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Satellite altimetry water level measurements are valuable in episodic and climate

change related hydrodynamic impact studies, despite their sparse temporal

distribution over the global ocean. This study presents the spatiotemporal

characteristics of the open-ocean satellite derived water level measurements

globally for the period 31/12/1992-15/10/2019 and evaluates their efficacy to

represent the water level even during intense atmospheric conditions. Water

level measurements from 23 different satellite missions are compared with tide

gauge records and hydrodynamic simulations. The satellite measurements

reproduce the water-level variations with good to excellent skill for ~60% of

the areas considered. Additionally, satellite measurements and local atmospheric

conditions are utilized in order to examine whether statistical data driven models

can contribute to decreasing the temporal sparseness of the water level data over

the global ocean. The suitability of this low computational-cost method is

demonstrated by deriving a 63-year hindcast of the daily maximum water level

for the global ocean, and for a medium-term 15-day ensemble forecast. The

publicly available long-termwater-level hindcast and the parameters of the data-

driven statistical model derived can serve as a tool for designing and facilitating

local and global coastal risk-assessment studies.
KEYWORDS

water level altimetry, statistical data-driven water level, water level hindcast, water level
forecast, satellite measurements
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1 Introduction

For early warning, predicting extreme water level (WL) events

in deep water, storm surge and coastal flood levels before they

happen is still the holy grail of oceanic research. Well-benchmarked

global coupled models are essential for accurate predictions over

large spatial and temporal scales, yet the incredibly varied

distribution of winds, currents and temperatures over orders of

magnitude differences in oceanic depths and atmospheric heights

make any high-resolution estimates on the sea surface a vexing and

complex numerical undertaking, begging the question of how to

best use sparse satellite measurements to improve hindcasting

and forecasting.

Water level measurements are important in understanding the

hydrodynamic conditions along the global ocean. WL measurements

can be obtained in situ with tide gauges (TG) (Woodworth et al.,

2016), offshore buoys, seismometers (Okal, 2021), amateur videos

(Fritz et al., 2006), mission-oriented cinematography (Holman and

Stanley, 2007), and remotely, with satellite altimeters (Ballarotta et al.,

2023; Morrow et al., 2023). Each method varies in temporal and

spatial resolution, but also in coverage and applicability.

TG high-frequency WL measurements with temporal range of

<1-min have been used for detection of rapidly evolving phenomena

such as meteotsunamis, tsunamis and seiches (Woodworth et al.,

2016). When TG measurements are averaged at lower frequencies,

they can be used for the assessment of longer oscillations, such as

monthly, seasonal, interannual andMean Sea Level (MSL) or sea level

rise (SLR) studies; TG measurements with short duration up to one

month are often used to derive basic local tidal constituents, while

decadal scales are necessary to accurately estimate SLR rates (see for

instance Burgette et al., 2013; Houston and Dean, 2011; Jevrejeva

et al., 2006; Tsimplis and Spencer, 1997).

Additionally, the spatial extent and resolution of the WL

measurements is crucial for risk assessments during highly

energetic events that may impact the coastal zone. While a dense

network of in situ instruments is the golden standard for inferring

local hydromorphodynamic conditions, at global scales, satellite

altimeters provide the most comprehensive, spatially distributed,

but often sparse measurements.

Altimeter measurements have been utilized for the analysis and

better understanding of tsunamis (Okal et al., 1999), oceanic winds

and wave heights (Timmermans et al., 2020; Wang et al., 2023;

Young and Ribal, 2019), in understanding high resolution sea level

trends at the coastal zone (Cazenave et al., 2022; Marti et al., 2021;

The Climate Change Initiative Coastal Sea Level Team et al., 2020),

sea level anomalies (SLA), for intercomparisons of tidal analyses

(Valle-Rodrıǵuez and Trasviña-Castro, 2020), estimations of SLR

rate up to 20 km from the coast (Cazenave et al., 2022), annual sea-

level cycle characterization (Cipollini et al., 2017) and coastal

overtopping estimation (Almar et al., 2021). Due to the increasing

volume and accuracy of altimeter-derived WL data, several studies

advocate the development of consistent multi-mission datasets for

the lake WL, river discharges, significant wave heights (Abdalla

et al., 2021; Takbash et al., 2019), ocean circulation (Liu et al., 2016)

and for coastal applications (Cipollini et al., 2010).
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Scharroo et al. (2005) appear to be the first study to infer storm

surge levels (SSL) from altimeter-derived WL, as measured by the

GEOSAT Follow-on (GFO), ENVISAT (ENVIronmental SATellite),

ERS-2, Jason-1 and TOPEX missions. Han et al. (2012) compared the

SSLmeasurements from Jason-2 with TG records during the landfall of

hurricane Igor at the Island of Newfoundland, a tropical cyclone which

originated in Cape Verde in 2010. Not only they found good

agreement, but they were also able to identify the equatorward free

continental-shelf wave which caused the maximum surge at St. John

and Argentia, Newfoundland during Igor. In this context, Andersen

et al. (2015) claimed that they could identify more than 90% of the high

water events in the North Sea using data from as few as two

altimeter missions.

