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Chengcheng Shen2, Bo Lu2, Chunsheng Wang1,2,3*

and Dongsheng Zhang1,2,3*

1School of Oceanography, Shanghai Jiao Tong University, Shanghai, China, 2Key Laboratory of Marine
Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR),
Hangzhou, China, 3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai, China
Ophiuroids, the most diverse group of echinoderms, inhabit a vast array of

ecological niches and play vital roles in benthic ecosystems as suspension

feeders, scavengers and opportunists. Despite the important ecological roles

played by Ophiuroidea, their evolutionary history and phylogenetic relationship is

not yet fully understood. In this study, 47 mitochondrial genomes of ophiuroids,

including 21 newly sequenced ones, were analyzed. tRNA duplication was firstly

discovered in four species and a new start codon was identified for Ophiuroidea.

Eighteen phylogenetic trees based on mitochondrial genomes consistently

supported two major lineages, Ophintegrida and Euryophiurida. It further

confirmed the monophyly of Euryalida and Ophiurida, respectively, as well as

families represented by multiple species. Among 18 trees, only the two ML trees

based on amino acid sequences using IQtree method supported monophyly of

Amphilepidida and Ophiacanthida, consistent with current phylogenetic system

of Ophiuroidea. This result highlighted the effect of phylogenetic analysis

methods and datasets on tree topology, indicating that amino acid sequence

data maybe more suitable for higher taxonomic level phylogenetic analysis of

ophiuroids than nucleotide sequences. Four new gene orders of 13 protein-

coding genes + two rRNAs and 12 new gene orders of all 37 genes were

identified. Mitochondrial gene orders were highly variable in Ophiacanthida,

but were extremely conserved in Eurylida. Additionally, both branch lengths

and estimated positive selection varied among the four orders, and a positive

relationship between branch lengths and mitochondrial gene rearrangement

rates was revealed, suggesting distinctly different evolutionary history among the

four major clades of Ophiuroidea. Overall, we (1) reconstructed the phylogenetic

relationship based on mitochondrial genome, supporting the current
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phylogenetic system in Ophiuroidea, (2) revealed a high variability in

mitochondrial gene rearrangement among the four orders, (3) provided the

first evidence to link gene rearrangement and nucleotide substitution

in Echinodermata.
KEYWORDS

Ophiuroidea, mitochondrial genome, phylogeny, gene rearrangement,
positive selection
1 Introduction

Ophiuroids, comprising the most diverse group within the

phylum Echinodermata, inhabit a vast array of ecological niches,

ranging from the equatorial to the polar regions, from coastal waters

to hadal trenches (O’Hara et al., 2011; Stöhr et al., 2012; Okanishi,

2016; Zhang et al., 2021), playing pivotal roles in marine ecosystems,

as suspension feeders (Emson et al., 1991), scavengers, and

opportunists (Fratt and Dearborn, 1984). Despite their evolutionary

and ecological importance, phylogeny and internal taxonomy have

received relatively limited attention and are contentious. Matsumoto

(1917) initially classified Ophiuroidea into two subclasses:

Oegophiurida and Phrynophiurida, which was sequentially

complemented with a series of comprehensive key by Fell (1960).

The initial cladistics analysis was performed by Smith et al. (1995)

using both morphological and molecular data, leading to the

identification of two major groups: Ophiurida and Euryalida.

However, O’Hara et al. (2014) challenged this classification by

reconstructing a class-wide phylogeny using a transcriptome-based

dataset and morphological characteristics, suggesting that Ophiurida

as then conceived is paraphyletic, with Ophiuridae closely related to

euryalids. This finding was supported by other morphology-based

phylogenetic studies (Thuy and Stöhr, 2016). More recently, a

comprehensive phylogenetic revision at the family level divided

Ophiuroidea into two major clades, Ophintegrida (comprising four

orders: Amphilepidida, Ophioleucida, Ophiacanthida, and

Ophioscolecida) and Euryophiurida (comprising two orders:

Ophiurida and Euryalida) (O’Hara et al., 2017, 2018). Nevertheless,

uncertainties persist concerning the phylogenetic relationships within

orders or lower taxonomic levels, such as three families within

Euryalida (Okanishi and Fujita, 2013), Ophiodermatidae,

Ophiolepididae (O’Hara et al., 2014), Ophiactidae (Bribiesca-

Contreras et al., 2017), and Ophiuridae (Sun et al., 2023).

The mitochondrial genome has proven to be a powerful tool for

resolving phylogenetic relationships across a wide range of metazoans

due to its small genome size, maternal inheritance, rare

recombination, and rapid evolutionary rate (Miya et al., 2001;

Osigus et al., 2013; Li et al., 2015; Mikkelsen et al., 2018). However,

until recently, less than 30 ophiuroids had been sequenced for

complete mitochondrial genomes among over 2,000 extant species,

and only a few studies used mitochondrial genome information for
02
phylogenetic analysis of Ophiuroidea (Perseke et al., 2010; Galaska

et al., 2019; Lee et al., 2019; O’Hara et al., 2019; Sun et al., 2023).

Phylogenetic relationships within Ophiuroidea inferred from these

studies were variable (Figure 1), which may be attributed to the

datasets and methods used for phylogenetic analysis. For example,

Ophiacanthida and Amphilepidida were monophyletic in a tree based

on amino acid sequences (Lee et al., 2019), but were paraphyletic from

a tree using necleotide sequences (Lee et al., 2019; Sun et al., 2023). Lee

et al. (2019) suggested that translated amino acid sequences of

mitochondrial protein-coding genes (PCGs) maybe more

informative than nucleotide sequences for phylogenetic analysis.

