after 950 ATUs, or roughly 3 months of

culture. The Scientific Ethics Committee of the Universidad de La

Frontera has approved the experimental protocol (N°061_20).
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We randomly separated ten fry from each group and subjected

them to various types of anatomical and morphological studies.

These fry were fixed by immersion for 24 h in 10% neutral buffered

formalin (4% w/v) in 0.1M PBS pH 7.0 at room temperature.
2.2 Anatomical evaluation

The protocol of Hanken and Wassersug (1981) guided the

diaphanization process. We randomly selected eight fry from each

group (a total of 48), subjected them to protein digestion using trypsin,

and then treated them with Alcian Blue stain to detect the

glycosaminoglycans of the cartilage tissue. We evaluated the

specimens using a stereoscopic microscope (Stemi DV4, Zeiss®,

Oberkochen, Germany) and took photographs with a digital camera

(Powershot Megapixeles, Canon Inc., Tokyo, Japan). We determined

the body length of each individual (Figure 1A), and the present

deformations were described, using as a criterion the existence of

one or more visible alterations in the anatomical planes. We analyzed

the caudal fin by quantifying the number and length of the rays.
2.3 Histological evaluation

For histological evaluation, 20 samples of fry were selected from

each group, which were processed and included in Paraplast. A

microtome (Microm HM315R, Thermo Fisher Scientific, Waltham,

MA, USA) was used to cut the tissue into 5 mm slices. These slices were

then stained with Hematoxylin-Eosin-Alcian Blue at pH 2.5 to identify

the presence of glycosaminoglycan deposits, check the general

structure, and identify areas of vascular density. Images were

obtained using a light microscope (Axiostar Plus, Zeiss®,

Oberkochen, Germany) with an attached digital camera (Powershot

Megapixeles, Canon Inc., Tokyo, Japan).
2.4 Immunohistochemical evaluation

Rabbit polyclonal antibodies HIF-1a (H-206, Santa Cruz

Biotechnology, Dallas, TX, USA) were used. Incubations were

performed on 5 mm-thick sections obtained on a microtome

(Microm HM315R, Thermo Fisher Scientific, Waltham, MA, USA),
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which were collected on silanized coverslips. Antigen retrieval was

carried out in a steamer using an antigen unmasking solution (Vector

Laboratories, Newark, CA, USA). We blocked nonspecific proteins

with PBS+BSA and then incubated the primary antibodies in PBS at a

1:100 dilution. Subsequently, the sections were incubated with

conjugated polymer for 10 to 15 min. The enzymatic reaction was

revealed with diaminobenzidine (Vector Laboratories, Newark, CA,

USA). The negative control contemplated the development of the

complete immunohistochemical technique but omitted the primary

antibodies. Blood vessels were used as a positive control for the anti-

HIF-1a antibody. In each sample, 100 cells were counted, and the

number of them that showed positive immunostaining was indicated.
2.5 Statistical analysis

The values obtained for the quantitative variables were

described through the arithmetic mean and standard deviation.

The Kurtosis Coefficient Test was carried out with the purpose of

analyzing the degree of concentration of the values present around

the central area of the distribution. The ANOVA test was used to

evaluate the equality of the group means. In order to establish

whether the differences between the means had statistical

significance, the Tukey test was used. Finally, Pearson correlation

coefficients (r) were calculated to analyze the relationship between

those variables considered most relevant. An a error of 5% was

considered in all statistical tests used. The data obtained were

processed with the GraphPad Prism 5.0 statistical program

(GraphPad Software, San Diego, CA, USA).
3 Results

3.1 Association between exposure to
hypoxia and the presence of deformities in
Salmo salar fry

The group of fry maintained in normoxia conditions (H0) and

for two days in hypoxia (H2) did not present body malformations

(Figure 1A). Groups H4 and H6 presented a notable curvature in

the dorsal region (Figure 1B), and fry H8 and CH presented
TABLE 1 Sampling features and conditions.

Group Days of
Hypoxia
Condition

O2 Saturation ATUs at starting
of

hypoxia
condition

ATUs at end of
hypoxia
condition

ATUs at sampling

H0 Normoxia 100% O2 No No No

H2 Hypoxia 2 Days 60% O2 495 513 950

H4 Hypoxia 4 Days 60% O2 495 531 950

H6 Hypoxia 6 Days 60% O2 495 549 950

H8 Hypoxia 8 Days 60% O2 495 567 950

CH Continuous Hypoxia 60% O2 495 950 950
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different curvatures of the body (Figure 1C); some fry even appears

curled in the shape of a C (Figure 1D).
3.2 Relationship between exposure to
hypoxia and body length measured at
950 ATUs

In relation to body length, significant differences (p<0.025) were

observed in body length between groups H0, H2, and H6 compared

to group CH (continuous hypoxia). Likewise, it showed significant

differences (p<0.05) between groups H8 and CH (Table 2).