Han et al. (2017) analyzed the Jason-1 and Jason-2 SLA (without

the inverse barometric correction) during Hurricane Isaac’s passage

in August 2012 at the Gulf of Mexico and also found good agreement

with local TG measurements. Despite only examining a single event,

they suggested that effective monitoring of storm surges is possible

through an appropriately distributed constellation of satellite

altimeters. For the Bay of Bengal, Antony et al. (2014) concluded

that ~45% of surge events could be identified by utilizing WL data

obtained by the Topex/Poseidon, Jason-1, Geosat Follow-On and

ENVISAT missions. Pascual et al. (2006) suggested that the coastal

WL is better reproduced by four satellites (Jason-1, ERS-2/ENVISAT,

Topex/Poseidon interleaved with Jason-1 and Geosat Follow-On)

than by two (Jason-1 + ERS-2/ENVISAT), with a reduced error of

~25%, when compared to TG data. Ji et al. (2019) analyzed multi-

satellite altimeter data for China’s coastal area, and found that 26% of

the surge events recorded at the TG stations were also measured by

the satellite altimeters. Sánchez-Román et al. (2020) assessed the

performance of the Level-3 (L3) SLA measurements obtained by

Sentinel-3A and Jason-3 with 270 TG records for a period of 2.5 years

along the European coastline. They found better agreement between

the Sentinel-3A and the TG records compared to Jason-3, and even

better agreement when the long-wavelength error (lwe) correction

was applied.

In terms of operational monitoring and ocean state forecasting,

Pascual et al. (2009) demonstrated the superiority of the delayed time

(DT) altimeter observations versus real-time data, and argued that

four altimeters are needed in real time to get similar quality

performance as two altimeters in DT. Fenoglio-Marc et al. (2015)

compared the SARAL/AltiKa along-track SSL during the landfall of

cyclone Xaver at the North Sea in 2013, and found good agreement

with numerical predictions. Philippart et al. (1998) utilized the ERS-1,

ERS-2 and TOPEX/POSEIDON altimeter data and demonstrated

that it is possible to calibrate the Dutch Continental Shelf Model, only

with altimeter data. They also highlighted that the delivery time of

analyzed altimeter data can be a limiting factor for operational storm-

surge forecasts. Etala et al. (2015) and De Biasio et al. (2017) reported

improved SSL forecasts along the Argentinian coast and the Gulf of

Venice, Italy, respectively, by including sparse altimeter data

assimilation. On the statistical reconstruction of the long term SSL,

Cid et al. (2017) utilized the dynamic atmospheric correction (DAC)

in combination with the atmospheric conditions, and they derived

the global maximum SSL for the period 1871-2010. Following a
frontiersin.org
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similar approach, Ji et al. (2020) constructed the daily maximum SSL

for SE China using the SLA and DAC components and the

atmospheric conditions and further improved the statistical derived

storm surge levels after calibrating it with the TG records.

The Data Unification and Altimeter Combination System

(DUACS) has been providing multi-satellite near-real-time (NRT)

and DT L3 along-track [https://doi.org/10.48670/moi-00146] and

Level-4 (L4) [https://doi.org/10.48670/moi-00144] gridded

altimetry data for more than twenty years. It incorporates Level

2P altimetry products provided by space agencies, and aims to

provide a consistent and homogenous among-missions SLA dataset

(including instrumental, geophysical and environmental

corrections with mean sea surface and validity flag) for mesoscale

and climate applications (Taburet et al., 2019).

Leveraging these developments, our study is the first global

open-ocean WL study utilizing only the publicly available but

sparse DT DUACS L3 along-track WL measurements. Our aim is

to demonstrate how to use such sparse satellite measurements for

both the long term hindcast and real time water-level forecasts. Our

presentation is organized as follows. In Section 2, we present the

available spatiotemporal characteristics of the DT DUACS L3

along-track WL measurements over the open ocean, as well as the

TG and the numerical model we use for validation. Section 3

discusses the validation of the temporal sparse altimeter WL, as

well as the continuous WL, as derived from data-driven statistical

models, for our reference 27-year period 1993-2019. The last part of

Section 3 presents two demonstration cases underscoring the

applicability of the satellite measurements for both the

hindcasting and the medium range forecasting of oceanic water-

level variations, in a computationally cost effective framework. The

discussion and our conclusions are presented in Section 4.
2 Materials and methods

2.1 Altimeter water level measurements

This study is based on the DT DUACS L3 along-track altimeter

WL measurements obtained from 23 missions, as available at the

Copernicus Marine Service (CMEMS) web portal1 (downloaded on

16/03/2020) covering the period 31/12/1992-15/10/2019

(Supplementary Table S1). Although the CMEMS DT L3 dataset

extends until 08/06/2023, we use 27 years of measurements to

validate first, and then explore hindcast and forecast capacities.

The dataset describes the along-track global SLA with 1Hz (7 km)

spatial resolution with respect to its twenty-year 2012 mean obtained

from the Jason-3, Sentinel-3A/B, HY-2A, Saral/AltiKa, Cryosat-2,

Jason-2, Jason-1, T/P, ENVISAT, GFO, ERS1/2 missions. To allow

correction of the SLA measurements from inherent geophysical and

mechanical errors, the dataset includes metadata (Taburet et al.,

2019), hence the corrected SLA is estimated as:
1 https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L3_

MY_008_062/services accessed 28/01/2022.
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slacor = slauncor − dac − oceantide + lwe (1)

where slacor is the sea surface height above the MSL during the

period 1993-2019, slauncor is the uncorrected sea level anomalies

(m), dac is the dynamic atmospheric correction component (m),

oceantide is the ocean, pole and solid earth tidal elevation (m), and

finally lwe is the long- wavelength error (m), see Le Traon et al.