Additionally, within Gorgonocephalidae, Gorgonocephalus chilensis

was clustered with Astrospartus by Galaska et al. (2019), but was

suggested as a sister clade to Astrotoma + Astrohamma (Sun et al.,

2023). The phylogenetic position of Ophionotus victoriae was also

uncertain, clustered within Ophiuridae or Ophiopyrgidae in different

studies (Galaska et al., 2019; Sun et al., 2023). These uncertains may

also be attributed to the insufficient sampling.

Mitochondrial gene rearrangements caused by inversions,

transpositions, reverse transpositions, and tandem-duplication/

random-loss (TDRL) are a common occurrence in metazoans

(Bernt et al., 2013a). A significant correlation between gene

rearrangement rates and nucleotide substitution rates has been

indicated in previous studies (Shao et al., 2003; Xu et al., 2006;

Fourdrilis et al., 2018). A high degree of gene rearrangement, often

considered a sign of accelerated molecular evolution in mitochondrial

DNA (Zhuang and Cheng, 2010; Tan et al., 2018), is frequently

associated with adaptations to extreme ecological niches and lifestyles

(Cameron, 2014; Nakajima et al., 2016). The gene orders of 13 PCGs

and two rRNAs of Ophiuroidea were highly conserved, while the

presence of tRNA led to more frequent mitochondrial gene

rearrangement events (Galaska et al., 2019). Within the major

clades, mitochondrial gene order exhibits a high degree of

conservation in Euryalida, with only slight variation in the other

three orders (Lee et al., 2019). Nonetheless, novel mitochondrial gene

orders have come to light with additional species being sequenced (Li

et al., 2021a; Sun et al., 2023). Among the five echinoderm classes,

Ophiuroidea appears to have undergone more extensive

mitochondrial genome rearrangements (Scouras et al., 2004),

suggesting a higher evolutionary rate in Ophiuroidea than other

echinoderm lineages (Perseke et al., 2010). Extensive mitochondrial
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gene order rearrangements have also been unveiled in some other

metazoans, even at the family or genus level (Sun et al., 2020; Malkócs

et al., 2022), offering substantial evolutionary insights. Enhanced

sampling efforts may furnish further evidence regarding the

variability of mitochondrial gene rearrangements across

phylogenetic lineages.

In this study, 21 new complete mitochondrial genomes were

obtained. Together with other mitochondrial genomes available in

GenBank, a total of 47 mitochondrial genomes of Ophiuroidea

representing 17 families were compiled for phylogenetic analyses.

Our objectives were (1) to explore the characteristics of mitochondrial

genomes and to assess the variability of mitochondrial gene orders

across phylogenetic lineages, and (2) to infer the phylogenetic

relationships within Ophiuroidea using mitochondrial genomes and

to evaluate the effects of different types of data or methods on the

construction of phylogenetic trees.
2 Materials and methods

2.1 Mitochondrial genome sequencing,
assembly, and annotation

A total of 21 ophiuroid species were used for mitochondrial

genome sequencing, these specimens were preserved in 90% ethanol
Frontiers in Marine Science 03
(Table 1 lists sampling details). The DNeasy Blood & Tissue Kit

(QIAG EN) was used to extract genomic DNA following the

manufacturer’s protocol. For Ophiomusium sp., L-PCR methods

were employed. COX1 and 16S rRNA were amplified and

sequenced with specific primers (Palumbi et al., 1991; O’Hara et al.,

2014). Subsequently, L-PCR primers (Supplementary Table S1) based

on COX1 and 16S rRNA templates were designed, and the complete

mitochondrial genome was amplified in two overlapping fragments.

The long segments from COX1 to 16S (COX1–16S or 16S–COX1)

was sequenced through the Illumina HiSeq X-Ten platform (Illumina

Inc., San Diego, CA, USA) using the next-generation sequencing

method. Approximately 1 G of clean data of each partial sequence

were de novo assembled with SPAdes 3.12 (Nurk et al., 2013). Any

remaining gaps were filled using species-specific primers designed

based on the obtained sequences.The other 20 species were directly

sequenced through NGS, following Illumina’s standard genomic DNA

library preparation procedure. Paired-end libraries with insert sizes of

approximately 400 bp were prepared. The qualified Illumina paired-

end library (2×150 bp) was used for Illumina NovaSeq 6000

sequencing (Shanghai BIOZERON Co., Ltd.). Raw paired-end reads

underwent trimming and quality control with Trimmomatic v0.39

using the parameters (SLIDINGWINDOW:4:15 MINLEN:75)

(Supplementary Table S2). Clean data obtained from these quality

control processes were used for mitochondrial genome assembly using

ABySS v 2.0. Any remaining gaps were filled using GapCloser (http://
FIGURE 1

Summary of mitochondrial genome-based phylogenetic trees for Ophiuroidea across different studies. (A, B) Cladogram from Lee et al. (2019).
(C) Cladogram from Galaska et al. (2018). (D) Cladogram from Sun et al. (2023). Species highlighted with grey rectangular shadows represent areas
of topological conflict among the studies.
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soap.genomics.org.cn/soapdenovo.html). The MITOS2 Web Server