Consistently, fry exposed to continuous hypoxia achieved shorter

body lengths compared to all other groups.
3.3 Morphology of the normal caudal fin of
a fry at 950 ATUs

The caudal fin of the normal fry of 950 ATUs has two lobes, one

dorsal and one ventral, both approximately symmetrical in shape. On

average, 18.9 ± 0.35 lepidotrichias were observed, arranged in a fan
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shape, with those located in the central region of the fin being shorter.

Each lepidotrichia is made up of two hemirays (right and left).

Additionally, the presence of 4–5 segments and the interrays of

mesenchymal tissue can be distinguished. Figure 2A illustrates these

anatomical features. Externally, the interrays are covered by the

epidermis. In general, in teleost fish, ns of the lepidotrichia of the fins

can be evident in their most distal area. The segmentations are almost

imperceptible. The lepidotrichia of the caudal fin of fry are made up of a

blastema of mesenchymal tissue very rich in glycosaminoglycans, which

was evidenced by staining with Alcian Blue (Figure 2A).
3.4 Morphology of the caudal fin of a fry
subjected to hypoxia

The fry from groups H2 to H8, subjected to varying times of

hypoxia, displayed very similar morphological characteristics

(Figures 2B, C). The dorsal and ventral lobes are similar in size.

The CH group fry had a very short caudal fin, and its hemirays were

spread out and folded in the farthest part (Figure 2D). There was a big

difference in the length of the dorsal lobe rays between groups H0,

H2, H4, and H6 and those who were always lacking oxygen (Table 2).
B

C D

A

FIGURE 1

Association between exposure to hypoxia and the presentation of body deformities, observed at 950 ATUs in fry under normoxia conditions (A),
subjected to 4 days in hypoxia (B), and subjected to 8 days in hypoxia (C, D). Alcian blue staining highlights glycosaminoglycans mainly in the hyaline
cartilage of the skull, spine, and fins, as well as the blastema of the lepidotrichiae. The continuous line indicates where the measures
were performed.
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The length of the rays of the ventral lobe presented significant

differences between groups H0, H2, H4, and H6 (4 mm), group H8

(eight days in hypoxia), and group CH. We also found significant

differences between groups H6 and CH. The lepidotrichiae on the

middle part of the fin of groups H0 to H8 are significantly longer than

those of group CH. The length of the lepidotrichiae of groups H0 and

H2 is significantly greater than that of group H8.
3.5 Histology of the caudal fin of fry from
950 ATUs kept in hypoxia

The fish were exposed to hypoxia for two to eight days. It was

found that the interray blastema was made up of mesenchymal tissue

with blood vessels, some episodes of angiogenesis, and

melanomacrophages (Figures 3A, B). The fish arranged their blood

vessels parallel to the rays and interrays (Figure 3C). New capillaries

emerged perpendicularly from these blood vessels (Figure 3D).

Advanced angiogenesis and disorganization of the blood

capillaries, arranged in different directions and overlapping each

other, were evident in fish kept in hypoxia for 8 days and in

continuous hypoxia. Furthermore, we observed an interray blastema,

characterized by an extracellular matrix rich in glycosaminoglycans

and blood vessels of varying caliber. These vessels emit sprouts in a

disorganized manner, and both the rays and interrays exhibit

neoformation of blood vessels (Figures 3E, F). In some lepidotrichias,

the beginning of the process of ossification and peripheral calcification

occurs, evidencing the presence of flattened osteoblastic cells. We

observed an internal blastema of mesenchymal cells.
Frontiers in Marine Science 05
3.6 Immunohistochemical evaluation

We observed no immunopositive cells in fish maintained under

normoxia conditions (Figure 4B), nor in groups H2 and H4 under

hypoxic conditions.