(2003). The contribution of tides to theWL altimeter measurements

is not considered in this study as we aim to evaluate the efficacy of

the altimeter measurements to describe the non-deterministic water

level variations. The reader is referred to the Supplementary

Material for a complete description of the utilized components. In

our study, we use the related variables SLAwithDAC, SLAnoDAC

and DAC as:

SLAwithDAC = slacor + dac − lwe (2)

SLAnoDAC = slacor (3)

DAC = dac (4)

Since the focus of this study is to assess how to use satellite derived

hourly, sub-daily and daily maximum WL to analyze highly energetic

hydrodynamic events, we use the DT DUACS L3 along-track altimeter

WL, which is practically instantaneous, however has far more sparse

data compared to the daily temporal resolution DTDUACS L4 gridded

SLA data. Additionally, the DT DUACS L4 gridded SLA dataset

already includes the DAC atmospheric correction. Moreover, we do

not utilize the X-TRACK-L2P SLA [10.24400/527896/a01-2022.020]

developed by the Center of Topography of the Ocean andHydrosphere

(CTOH) and the Laboratory of Space Geophysical and Oceanographic

Studies (LEGOS) because it is tailored for coastal ocean applications

(Birol et al., 2017), while we aim to demonstrate the suitability of

deriving the daily maximum WL from satellite measurements in the

open ocean.

We note that the starting operating date of the WL

measurements (see Supplementary Table S1) may deviate from

the starting date in Table 1 of the CMEMS Quality Information

Document2, reflecting the availability of the data at the CMEMS ftp

server on the acquisition date. For the purpose of clarity, the

remaining subsection will outline the temporal distribution

during the period 31/12/1992-15/10/2019 and the spatial

distribution across the global ocean of the available dataset.

The number of measurements throughout the data acquisition

period is shown in Supplementary Figure S1. Indicatively, from 1992 to

2000 the number of measurements increases ~45% with the

introduction of three concurrent missions (ers2, g2, tpn - see

Supplementary Table S1 for a list of mission abbreviation) with a

total of ~2.1x107 acquisitions up until 2005. Compared to 2000, a

~16% reduction is observed in 2008 (~1.3x107) followed by an increase

in 2011 (~2.1x107) and a decrease in 2012 (~1.6x107). The amount of

measurements peaked in 2017 with ~2.8x107 measurements obtained

by seven concurrent missions (alg, c2, h2g, j2g, j2n, j3, s3a).
2 https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-

QUID-008-032-068.pdf
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The available along-swath SLAwithDAC, SLAnoDAC and DAC

components from all the missions are combined into a 0.25°x0.25°

global WGS84 grid to allow us to analyze the temporal characteristics

of this dataset. The first step was to remove the land areas defined by

the Natural Earth 1:50m v4.0.0 coastline3 (accessed on 15/02/2022).

Afterwards, the centroids of the developed grid are used as reference

points. For each hourly timestep, we averaged all the available DT

DUACS L3 along-track measurements that are located inside and on

the margins of each cell defined by the grid centroid -/+0.125°.

Indicatively, the maximum WL at each grid node during the period

31/12/1992-15/10/2019 of the three components SLAnoDAC,

SLAwithDAC and DAC is presented in Supplementary Figure S2.

The areas without measurements account for ~12.87% of the

global ocean surface. They are mostly located north and south of

-/+80°, along the coastline of Greenland, Hudson Bay, the east coast

of Canada, the north coast of the Scandinavian Peninsula, southern

Patagonia, the Weddell Sea, and along the coastline of the east

Arctic ocean (Figure 1).

Figure 1 depicts the spatial distribution of the measurements in

our study period, 31/12/1992-15/10/2019. As expected, the largest

amount of data has been collected at high latitudes (around -/+66°),

particularly in the North Atlantic Ocean, the Norwegian Sea and the

Davis Strait at the Arctic Ocean, with a ~1980 zonal average number

of measurements. In the southern hemisphere, the maximum zonal

average is ~1100 measurements, and it is observed in the range

[-66°, -58°]. In the subtropics, the zonal average is ~700

measurements. North of 82°N, the amount of measurements is

less than 21. Similarly, a clear zonation is observed in the southern

hemisphere from 67°S, with less than 210 measurements. This

variation suggests either a limited number of missions operating

over these areas or possibly the limited validity of the measurements

due to the presence of ice. The meridional distribution revealed a

peak at [0.5°, 4.5°] with ~830 measurements and a minimum of

~640 measurements observed at 73°E and 120°E.
3 https://www.naturalearthdata.com/downloads/50mphysical-vectors/

50m-coastline/

Frontiers in Marine Science 04
The spatial distribution between consecutive measurements is

presented in Figure 2. The areas with the most frequent

measurements are the Norwegian, Irminger and Labrador Seas and

the SE South Pacific Ocean, where valid measurements exist from

sub-daily to less than 3 days (Figure 2B). An exception are the

Norwegian and Laptev Seas and the Arctic Ocean north of ~73°N,

where the recurrence period is higher than 50 days, with an average

zonal recurrence period from ~2.5 to ~200 days (Figure 2A). For the

Antarctic Ocean (south of 66°S), the average zonal recurrence period

ranges from 13 to 89 days (Figure 2C). At the north and south

temperate zones, the minimum (maximum) mean zonal recurrence

period varies from ~2hrs (~9.8 days) to ~1hr (~13.2 days)

respectively. Indicatively, the average zonal recurrence period

around 7°S is ~1.7 days, potentially reflecting the scarcity of

measurements in areas with high density of islands, such as the

Banda Sea. Areas with the lowest mean meridional recurrence period

are observed at around 104°W (~84 days), 98°W (~81 days) and 60°

W (~77 days), while areas with the highest recurrence period are at

54°W (~22.5 days) and 3.5°E (~22 days) (Figure 2C).