(http://mitos2.bioinf.uni-leipzig.de/index.py) was used to annotate

mitochondrial genomes. The boundaries of PCGs and rRNAs were

further manually determined through alignment with the published

sequence data. The newly sequenced mitochondrial genomes have

been submitted to GenBank, the accession number was shown in

Supplementary Table S3. MEGA 7 was used to calculate nucleotide

composition (Kumar et al., 2016) using four datasets: the full

genome, 13 concatenated PCGs, two concatenated rRNAs, and 22

concatenated tRNAs. The formulae of Perna and Kocher (1995)

were used to calculate GC-skew and AT-skew.
2.2 Phylogenetic analysis

A total of 47 mitochondrial genomes (21 newly sequenced and

26 downloaded from Genbank) were used for phylogenetic analysis,

with two mitochondrial genomes of asteroids as outgroups. The

MUSCLE algorithm was used to separately align nucleotide

sequences of 13 PCGs (Edgar, 2004), while the MAFFT algorithm

was used to separately align two rRNAs and 22 tRNAs (Katoh and
Frontiers in Marine Science 04
Standley, 2013). Amino acid sequences of 13 PCGs were also

aligned following the same method as for nucleotides. To remove

ambiguously aligned regions, the Gblocks Server (http://

molevol.cmima.csic.es/castresana/Gblocks_server.html) was used

to trim nucleotide and amino acid sequence alignments, with

settings allowing smaller final blocks, gap positions within the

final blocks, and less strict flanking positions but not permitting

many contiguous non-conserved positions.

The following six separate data matrices were generated to

assess the effect of datasets on the phylogenetic analysis: 1) a

concatenated nucleotide sequence alignment of 13 PCGs, two

rRNAs, and 22 tRNAs with the Gblocks (n_Prt G); 2) a

concatenated nucleotide sequence alignment of 13 PCGs, two

rRNAs, and 22 tRNAs without the Gblocks (n_Prt); 3) a

concatenated nucleotide sequence alignment of 13 PCGs and two

rRNAs with the Gblocks (n_Pr G); 4) a concatenated nucleotide

sequence alignment of 13 PCGs and two rRNAs without the

Gblocks (n_Pr); 5) a concatenated amino acid sequence

alignment of 13 PCGs with the Gblocks (aa_P G); and 6)

concatenated amino acid sequence alignment of 13 PCGs without

the Gblocks (aa_P). Maximum likelihood (ML) analysis was
TABLE 1 Sampling information of the newly sequenced species in this study.

Species Familiy Cruise Voucher Location
Sampling

Date
Longitude

(°E)
Latitude

(°N)
Depth
(m)

Ophiactis definita Ophiactidae KK18 RSIO18008 SCS 2018.4.28 117.5665 15.2855 3, 202

Ophioleila elegans Ophiothamnidae DY41 RSIO41018 NWP 2017.9 156.2871 12.3772 1, 995

Ophiacantha richeri Ophiacanthidae DY41 RSIO41026 NWP 2017.9.18 156.8845 13.0242 1, 571

Ophiacantha sp1. Ophiacanthidae DY56 RSIO56061 NWP 2019.10.5 149.8806 13.3911 2, 692

Ophiacantha sp2. Ophiacanthidae KK18 RSIO18035 SCS 2018.5.3 116.5333 15.0167 1, 304

Ophioplinthaca incisa Ophiacanthidae DY56 RSIO56030 NWP 2019.9 161.7696 15.4624 2, 624

Ophioplinthaca defensor Ophiacanthidae DY56 RSIO56008 NWP 2019.9.12 156.5420 20.0143 1, 678

Ophioplinthaca
grandisquama

Ophiacanthidae DY56 RSIO56013
NWP

2019.9.17 161.7810 15.5449 1, 049

Ophioplinthaca semele Ophiacanthidae DY56 RSIO56057 NWP 2019.9.20 161.8140 15.5339 1, 024

Ophioplinthaca athena Ophiacanthidae DY35 RSIO35009 NWP 2014.7.23 155.2831 15.9772 2, 785

Ophiurothamnus clausa Ophiacanthidae KK18 RSIO18031 SCS 2018.4.28 117.5665 15.2855 3, 202

Ophiophthalmus sp. Ophiacanthidae TS16 RSIO16004 SCS 2020.3.21 115.3948 13.9737 664

Ophiotreta stimulea Ophiacanthidae KK18 RSIO18029 SCS 2018.4.28 117.5665 15.2855 3, 202

Ophiocamax drygalskii Ophiacanthidae DY56 RSIO56009 NWP 2019.9.12 156.5460 20.0106 1, 653

Ophiomusa sp. Ophiomusaidae KK18 RSIO18001 SCS 2018.5.11 118.0833 22.1333 800–1, 400

Ophiomusium sp. Ophiosphalmidae DY48 RSIO48005 NWP 2018.9 159.3894 22.0112 1, 315

Asteroschema tumidum Euryalidae TS16 RSIO16002 SCS 2020.3.21 115.3809 13.9862 1, 083

Astrodia duospina Euryalidae DY35 RSIO35014 NWP 2014.7 159.2485 21.6087 1, 744

Ophiocreas oedipus Euryalidae DY51 RSIO51004 NWP 2018.9.20 156.5397 12.7309 1, 703

Asteroschema sublaeve Euryalidae DY56 RSIO56007 NWP 2019.9.12 156.5446 20.0119 1, 661