The presence of nuclei of cells immunopositive for the antiHIF-

1a antibody was recognized after 6 days of being maintained in

hypoxia (Figure 4C); thus, in the epidermis, 10% of positive cells

were quantified, and in the intralepidotrichia mesenchymal tissue,

6% of positive cells. After 8 days, we found 37% of the labeled cells

in the epidermis and 10% in the blastema (Figure 4D). The fry, kept

in continuous hypoxia, had 80% of the labeled cells in the epidermis

and 20% in the intralepidotrichia blastema (Table 2). The negative

control of the technique is indicated in Figure 4A.
4 Discussion

4.1 Association between exposure to
hypoxia and the presentation of
deformities, especially of caudal fins

We have presented evidence that points to an association between

continuous hypoxia and caudal fin deformities in S. salar fry. There are

significant differences between exposure to hypoxia and the

presentation of caudal fin deformities between the groups with 2, 4,

6, and 8 days of exposure to hypoxia and the group subjected to

continuous hypoxia. However, when compared to the control group

under normoxia, these differences did not reach statistical significance.
B

C D

A

FIGURE 2

Morphology of the caudal fin of the fry at 950 ATUs and its changes under normoxia conditions (A), subjected to 4 days in hypoxia (B), subjected to
8 days in hypoxia (C), and subjected to continous hypoxia (D). Dorsal lobe (DL), ventral lobe (VL) and sulcus (S).
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Other published studies have not examined the caudal fin of S.

salar fry, which has not been the subject of any other published

studies. Regarding spinal column deformation, the findings of the

current work are consistent with those of Castro et al. (2011). It has

also been reported that continuous hypoxia, induced by culture

density, affects skeletal development by altering the expression of

genes related to bone metabolism in Atlantic salmon (Pellón et al.,

2015). Our results point in the same direction as the findings

reported by Shang and Wu (2004), who point out that aquatic

hypoxia in embryos generates congenital malformations.
Frontiers in Marine Science 06
4.2 Association between hypoxia, body
length, and caudal fin

The findings from studying fry that were kept in hypoxic

conditions for 2, 4, 6, and 8 days, but mostly after being there for

6 or more days, show that this is a major environmental stressor

that hinders the normal growth of both the body length and the

caudal fin. Peñailillo (2011), who observed lower growth in fry kept

in a hypoxic environment compared to control individuals kept in

normoxia, reported a similar finding. From day 5 onwards, the fry
B C

D E F

A

FIGURE 3

Histological changes of the lepidotrichia of the caudal fin usually formed by a mesenchymal blastema that includes a blood vessel within and
interlepidotrichial areas (A), during normoxia (B), hypoxia for 4 days (C, D), hypoxia for 8 days (E), and continuous hypoxia (F). Blood vessels in
longitudinal arrangement (BV), mesenchymal blastema (MB), and inter-lepidotrichial areas (I).
TABLE 2 Statistical analysis of morphological characteristics of the body of the fry and the caudal fin of the Atlantic Salmon (Salmo salar) subjected
to hypoxia.

Media SD

H0 H2 H4 H6 H8 CH p

Body length (mm) 29.75±0.71 29.25±0.46 23.50±7.80a 27.63±1.85 28.00±5.26 20.38±1.85 abde <0.001

Number of tail
fin rays

18.88±0.35 18.38±0.52 18.75±0.46 18.88±0.35 19.00±0.93 19.50±1.07 0.057

Dorsal lobe ray
length (mm)

3.96±0.21 4.29±0.46 3.71±0.60 3.68±0.69 3.08±0.64ab 2.05±0.18abcde <0.001

Ventral lobe ray
length (mm)

4.11±0.26 4.50±0.50 3.90±0.82 4.03±0.02 3.28±0.27ab 1.88±0.18abcde <0.001

Length of medial
rays (mm)

3.68±0.35 3.76±0.35 3.29±0.58 3.36±0.41 3.09±0.26b 1.54±0.12abcde <0.001

Number
of segments

4.00±0.00 4.13±0.35 4.38±0.52 4.00±0.00 4.25±0.56 4.40±0.55 0.179
a, significant differences (p<0.05) with the H0 group; b, significant differences (p<0.05) with the H2 group; c, significant differences (p<0.05) with the H4 group; d, significant differences (p<0.05)
with the H6 group; e, significant differences (p<0.05) with the H8 group.
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in the group subjected to more intense hypoxia significantly

reduced their body length compared to the control group, which,

according to the author’s work, corresponded to 60% O2 saturation.