Furthermore, the temporal completeness from 01/01/1993 to 15/

10/2019 of the new altimetry dataset has been assessed into four classes,

namely <6hrs, (6hrs, 1 day], (1 day, 2 days], (2 days, 3 days] (Figure 3).

Measurements in the <6hrs class are especially helpful in identifying

episodic WL variations, such as storm events. Low completeness (1-

5%) is observed for more than 47% of the global locations, and 5-10%

(on average 1/13 measurements) for ~1.8%, ~26%, ~36% and ~33% of

the areas for the first, second, third and fourth class respectively. The

regions with more frequent measurements ranging from 10% to 50%

represent less than 7.9% of the global oceanic coverage, with the <6hr-

class exhibiting significantly lower abundance.
2.2 Tide gauge measurements

Hourly WL measurements were obtained from 5119 TG

stations from the GESLA-3 database (Haigh et al., 2022), see

Figure 4 for the number of measurements from each TG during

the validation period 31/12/1992-15/10/2019. First, for each year
FIGURE 1

Zonal average (A), meridional average (C) and total number of measurements along the global ocean (B) during the period of study. The zonal and
meridional values are averaged over one degree. Areas with zero measurements are indicated in white.
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and each TG station we removed the tidal level from the yearly WL

measurements with the uTide software (Codiga, 2011), and

obtained the residual WL. Then, we also removed the outliers in

the residual WL measurements that exceeded three times the

standard deviation of the corresponding time-series (Sánchez-

Román et al., 2020). We utilize the residual WL measurements

from the TG stations for the skill assessments that will follow.
2.3 Numerical hydrodynamic data

Both regional (for instance Fernández-Montblanc et al., 2020)

and global scale studies (Mentaschi et al., 2023) have utilized the

altimetry WL measurements in order to assess the skill of

hydrodynamic numerical models, especially in areas where TG

data is not available. In this study, we use the 6-hourly SSL from

the unstructured hydrodynamic numerical model D-FLOW forced

by the European Centre for Medium-Range Weather Forecast

(ECMWF) ERA-Interim reanalysis product (Dee et al., 2011).
Frontiers in Marine Science 05
This is the model of Vousdoukas et al. (2018) for the period 31/

12/1979-31/12/2014 with predictions at 10780 locations along and

offshore from the global coastline. Our aim was to assess the

performance of the D-FLOW predictions (Kernkamp et al., 2011;

Muis et al., 2016) compared with the altimeter measurements from

the current study. Vousdoukas et al. (2018) and references therein

describe the characteristics and setup of D-FLOW, as used in the

current study.
2.4 Development of the statistical
WL models

Following Camus et al. (2014) and Cid et al. (2017), we derive

the continuous in time daily maximum WL, by developing a

statistical relationship with the local atmospheric conditions as

predictors and the altimeter derived WL as the predictand. First,

for each altimeter grid point, the 1°x1° (4x4 grid points) daily

maximum 10m wind components, the daily minimum mean sea
FIGURE 2

Same as Figure 1 but for the average recurrent days. Areas with no measurements are indicated in white. The zonal, meridional and average
recurrence days are plotted in logarithmic scale.
FIGURE 3

Temporal completeness of the altimeter measurements for the period of study. Note the open left side intervals for the last three classes.
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level pressure and daily minimum mean sea level pressure gradients

(the latter computed with the surrounding 6x6 grid points) from the

ECMWF ERA5 reanalysis product (Hersbach et al., 2020) are

extracted and collocated in time with the daily maximum

SLAwithDAC WL (see also Cid et al. (2018) regarding the

selection of the time lag and timing of the atmospheric conditions

and the exclusion of the land nodes). These time-series are

standardized to avoid large variance differences in the Principal

Components Analysis (PCA) which will follow next.

In particular, PCA is used to convert a dataset with highly

correlated variables into linearly uncorrelated factors called

principal components. This transformation is achieved by

identifying the eigenvectors and eigenvalues of the covariance

matrix of the original dataset, where the eigenvectors represent

the directions of maximum variance, and the eigenvalues indicate

the magnitude of this variance. Mathematically, the conversion of

the original data matrix X into the principal component scores Z

can be expressed as:

Z = X*W (5)

where W is the matrix of eigenvectors.

While a linear PCA assumes a linear relationship among the

variables, which may not always hold true, this assumption can be

considered reasonable given the large dataset and extensive

geographical coverage.

Then, the principal components (PC) that explain 95% of the

variance in local atmospheric conditions are selected and a

multivariate linear regression model (hereafter referred to as

PCVAR) is fitted with the daily maximum SLAwithDAC water

levels. Aiming to further reduce the PC dimensionality, a second

multivariate linear regression model (hereafter, PCSTEP) is

developed applying a stepwise regression fit of the atmospheric

conditions PC with the daily maximum SLAwithDACWL, until no

significant improvement of the model is observed at the

conventional 5% level of significance. The WL from the PCVAR

and PCSTEP models is estimated with:

WL = a1 + b1*PC1 + b2*PC2 +… + bn*PCn (6)

where WL is the daily maximum WL, a1, b1,…, bn are the

coefficients obtained either from the PCVAR or the PCSTEP

models, and PCx are the principal components of the

standardized atmospheric conditions.

The internal consistency of the PC is assessed using the

Cronbach-alpha coefficient (Cronbach, 1951), considered

adequate for values higher than 0.6 (Hair et al., 2010). Finally, the

continuous daily maximum WL time-series for the period 31/12/

1992-31/10/2019 are computed from the daily (maximum) 10m U,

V wind components and (minimum) mean sea level pressure and

pressure gradients from the ECMWF ERA5 reanalysis atmospheric

conditions and their PC coefficients.