Asteroschema salix Euryalidae DY59 RSIO59001 NWP 2020.7.12 136.5900 21.7967 538
f

SCS indicates the South China Sea, NWP indicates the Northwest Pacific.
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conducted in RAxMLGUI 1.5b2 (Silvestro and Michalak, 2012)

with ML + thorough bootstrap (1,000 replicates) and the GTR + G +

I model. The IQ-TREE web server (http://iqtree.cibiv.univie.ac.at/)

was also used for ML analysis using the default settings, employing

Bayesian information criterion to select the best models for each

gene (Supplementary Table S4). MrBayes 3.2.7 was used to conduct

Bayesian inference (BI) analysis (Ronquist and Huelsenbeck, 2003)

under the GTR + G + I models, with 1,000,000 generations of

Markov chain Monte Carlo and sampling every 1,000 generations,

with the initial 25% generations being discarded as a burn-in.

FigTree v1.4.3 was used to visualize tree files.
2.3 Gene rearrangement

The rearrangement of mitochondrial genes was analyzed

through pairwise comparison using CREx (Bernt et al., 2007). To

identify gene rearrangement events within the ophiuroid

phylogenetic context established by ML trees based on amino

acid sequences using IQ-TREE, recovered mitochondrial gene

orders were compared with Tree REx 1.85 (Bernt et al., 2008). To

assess the degree of gene rearrangement across lineages, the

breakpoint distance values (BP values) were calculated following

the method of Blanchette et al. (1999) to measure the number of

gene rearrangements for each species concerning the ancestral gene

order of Ophiuroidea inferred based on the TreeREx analysis.
2.4 Nucleotide substitution rate and
positive selection

Branch lengths for alignments of 13 concatenated PCGs were

calculated using the free-ratio model implemented in the PAML4.8

package to evaluate potential differences in evolutionary rates across

the phylogenetic lineages (Yang, 2007).

To evaluate positive selection, maximum likelihood analysis on

the concatenated nucleotide sequences dataset of 13 PCGs was

performed using the branch model and the branch-site model of the

CodeML program implemented in the PAML4.8 package. The

branch model assessed whether the value of w was homogenous

among the four orders. The one-ratio model (model = 0) was used

to estimate the distribution of w values as a benchmark. The free-

ratio model (model = 1) computed separate w values for terminal

branches to evaluate selective pressure. The two-ratio model (model

= 2) assumed that the branches of interest had different ratios from

the background ratio (Yang, 1998). The improved branch-site

model (model = 2, NSsite = 2), allowing w to vary both among

sites in the protein and across branches on the tree (Zhang et al.,

2005), was used to detect the positively selected sites on specific

lineages compared with background lineages. To determine

whether the positive-selection model (MA) or the corresponding

null model (M1a) fit the data, likelihood ratio tests (LRTs) were

conducted. The Bayes empirical Bayes method (Yang et al., 2005)

was used to calculate posterior probabilities (>0.95) to identify these

positively selected sites if the LRTs were significant.
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3 Results

3.1 Characteristics of the new
mitochondrial genomes

Characteristics of the 21 newly sequenced mitochondrial

genomes were summarized in Supplemetary Table S5. The

mitochondrial genome size ranged from 15,869 to 20,644 bp,

encompassing 13 PCGs and two rRNA genes. Of the 21 new

mitochondrial genomes, seventeen genomes possessed 22 tRNAs,

while the remaining four exhibited a duplicated tRNA gene—

specifically in Ophioplinthaca grandisquama (tRNA S1),

Ophiomusa sp. (tRNA S1), Ophioplinthaca athena (tRNA M), and

Astrodia duospina (tRNA Y). The start codons were dominated by

ATG, with several alternatives such as GTG, ATT, and ATA.

Among these, GTG was common in COX1, ND2, ND5, ND6, and

CYTB, while ATT was frequent in CYTB and ND1, especially in the

genus Ophioplinthaca. ATA, which was previously found in

Holothuroidea and Echinoidea (Cantatore et al., 1989; Scouras

et al., 2004), was firstly observed in Ophiuroidea. The genes

primarily terminated with complete stop codons (TAG or TAA),

but truncated stop codons (T and TA) were present in COX2,

CYTB, ND4, ND4L, and ND6.

The A+T content, AT-skew, and GC-skew were highly variable

within the 47 ophiuroid mitochondrial genomes. The A+T content

of the whole genome, PCGs, rRNAs and tRNAs varied from 58.62%

to 74.62%, from 58.30% to 74.66%, from 60.80% to 74.51% and

from 59.57% to 74.44%, respectively (Supplementary Table S6).