It has been found that fibroblast growth factors (Fgfs), Sonic

hedgehog a (Shha), and bone morphogenetic protein 2b (Bmp2b) all

play a role in the growth of lepidotrichia (Quint et al., 2002; Lee et al.,

2005). During ontogeny, Fgfs control cell proliferation rates in the

caudal fin (Wills et al., 2008). Zebrafish also exhibit varying segment

lengths within and between rays (Iovine and Johnson, 2000; Jain et al.,

2007). In particular, within a lepidotrichia, segments are longer in

proximal positions than in distal positions (Iovine and Johnson, 2000;

Sims et al., 2009). However, similar research has reported that lobar

lepidotrichiae have longer segments (Haas, 1962) and more segments

than central ones (Goldsmith et al., 2006). In the present work, we have

presented evidence that shows that in cases of hypoxia, the caudal fins

grow less and their apical edges bend and roll.
4.3 Histology of the caudal fin of fry from
950 ATUs in hypoxia

We kept salmon fry under hypoxic conditions for 2, 4, 6, and 8

days in our study. After that, we did a histological analysis at 950

ATUs (about 3 months) and saw that hypoxia caused more new

blood vessels to form (angiogenesis), which could be seen as a

response to get more oxygen to the tissues.

Rojas et al. (2015) have previously described both the histology

and anatomy of the salmon caudal fin at different stages of

development, making the diagnosis of early pathologies in said

structure more plausible. According to Griffioen and Molema

(2000) and Distler et al. (2003), hypoxia constitutes the main

stimulus for the formation of new blood vessels by inducing, by

endothelial, tumor, inflammatory cells, and macrophages, the

production of pro-angiogenic factors such as vascular endothelial

growth factor (VEGF). These factors, in turn, generate effects such
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as increased vascular permeability and vasodilation. This would

explain the increase in the diameter of blood vessels observed both

at eight days under hypoxia and in continuous hypoxia, a finding

similar to that reported by Peñailillo (2011) in the gills. Taking into

consideration that HIF mediates the expression of the genes

that transcribe VEGF (Nikinmaa and Rees, 2005; Zarember and

Malech, 2005; Nanka et al., 2006), it is reasonable to propose that

this factor could be responsible for the observed increase in

local vascularization.
4.4 Anti-HIF1a antibody as a sensor of
hypoxic cells

After being exposed to hypoxia for 6 days, fry that were constantly

exposed to it had HIF-1a-positive nuclei in cells of the epidermis’s

epithelial tissue, the mesenchyme, and the blastema. On the contrary,

fry that remained in normoxia conditions did not show positive

labeling in such structures. This finding suggests that we can use the

anti-HIF antibody as a sensor of hypoxic cells in the same tissues. It is

worth mentioning that HIF-1a participates in several developmental

processes, including angiogenesis, vasculogenesis, and the development

of the heart and central nervous system (Nikinmaa and Rees, 2005).

For instance, studies have demonstrated the essential role of HIF-1 in

the normal development of the heart and blood vessels in zebrafish, as

well as in ensuring the survival of embryos. HIF-1 activates the

expression of genes that produce growth factors such as VEGF and

platelet-derived growth factor (PDGF) in Atlantic salmon. These

factors help create new blood vessels and blood vessels in areas that

do not get enough oxygen. However, more research needs to be done

on oxygen sensing, hypoxia adaptation, chemosensory NECs that start

reflex responses to hypoxia, and how these cells connect with the

growth of filaments and lamellae in salmon fry.

According to the results obtained, it is feasible to indicate that

there is a clear association between i) exposure to hypoxia and the
B C DA

FIGURE 4

Presence of hypoxic cells in fry, recognizable by immunohistochemistry with the anti-HIF-1a antibody in the negative control (A), under normoxia
conditions (B), subjected to 6 days in hypoxia (C), and subjected to 8 days in hypoxia (D). Epidermis (E), calcified area of the lepidotrichia (C),
blastema of the lepidotrichia (B), mucus-secreting cells (MS).
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presentation of deformities in salmon fry and ii) hypoxia and

changes in the body length of the fry and its caudal fin.
5 Conclusions

The present study observed that fry exposed to continuous

hypoxia achieved a shorter body length compared to all other

groups. This fact alone points to the importance of monitoring

and controlling oxygen conditions in culture systems and also in

fish tissues.

Histologically, angiogenesis, disorganization of blood vessels,

and vasodilation can be recognized, which was possible to verify

and describe several months after the hypoxia exposure event

occurred. Finally, hypoxic cells in the fry could be recognized by

labeling with the anti-HIF-1a antibody, thus confirming its use as a

hypoxia sensor. Taken together, the evidence reported here

indicates that hypoxia not only affects the fry during the phase of

development directly exposed to the event, but that its effects persist

long afterward and affect the fry during their ontogeny.
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