In order to evaluate the robustness of utilizing the satellite

derived WL data, a third multivariate linear regression model is

developed (hereafter, PCWN) by fitting the PC of the atmospheric
Frontiers in Marine Science 06
conditions to an additive white Gaussian noise signal (Graffigna

et al., 2019). The null hypothesis that the distribution mean of the

PC regression analysis of the satellite data equals the distribution

mean of the PCA with white noise, this is tested with the one-way

analysis of variance (ANOVA) at the 5% significance level.
2.5 Performance metrics

To ensure data reliability and address uncertainties stemming

from the sparse temporal alignment between tide gage record,

numerical model data and altimetry measurements, we have

followed the central limit theorem, which requires that the

sampling distribution of the sample mean converges to a normal

distribution for samples withmore than 30 observations (Ross, 2021).

Consequently, TG stations that contain less than 30 measurements

were excluded from this analysis. This filtering ensures our adherence

to statistical best practices and upholds the integrity of our data.

Nevertheless, we also recognize the significance of thorough

validation in our study. The performance of the altimeter derived

WL with the TG records and the D-FLOW numerical hydrodynamic

data, as well as the statistical reconstructed daily maximum WL with

the TG records is assessed with three performance metrics, which

assume a normally distributed sample size, consistent with standard

validation practices. These three are the percentage root mean

squared error (%RMSE), the bias, and the modified Mielke lamda-

index (l) (Duveiller et al., 2016) which combines the correlation

coefficient and the RMSE, and they are defined by the following

equations:

%RMSE =
100*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(wl1 − wl2)
2

q

max(wl1)
(7)

BIAS =
1
n o

n
i=1(wl1 − wl2) (8)

l = 1 −
1
non

i=1(wl1 − wl2)
2

swl1 + swl2 + (wl1 + wl2)
2 + k

(9)

where,

k = 0, r > 0

k = 2 ∗ on
i=1(wl1 − �wl1) ∗ (wl2 − �wl2)

�� ��, r ≠ 0

with

r being the Pearson correlation coefficient

r =
1

n − 1 o
n
i=1

(wl1 − �wl1)
swl1

� (wl2 − �wl2)
swl2

(10)

wl1 are the time-series from the TG, and wl2 are the time-series of

the particular satellite WL component (namely SLAnoDac,

SLAwithDAC or DAC) compared with the TG data. For the

validation of the D-FLOW data vs the satellite data, wl1 are the SSL
frontiersin.org

https://doi.org/10.3389/fmars.2024.1429155
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Voukouvalas et al. 10.3389/fmars.2024.1429155
time-series from the D-FLOW model and wl2 again are the satellite

derived WL components (SLAnoDac, SLAwithDAC and DAC).
3 Results

3.1 Validation and intercomparison of the
altimeter WL data

Here, we compare the SLAnoDac, SLAwithDAC and DAC with

the GESLA-3 TG measurements and with the D-FLOW numerical

data, to evaluate their performance, aiming to examine the

contribution of each of the components to the water level. Then,

we present the validation of the continuous-in-time statistical

reconstructed daily maximum WL during the altimeter period 31/

12/1992-31/10/2019, with the tidal gauge timeseries.
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3.1.1 Altimeter WL data compared to tide
gauge measurements

We now compare the altimeter WL components with all 4593

GESLA-3 TG stations measurements, in the period 31/12/1992

23:00:00 - 31/10/2019 23:00:00 where both time-series exist. Due to

the temporal sparsity between the collocated TG and altimetry data

and following the central limit theorem we exclude TG stations that

contain less than 30 measurements. We evaluate individual TG

measurements within 1hr from each altimeter measurement,

assuming that the hourly WL variations are representative.

Moreover, we consider only TG stations that are located less than

25 km from the closest altimeter grid node. We are thus left with

1686 TG records worldwide.

In Figure 5 we present two performance metrics the bias and the

l-index and compare the TG measurements and the three altimeter

components (see also Supplementary Figure S3 for the %RMSE
FIGURE 4

Spatial distribution of the GESLA-3 tide gauge records and the corresponding amount of hourly measurements during the reference period 31/12/
1992-15/10/2019. The black dashed lines indicate the two tropics.
FIGURE 5

Validation of the SLAnoDAC (A, B), SLAwithDAC (C, D) and DAC (E, F) altimeter water level components with the tide gauges timeseries, in terms of
the bias (top row) and the l-index (bottom row). The black dashed lines indicate the two tropics.
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performance metric). Regarding the SLAnoDAC component, ~76%

of the areas exhibit a positive bias up to 0.08m, while at 55 TG

stations the bias is negative, e.g. in the Black Sea (0.26m), the

English Bight (0.08m) and the tropical zone of the W Pacific Ocean

(0.06m), see Figure 5A. About 68% of the areas appear with less

than 46% %RMSE (Supplementary Figure S3A), while the l-index
for 66% of the areas is less than 0.6, and for ~5% of the areas, the l-
index ranges from 0.6 to 0.8 (Figure 5B). At ~67% of the areas the

SLAwithDAC component exhibits a positive bias <0.1m

(Figure 5C), ~60% of the areas are characterized by a good to

perfect skill (l-index >0.6) (Figure 5D) and ~72% of the areas have

%RMSE less than 40% (Supplementary Figure S3C).