Among the four orders, Euryalida had the highest A+T content,

followed by Ophiacanthida and Ophiurida, but the lowest observed

in Amphilepidida. The GC-skew and AT-skew values also varied

significantly, most species exhibited negative GC-skew and positive

AT-skew values, however, a reverse skew pattern was obtained from

eight Ophiacanthidae species (Figure 2 and Supplementary

Table S6).
3.2 Phylogeny of Ophiuroidea based on
mitochondrial genomes

In this study, we generated a total of 18 phylogenetic trees,

which can be divided into nine different topologies. The highest

congruence with the current Ophiuroidea phylogenetic system

(O’Hara et al., 2017) was found in the two ML trees (topology 1)

using IQ-TREE based on the aa_P G and aa_P datasets, supporting

the monophyly of the four orders (Figure 3). Four topologies

(topologies 2–5) were inferred from amino acid sequences using

RAxML and MrBayes, in which Amphilepidida, Euryalida and

Ophiurida were supported as monophyletic, but Ophiacanthida

was a polyphyletic group with three species (Ophiomastix mixta,

Ophiarachnella gorgonia, and Ophiocamax drygalskii) positioned at

the base of Amphilepidida (Supplementary Figures S1-S4). Among

the four topologies, Asteronychidae was positioned at the base of

Euryalida in the ML tree based on aa_P (topology 3, Supplementary

Figure S2), while in the other topologies it was inferred to be the
frontiersin.org
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sister clade of Gorgonocephalidae. The BI tree based on aa_P G

(topology 5) didn’t support the two superorders of Ophintegrida

and Euryophiurida, suggested that Euryalida was the sister clade of

(Amphelipidida + Ophiacanthida) and positioned Ophiurida as the

basal clade of the Ophiuroidea (Supplementary Figure S4).

There were two topologies (topologies 6 and 7) including seven

ML trees generated from n_Prt, n_Prt G and n_Pr using RAxML

and from n_Prt, n_Prt G, n_Pr and n_Pr G using IQ-TREE

(Supplementary Figures S5, S6). These two topologies suggested

Ophiacanthida as paraphyletic and two species of Amphilepidida

were clustered with Ophiarachnella gorgonia and Ophiomastix

mixta. The two topologies can be differed from each other by the

position of Ophionotus victoriae. The remaining two topologies

included a ML tree (topology 8) generated from n_Pr G using

RAxML (Supplementary Figure S7) and 4 BI trees (topology 9)

generated from n_Prt, n_Prt G, n_Pr and n_Pr G using MrBayes

(Supplementary Figure S8). These trees suggested Ophiacanthida as

monophyletic and clustered Hemieuryalidae with Ophiacanthida

rather than Amphilepidida.
3.3 Mitochondrial gene rearrangement

Seven mitochondrial gene orders including 13 PCGs and 2

rRNAs (PCGs-rRNA gene roders, PR1–PR7) were identified, four

of which were newly discovered in this study (Figure 4). Only one

PR-gene order (PR1) was recovered from Euryalida, two were

recovered from Amphilepidida (PR1 and PR2) and Ophiurida

(PR2 and PR3). Six PR-gene orders (except PR3) including

four new arrangements (PR4–PR7), were recovered from
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Ophiacanthida. The PR-gene order was conserved for most

families or genera represented by multiple species. However, five

PR-gene orders (PR1, PR4–PR7) were recovered from

Ophiacanthidae, and three PR-gene orders (PR5–PR7) were

recovered from Ophioplinthaca (Figure 4). Inversions and

transpositions occurred multiple times within Ophiacanthidae,

also occurring at the basal nodes of Ophiurina, Euryalida, and

Hemieuryalidae (Figure 4).

When tRNAs were included, 23 gene orders (PCGs-rRNA-

tRNA gene orders, PRT1–PRT23) were recovered, 12 of which

(PRT2, PRT3, PRT4, PRT10–PRT17, and PRT22) were newly

discovered (Figure 5). Mitochondrial gene orders in Euryalida

were highly conserved, gene orders of 10 species from

Gorgonocephalidae and Euryalidae were identical, except for

Astrodia duospina with a duplicated tRNA Y gene (Figure 5).

Within Amphilepidida, mitochondrial gene order was relatively

conserved, with two identical gene blocks COX1–ND5 and ND1–

tRNA W. The rearrangements were caused by single transpositions

of tRNA T, tRNA M, tRNA L1, tRNA F, and tRNA E (Figure 5).

Similarly, transpositions of single tRNA genes, such as tRNA C,

tRNA L1, and tRNA G, were also recovered from Ophiurina. In the

most recent common ancestor of Ophiomusina, multiple TDRLs

may have occurred (Figure 5), suggesting a more complicated

evolution of mitochondrial genomes between the two suborders

within Ophiurida. The mitochondrial gene orders in

Ophiacanthidae were extremely variable, with nine PRT-gene

orders recovered from 11 species (Figure 5). The four

mitochondrial gene rearrangement events ( inversion,

transposition, reverse transposition, and TDRL) occurred

frequently during its evolution history. However, five species from
FIGURE 2

AT-skew and GC-skew values of Ophiuroidea. (A) The whole mitochondrial genomes, (B) 13 PCGs, (C) Two rRNAs, and (D) 22 tRNAs.
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the other four families in Ophiacanthida shared the same PRT-gene

order (PRT8), which was suggested as the ancestral gene order

of Ophintegrida.