Worse skill is observed at the tropical zone (the area defined

between the latitudes -/+23.4364°) where the average l-index is 0.48
and the average %RMSE is 48.7%. The DAC component exhibits a

negative bias > -0.1m at ~90% of the areas, while ~50% of the areas

are characterized by less than 0.05m bias. Areas with positive bias

are the tropical zone of the Indian Ocean and the W Pacific Ocean,

the Bering Sea and the Norwegian Sea (Figure 5E). The DAC

component exhibits the best performance mainly at the North Sea,

with good skill and average l-index = 0.75 (Figure 5F). As is the

case for many hydrodynamic models, at the tropical zone the skill is

not adequate, with an average l-index = 0.26, and average %RMSE

~41% (Supplementary Figure S3E).

3.1.2 Altimeter WL measurements compared to
hydrodynamic numerical model data

As we did with the previous comparisons, for each D-FLOW

model output location within a distance less or equal to 25 km from

the altimeter grid node, we selected only the SSL elevations that

are within 1hr from the altimeter measurements. We found that

2607 time-series collocated with the TG stations and we used

them for intercomparing the D-FLOW data with the three

altimeter components.
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When the altimeter components and the D-FLOW data are

compared, it is clear that the contribution of the DAC component

is critical, as by itself it is a hydrodynamic model output. The

SLAnoDAC component exhibits a positive bias of ~0.08m (e.g. at

the N Atlantic Ocean and the S Indian Ocean), except for the E

Bering and the Gulf of Alaska, the Baltic Sea and the Tropical zone of

the E Indian Ocean and theW Pacific Ocean where the average bias is

lower (-0.03m) (Figure 6A). The majority of the areas (~97%) exhibit

poor performance with the l-index <0.4 (Figure 6B) and the average

%RMSE=115.5% (Supplementary Figure S3B). When the DAC

correction is not applied to the SLA measurements, the average

bias is reduced by about 57% (0.04m compared to 0.07m with the

DAC correction) (Figure 6C), the average l-index is 0.5 (Figure 6D)
and the average %RMSE is ~86.1% (Supplementary Figure S3D). At

the tropical zone, the agreement between the SLAwithDAC and

SLAnoDAC is slightly improved. As expected, the inter-model

comparison between the DAC and the D-FLOW numerical data

exhibits better agreement compared to the SLAwithDAC data, with

the average bias equal to 0.006m (Figure 6E). We observe moderate

performance (average l-index 0.54), even at some parts of the

Tropical zone, such as the Gulf of Mexico, the Caribbean Sea, the

E Atlantic Ocean and the central Indian Ocean (Figure 6F).

3.1.3 Continuous temporal statistical
reconstructed altimeter WL compared with tide
gauge records

Here, we address the question whether we can use existing

sparse measurements for long term hindcasts. The results in the

previous two subsections suggest that the discontinuous temporal

SLAwithDAC WL component performs better than the

discontinuous SLAnoDAC or DAC components, when compared

to TG measurements. Additionally, the l-index of the

SLAwithDAC component is similar to the one of the DAC

component, when compared to the D-FLOW numerical data. In
FIGURE 6

Same as Figure 5, but here we compare the water level from the D-Flow model and the SLAnoDAC (A, B), SLAwithDAC (C, D) and DAC (E, F)
altimeter water level components.
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this subsection, the daily maximum SLAwithDAC WL during the

period 31/12/1992-31/10/2019 is our predictand of the PCVAR and

PCSTEP multivariate linear regression models with the time

collocated atmospheric conditions from the ECMWF ERA5

reanalysis dataset, in order to derive the principal components of

the atmospheric conditions for every node of our 0.25°x0.25° global

ocean grid. The aim is to reduce the temporal scarcity of the

altimeter measurements and derive a continuous daily maximum

SLAwithDAC WL for the 31/12/1992-31/10/2019 period. We will

then check the validity by comparing the derived daily maximum

WL from PCVAR, PCSTEP and PCWN with the daily maximum

residual water levels from the GESLA-3 TG records.

For each TG record with more than 30 daily collocated

measurements, we select the daily maximum WL data from the

altimeter grid node less than 25 km apart. This filtering results in

2164 TG records, whose spatial distribution and the corresponding

performance metrics are presented in Figure 7. For the time-series

examined, the Cronbach-alpha coefficient is higher than 0.65

indicating the high internal consistency of the PC (see

Supplementary Figure S4B). Additionally, the one-way ANOVA

test indicates that when the SLAwithDAC WL component is

utilized, 2091 out of the 2164 examined WL timeseries are

significantly different from the corresponding ones derived from

the PCWN regression model (see Supplementary Figure S4C). This

is a first evidence that when the altimeter measurements are utilized

the constructed timeseries present significant variability with

respect to the corresponding ones from the PCWN model.

In Figure 7, we present the spatial distribution of the %RMSE and

the l-index performance metrics along the global coastline between

the reconstructed WL estimated by the three models and the TG

records. We note that the average bias between the TG WL time-

series and each of the three models is less than 10-5m (not shown).

The PCVAR and the PCSTEPmodels indicate similar %RMSE with a

global average equal to ~34.01% (Figure 7A) and ~38.5% (Figure 7C)

respectively, while the global average %RMSE of the time-series from

the PCWN model is ~73.9% (Figure 7E). Excluding the tropics, the

global average %RMSE for PCVAR is ~32.7% and for PCSTEP is

~37.1%. Regarding PCVAR, around ~42% of the areas are described

by %RMSE less than 30.0% (Figure 7A), while ~68% of the areas
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demonstrate a reasonable to excellent skill with l-index ranging from
0.4 to 0.87, see Figure 7B. About 30% of the time-series from PCSTEP

exhibit %RMSE less than 30% and ~51% of the areas are

characterized by reasonable to excellent skill (Figure 7D).