Additionally, we observed distinct variation in breakpoint

distance values (BP values) across the four orders. The highest BP

values were recovered in Ophiacanthida, followed by Ophiurida,

Euryalida, and Amphilepidida (Supplementary Table S7).
3.4 Branch length and positive selection

The branch lengths exhibited distinct variation across lineages,

with higher values recovered in Ophiacanthida and Ophiurida,

while lower values recovered in Amphilepidida and Euryalida

(Supplementary Table S7). The w values exhibited variation

across the lineages, ranging from 0.02056 to 0.11145 for

Amphilepidida, 0.03959 to 0.10883 for Ophiacanthida, 0.01335 to

0.16168 for Ophiurida, and 0.01756 to 0.0874 for Euryalida

(Supplementary Table S8). Among the 13 PCGs, COX1, COX2,
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and CYTB displayed low w values, while ATP8 and five genes of

NADH dehydrogenase subunits (ND2, ND3, ND4, ND5, and ND6)

exhibited high w values (Figure 6A). Specifically, Ophiacanthida

exhibited the highest w values in eight PCGs (ATP6, COX1, COX2,

COX3, CYTB, ND1, ND4, and ND4L); Amphilepidida had the

highest w values in three PCGs (ND3, ND5 and ND6), and

Ophiurida had the highest w values in two PCGs (ATP8

and ND2) (Figure 6A). These results suggest that Amphilepidia

and Ophiacanthida might have experienced more relaxed purifying

selection than Ophiurida and Euryalida.

The analysis showed that the free-ratio model fitted the

data significantly better than the one-ratio model (Supplementary

Table S9), suggesting differential selection pressures on

mitochondrial genes across lineages in Ophiuroidea. The two-

ratio model was better supported than the one-ratio model, with

the w values consistently exceeding one in the two-ratio model,

indicating the presence of positive selection in foreground species

(Supplementary Table S9). The branch-site model results revealed

that Ophiacanthida exhibited the highest number of positive
FIGURE 3

Maximum likelihood (ML) trees of Ophiuroidea inferred from the amino acid databases using IQ-TREE. Numbers on nodes are bootstrap values (left
from database aa_P; right from database aa_P G).
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selection sites (150 sites) among the four orders, followed by

Amphilepidida (79 sites) and Ophiurida (54 sites), with the

lowest number of positive selection sites detected in Euryalida (23

sites) (Figure 6B, Supplementary Table S9). These positive selection

sites were detected frommost of the PCGs, except for the ND6 gene.

Of the 12 PCGs, nine exhibited more positive selection sites in

Ophiacanthida than in the other three orders.
4 Discussion

4.1 Effects of different datasets and
methods on phylogenetic analysis

A total of 18 trees were constructed and divided into nine

different topologies. The phylogenetic relationships in Ophiuroidea

were highly variable at different taxonomic levels, such as families

including Ophiocamacidae, Ophiocomidae, Ophiodermatidae,

Hemieuryalidae and Asteronychidae and species of Ophionotus

victoriae, Gorgonocephalus chilensis. These variations maybe
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attributed to different dataset choice and analytic methods, which

had been widely reported in many other taxa (Burger et al., 2012;

Du et al., 2020; Sun et al., 2022).

It has been debated whether amino acid sequences or nucleotide

sequences are more informative for phylogenetic analysis (Scouras

and Smith, 2001; Townsend et al., 2008). Saturation and

compositional biases tend to manifest most strongly in rapidly

evolving sequences, thus nucleotide sequences tend to be more

biased than amino acid sequences (Rota-Stabelli et al., 2013; Cox

et al., 2014). Previous study has suggested that the amino acid

sequences of PCGs are more useful than nucleotide sequences for

higher taxonomic analyses of ophiuroids (Lee et al., 2019). In this

study, only two ML trees generated from amino acid sequences

showed consistent topology with the current phylogenetic system of

Ophiuroidea (O’Hara et al., 2017), supporting the four major orders

as monophyletic. In contrast, trees based on nucleotide sequences

failed to recover Ophiacanthida and Amphilephidida as

monophyletic. Our results indicated that amino acid sequences

may outperform nucleotide sequences in ophiuroids phylogenetic

analysis (Lee et al., 2019).
FIGURE 4

Possible scenario of mitochondrial gene rearrangement of 13 PCGs and two rRNA genes in Ophiuroidea. Gene orders on the nodes were estimated
using TreeREx based on the phylogenetic relationships shown in Figure 3. Different gene arrangement patterns are represented by colored circles
(PR1–PR7). The rearrangement events on the branches are denoted as “T” for transposition, “I” for inversion event, and “iT” for inversion and
transposition (remote inversion) events. Node numbers 1–46 in circles are assigned to each node. Consistently reconstructed nodes are indicated by
green circles; 1-consistent reconstructed nodes are indicated by yellow circles; and nodes reconstructed using the fallback method are indicated by
red circles.
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Transfer RNAs are usually excluded in phylogenetic analyses

due to their short length. However, tRNAs exhibit typical cloverleaf

secondary structures that could facilitate more accurate alignment.

Some analyses suggested that the inclusion of tRNAs can improve

the tree resolution and nodal support (Yang et al., 2015), and may

contribute positively to a more symmetrical tree (He et al., 2018). In

this study, we compared the topologies and support values of trees

with or without tRNAs included. No distinct differences for both

the topologies and support values were observed, suggesting that
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inclusion of tRNAs had no significant contribution to the

phylogenetic analyses for either ML trees or BI trees.

Additionally, Gblocks, which can eliminate poorly aligned

positions and divergent regions, making the alignments more

suitable for phylogenetic analysis (Castresana, 2000), was used to

eliminate ambiguously aligned and variable regions of

mitochondrial genes (Li et al., 2021b; Sun et al., 2022). In this

study, our results did not reveal any significant differences between

datasets with or without Gblocks.
FIGURE 5

Possible scenario of mitochondrial gene rearrangement of 37 genes in Ophiuroidea. Gene orders at the node were estimated using TreeREx based
on the phylogenetic relationships shown in Figure 3. The rearrangements on the branches are denoted as “T” for transposition, “TDRL” for tandem-
duplication-random-loss events, “I” for inversion, and “iT” for inversion and transposition (remote inversion) events. Node numbers 1–46 are assigned
to each node. Consistently reconstructed nodes are indicated by green circles; 1-consistent reconstructed nodes are indicated by yellow circles; and
nodes reconstructed using the fallback method are indicated by red circles. PRT1–PRT23 indicate different gene orders of all 37 mitochondrial genes
for the 47 ophiuroids. The small colored circles before “PRT” indicate the gene order of 13 PCGs and two rRNAs as shown in Figure 3.
FIGURE 6

Results of substitution analysis for mitochondrial PCGs in Ophiuroidea. (A) Gross comparison of dN/dS (w) values of the 13 PCGs among the four
orders. (B) Number of positive selection sites of the 13 PCGs among the four orders.
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The performance of two most popular programs (IQ-TREE

and RAxML) for maximum likelihood (ML) phylogenetic

inference had been compared. It was suggested that in

concatenated-based data analyses, IQ-TREE achieved better

likelihood values than RAxML (Zhou et al., 2018). Accordantly,

in this study, IQ-TREE produced slightly higher support values in

consistent nodes of the ML trees at higher taxonomic levels than

RAxML (Supplementary Figures S5-S7). On the other hand, only

two ML trees using IQ-TREE based on amino acid sequences

supported the four major orders in Ophiuroidea as monophyletic

(Figure 3), while the two ML trees using RAxML based on amino

acid sequences suggested Ophiacanthida as a polyphyletic clade

(Supplementary Figures S1, S2). However, it was worth noting that

the support values at the root nodes of Ophiacanthida and

Ophiacanthina were very low, therefore, whether the IQ-TREE

outperforms RAxML or not for phylogenetic analysis in

Ophiuroidea needs further confirmation.
4.2 Phylogenetic relationship of
Ophiuroidea based on
mitochondrial genome

Among the 18 trees constructed, the monophyly of two major

lineages in Ophiuroidea (superorders Ophintegrida and

Euryophiurida) were consistently supported, except for the BI tree

based on aa_P G (Supplementary Figure S4). Among the four major

orders, the monophyly of Euryalida and Ophiurida were well

supported, but the phylogenetic relationships of Amphilepidida

and Ophiacanthida were complicated.

For Amphlepidida, suborders Gnathophiurina and

Ophionereidina were included. Gnathophiurina was consistently

supported as monophyletic, within which Ophiopholidae,

Ophiactidae and Ophiothamnidae were clustered together,

forming a sister clade to Amphiuridae, identical to previous

studies (O’Hara et al., 2017; Li et al., 2021a; Sun et al., 2023). But

in some trees, Hemieuryalidae was suggested to be a sister clade to
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Ophiomastix mixta and Ophiarachnella gorgonia (Supplementary

Figures S5, S6), or to the Ophiacanthida (Supplementary Figures S7,

S8). Similar phylogenetic results were obtained in previous studies

(Lee et al., 2019; Sun et al., 2023), suggesting the taxonomic status of

Hemieuryalidae needs further evaluation.

For Ophiacanthida, Ophiacanthidae and Ophiotomidae were

consistently supported as monophyletic. Within Ophiacanthidae,

Ophioplinthaca was well-supported as monophyletic (Nethupul

et al., 2022), while Ophiacantha were widely distributed across

lineages of Ophiacanthidae, nested with other genera

(Ophiurothamnus and Ophiophthalmus) with respect to its

current definition (O’Hara et al., 2017). Ophiacantha is one of the

most speciose (Stöhr et al., 2012), but also one of the most

heterogeneous genera among the extant ophiuroids (O’Hara and

Stöhr, 2006). Many species of other ophiacanthid genera share great

similarities with Ophiacantha (Thuy, 2013). Therefore, a

comprehensive review of this genus is urgently needed.

The phylogenetic relationship of Ophiurida was consistent to

that in previous study (O’Hara et al., 2017), supporting the

two monophyletic suborders. For Euryalida, Gorgonocephalidae

and Euryalidae represented by multispecies were both

supported as monophyletic. Asteronychidae was clustered with

Gorgonocephalidae, while Euryalidae located at the basal position

of Euryalida. This is consistent to the results of Okanishi and Fujita

(2013), who suggested that Asteronychidae and Gorgonocephalidae

share many morphological similarities (Okanishi and Fujita, 2013).

However, O’Hara et al. (2017) suggested that Asteronychidae was

the basal clade of Euryalida, while Gorgonocephalidae and

Euryalidae were sister groups. Since only one asteronychid was

included in this study and support values on node of

Asteronychidae + Gorgonocephalidae were relatively low in some

trees, more data are needed to examine the phylogenetic

relationships of the three families in Euryalida.

Although, mitochondrial genomes are more suitable for

phylogenetic analysis for those groups at lower taxonomic level

(Qi et al., 2024), they provide limited information for resolving

deeper phylogenies at the family or higher taxonomic level.

Therefore, incorporating sequences from other loci (e.g. nuclear

genes) in phylogenetic analysis should enhance our understanding

of the phylogeny of the class Ophiuroidea (Hugall et al., 2016)
4.3 Mitochondrial gene rearrangements
in Ophiuroidea

Ancestral gene order inference has provided significant insights

into protein functional shifts and positive selection (Muller et al.,

2004). Nevertheless, in previous studies, the ancestral gene order

within Ophiuroidea has been a subject of persistent debate. Perseke

et al. (2010) proposed that the ancestral gene order of Ophiuroidea

is likely represented by the gene order in Ophiocomina nigra. More

recently, Sun et al. (2023) inferred that the ancestral gene order of

Ophiuroidea was the same as the gene order found in Ophiuridae.