Furthermore, PCVAR estimates fewer time-series where the skill is

poor (l-index<0.3) compared to PCSTEP. The fact that ~90% of the

time-series from the PCWN model are described with l-index less

than 0.3, is indicative that the PC of the atmospheric conditions alone

do not suffice to estimate theWL (Figure 8). Only six time-series from

PCWN that are not significantly different from PCVAR model

exhibit skill from 0.4 to 0.59.

Table 1 presents the performance metrics between the TG

timeseries and the PCVAR and PCSTEP. For both models,

regions characterized by reasonable to good skill are:
• the Irish Sea (l-index up to 0.78 and average %RMSE ~26.8,

l-index up to 0.78 and average %RMSE ~27.6 for PCVAR

and PCSTEP respectively),

• the North Sea except for the E coast of the UK (l-index
up to 0.87 and average %RMSE ~24.9, l-index up to

0.81 and average %RMSE ~26.7 for PCVAR and

PCSTEP respectively),

• the Gulf of Lion and the W Ligurian Sea (l-index from 0.5 to

0.7 and average %RMSE ~27.0, l-index from 0.1-0.68 and

average %RMSE ~30.7 for PCVAR and PCSTEP respectively),

• the W Labrador Sea (l-index up to 0.82 and average %

RMSE ~36.1%, l-index up to 0.73 and average %RMSE

~38.8 for the PCVAR and PCSTEP respectively),

• the Gulf of Alaska (l-index up to 0.87 and average %RMSE

43.9, l-index up to 0.87 and average %RMSE ~47.1% for

the PCVAR and PCSTEP respectively),

• the SE Australian continent and the New Zealand (l-index
ranging from 0.5 to 0.8 and average %RMSE ~25.5%,

l-index from 0.1 to 0.8 and average %RMSE ~27.7 for

the PCVAR and PCSTEP respectively),

• and the S Atlantic Ocean below 34°S (l-index ranging

from 0.54 to 0.87 for both of the models and average %

RMSE ~27.5 and ~29 for PCVAR and PCSTEP

respectively).
TABLE 1 Performance statistics between the tide gauge stations and the PCVAR and PCSTEP models.

PCVAR PCSTEP

Location %RMSE l-index %RMSE l-index

Irish Sea 26.8 0.78 27.6 0.78

North Sea (excluding E UK) 24.9 0.87 26.7 0.81

Gulf of Lion and W Ligurian Sea 27.0 0.5-0.7 30.7 0.1-0.68

W Labrador Sea 36.1 0.82 38.8 0.73

Gulf of Alaska 43.9 0.87 47.1 0.87

SE Australian and N. Zealand 25.5 0.5-0.8 27.7 0.1-0.8

S Atlantic Ocean (south of 34°S) 27.5 0.54-0.87 29 0.54-0.87

Tropical Zone -/+23.4364°N 32.7 < 0.4 for 64% of the areas 37.1 < 0.4 for 74% of the areas

SW South China Sea, Java Sea, Banda Sea 30.8 0.5-0.7 34.5 0.4-0.7
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Although at the tropics, the overall l-index is low (less than 0.4

at 64% and 74% of the locations for PCVAR and PCSTEP models

respectively) and the average %RMSE of PCVAR is ~32.7 (~37.1 for

PCSTEP), at the SW South China Sea, the Java Sea and the Banda

Sea the l-index ranges from 0.5 to 0.7 (0.4 to 0.7 for PCSTEP) and

the %RMSE is ~30.8 for PCVAR (~34.5 for PCSTEP). Apart from

the tropics, regions that demonstrate not adequate to average

skill are:
Fron
• the Baltic Sea (45% of the areas with l-index less than 0.4

for both models and average %RMSE 30.2 and 31.9 for

PCVAR and PCSTEP),

• the Black Sea (l-index < 0.4 and average %RMSE 202.7, l-
index < 0.3 and average %RMSE 284.7 for PCVAR and

PCSTEP respectively),
tiers in Marine Science 10
• the Gulf of Mexico except for the eastern part (65% of the

areas with l-index < 0.4 for PCVAR and average %RMSE

33.3, 73% of the areas with l-index less than 0.4 and average
%RMSE ~38.0 for PCVAR and PCSTEP),

• and the subtropical zones of the NW Atlantic Ocean and of

the S Pacific Ocean.
3.2 Applications

3.2.1 62 years of daily maximum ocean water
level hindcast

Here, we use the coefficients from PCVAR with the atmospheric

conditions from the ECMWFERA5 reanalysis dataset, for the period 1/

1/1959-31/12/2021, in order to reconstruct the continuous-in-time
FIGURE 8

Distribution of the l-index from PCVAR (blue bars), PCSTEP (red bars) and PCWN (yellow bars) multivariate linear regression models validated with
the tide gauge measurements for the period 1992-2019.
FIGURE 7

%RMSE and l-index of the water level estimated by the PCVAR (A, B), PCSTEP (C, D) and PCWN (E, F) models vs the tide gauge records. Note the
different scale of the %RMSE metric of the PCWN model, compared to the other two models. The black dashed lines indicate the two tropics.
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daily maximum WL, at each 0.25°x0.25° node of our altimeter grid.