Galaska et al. (2019) conducted an analysis based on 13 PCGs and

two rRNA genes and suggested that the gene order in Euryalida

might be the ancestral gene order of Ophiuroidea. In contrast, we
FIGURE 7

Correlation between the rate of mitochondrial gene rearrangement
and the rate of nucleotide substitution among ophiuroids sampled,
p < 0.05. The horizontal and vertical axes are the breakpoint
distance and the branch length, respectively.
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suggest that the gene order of 13 PCGs and 2 rRNAs observed in

Gnathophiurina, Ophiotomidae, Ophiocamacidae, Ophiocomidae,

Ophiodermatidae and Ophiomusina (PR2) was the most likely the

ancestral gene order in Ophiuroidea (Figure 4), and at least one

transposition may have occurred. Furthermore, our results align

with the conclusions of Perseke et al. (2010), supporting the

hypothesis that the gene order of O. nigra (PRT8) when including

tRNAs, also observed from four other species of Ophiacanthida and

three species of Amphilepidida (Figure 5), was the most likely

ancestral gene order of Ophiuroidea.

Despite Ophiuroidea being identified as the group with the most

gene arrangements in Echinodermata (Perseke et al., 2010), other

studies have noted relative conservation in gene orders, in either 13

PCGs + two rRNAs or 13 PCGs + two rRNAs + 22 tRNAs, across

different taxonomic levels (Galaska et al., 2019; Lee et al., 2019). In this

study, we reported 23 new mitochondrial gene orders, significantly

expanding the understanding of mitochondrial gene rearrangements

in this group. Multiple gene orders were identified in several genera,

such as Ophioplinthaca, Ophiopholis and Ophioplinthus, suggesting a

high potentiality for mitochondrial gene rearrangement in

Ophiuroidea. Notably, the diversity in mitochondrial gene orders

varied considerably among the four orders examined. The gene

rearrangement rate (BP values) was positively related to nucleotide

substitution rate (branch length) among the investigated species

(Figure 7). A similar trend of a high degree of mitochondrial gene

rearrangement coupled with an elevated nucleotide substitution rate

has been observed in various taxa, e.g., Tunicata, Nematoda, some

Mollusca, and Arthropoda (Iannelli et al., 2007; Rawlings et al., 2010;

Stach et al., 2010; Bernt et al., 2013b; Luo et al., 2015). Increasing

nucleotide substitution can lead to mutations at the initiation and

termination sites of the mitogenome replication, causing errors and

consequently gene rearrangements through duplication and deletion

mechanisms (Boore, 2000; Lavrov et al., 2002). In addition,

endogenous DNA damage can be caused by high rates of nucleotide

substitution, resulting in double-stranded breaks that may trigger

illegitimate recombination (Boore, 2000) or intramitochondrial

recombination (Dowton and Campbell, 2001). On the other hand, it

was also noted that gene reversals may facilitate the nucleotide

evolution (Bernt et al., 2013c). Two mitochondrial genomes of

ophiocomids exibited different nucleotide composition compared to

their congeners (O’Hara et al., 2019), which might be a result of a

substantial mitogenomic reorganisation. By now, we cannot confirm

which mechanism play a more important role. Our results provided

the first evidence of a significant positive relation (p<0.01) between

gene rearrangement and nucleotide substitution in Echinodermata,

further highlighting the importance of mitochondrial gene

rearrangement in the study of evolutionary history of Ophiuroidea.
5 Conclusions

In this study, a mitochondrial genome dataset of 47 ophiuroid

species spanning 4 orders, 17 families and 30 genera were generated
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and analyzed, including 21 mitogenomes newly obtained by this

study. Mitogenomes of deep-sea families/genera Ophiactidae,

Ophiocamac idae , Ophiomusa idae , Ophiosphalmidae ,

Asteronychidae and genera Ophioleila, Ophioplinthaca,

Ophiurothamnus, Ophiophthalmus, Asteroschema and

Ophiocreas were first reported, revealing 4 new PR-gene orders

and 23 new PRT-gene orders. This mitogenome dataset allows for a

comparative analysis of phylogenetic results using different datasets

and methods. In general, the phylogenetic trees using mitogenomes

support most monophyletic clades of previous phylogenetic trees

based on exons, transcriptomes, and DNA barcodes. The choice of

datasets (nucleotide or amino acid) and methods (ML or BI)

impacts the tree topology, especially for orders Amphilepidida

and Ophiacanthida. The inclusion of tRNAs, removal of highly

variable sites using Gblocks, on the other hand, have limited

influence on tree topology and nodal supports. PR2 and PRT8

were recovered as the most likely mitochondrial ancestral gene

orders for Ophiuroidea. The diversity of mitochondrial gene order

varied among the four orders. The mitochondrial gene

rearrangement rates and nucleotide substitution rates were

positively related, suggesting different evolutionary history of the

four orders in Ophiuroidea. This study has significantly improved

our understanding of mitochondrial gene rearrangement, shedding

light on evolutionary patterns in the Ophiuroidea.
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