The maximum daily maximum WL for the 62-year period (Figure 9)

reveals qualitatively the main global ocean circulation patterns, such as

the western boundary currents (e.g. the Kuroshio current in the NW

Pacific Ocean, the Gulf Stream), eastern boundary currents (e.g. the

South Equatorial and Benguela current in SW Africa), and equatorial

waves (Andres et al., 2008; Dohan, 2017). Additionally, Figure 9 further

outlines the distribution of high-frequency small-scale features such as

eddies in regions of intense circulation (Chelton et al., 2011; Faghmous

et al., 2015). Moreover, areas with increased WL are the N Atlantic

Ocean, the N Pacific Ocean and the Bering Sea, the East China Sea, the

East Bay of Bengal, the Arafura Sea and the Southern Ocean.

Figure 10 presents the statistical reconstructed WL timeseries

from the PCVAR model collocated in time with the closest TG WL

time-series (panels A-F) and their corresponding skill metrics

(panels G-L). The PCVAR model time-series show a better

agreement with TG records at high latitudes, e.g. Aalesund,

Norway, Base Prat, Chile and Mornington island, Australia with

%RMSE equal to 13.64, 15.32, 17.58 and l-index equal to 0.73, 0.82
and 0.64 respectively. A lower model performance is observed at

low latitudes, where only the long WL variations are estimated

reasonably well in Pointe Noire, Congo and Chittagong,

Bangladesh. It needs to be further examined, whether the lower

model performance such as of the last two locations, may be

attributed to the low amount of the original sparse altimeter

measurements, as described in subsection 2.1 of this study.

3.2.2 Tropical cyclone induced water level
The year 2018 was one of the most active on record in terms of

tropical cyclone (TC) activity, with 23 TCs occurring in September

and more than 12 concurrent tropical cyclones in the Atlantic,

Pacific and Indian Ocean4. Figure 11 shows the 47 TC tracks from

the IBTrACS archive (Knapp et al., 2018, 2010) from 1/8/2018 to

15/10/2018. The daily maximum WL from PCVAR for the same

period is presented in Figure 12. The tropical cyclone paths are
4 ht tps : / /en .w ik iped ia .o rg/wik i /T rop ica l_cyc lones_ in_2018

accessed 16/03/2023.
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evident at the oceanic surface, particularly over the Central and N

Atlantic Ocean, the Gulf of Aden, the Philippine Sea and the East

China Sea. This observation highlights how PCVAR can

qualitatively estimate global water levels during periods of highly

energetic atmospheric conditions.

The validation results with the six TG water level time-series are

presented in Figure 13, (panels A-F), along with the corresponding

performance metrics (Figure 13, panels G-L). PCVAR reproduces

quite well the WL during the peak of the TC induced WL in Naja

(Japan). Good agreement is observed between the TG and the

PCVAR time-series at Currimao (Philippines), Ballyglass (Ireland)

and Dingle Harbor (Ireland) where although the peak WL is

underestimated the TG and model time-series are in phase. At

Fort Point, New Hampshire and North Spit, California, TG the skill

is reasonable and the %RMSE is ~22.7 and ~29.4 respectively, much

as the WL range during this period is low.

As an example, for this 45-day period of intense tropical cyclone

activity, we compare the open ocean water levels from PCVAR with

the WL resulting from the linear addition of SLA L4 measurements

(https://doi.org/10.48670/moi-00144) with the DAC component

(10.24400/527896/a01-2022.001). In contrast to the L3 dataset we

utilize, the DAC component is not available in the SLA L4 dataset.

After downloading the 6-hourly DAC component, we identified its

closest grid nodes in the SLA L4 grid, and then computed the daily

maximum WL, including the contribution of the L4 and DAC. We

refer to this as L4+DAC.

The comparison between the daily maximum WL obtained by

the PCVAR model and the L4+DAC is presented in Supplementary

Figure S5. The spatial distribution of the %RMSE and the l-index
indicates better agreement at high latitudes with the overall %RMSE

> 20% for ~71% and above 0.7 for ~42% of the ocean surface,

respectively. The agreement between the two datasets is higher

along the TC tracks (as also shown in Figure 12) at the N Atlantic

Ocean and the NE Pacific Ocean, with lower %RMSE and higher l-
index. Except for the tropics, areas characterized by higher %RMSE

and lower l-index are those with high SLA variability (Ballarotta

et al., 2023), such as offshore SE South America, the NE North

America, the NW Pacific Ocean and the E Siberian Sea. Similarly, at

these areas the coupled storm surge and wave numerical model by
FIGURE 9

Maximum daily maximum water level (m) for the period 1/1/1959-31/12/2021 estimated by PCVAR model.
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Mentaschi et al. (2023) exhibited larger model deviations when

validated with altimeter data. It is worth noting that the bias

between the two datasets is low and its range is -/+0.1cm for

~96% of the areas.

Indicatively, the comparison of the time-series at six locations

between the L4+DAC and PCVAR daily maximum WL along with

the available L3 WL measurements is presented in Supplementary

Figure S6. Despite the overall scarcity of the L3 measurements (red

stars) which inform PCVAR (blue line), good agreement is observed

with the L4+DAC (black line), with l-index > 0.6 and %RMSE < 18.3
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(panels A-D and G-J, in Supplementary Figure S6). Moreover, while

none of the peakWL events were recorded by the L3 dataset, PCVAR

accurately estimated these high intensity events, in good agreement

with the L4+DAC data. The peak events (as in Supplementary Figure

S6B, on 2018-10-22) recorded at the L3 dataset but neither by the L4

+DAC nor from the PCVAR model, they need to be further

examined to understand whether they are not triggered by intense

atmospheric conditions. However, these events do not appear to

mislead either the L4+DAC or PCVAR. The cases presented in panels

E and F of Supplementary Figure S6, demonstrated the limited
FIGURE 11

Tropical cyclone paths from the IBTrACS archive during the period 1/8/2018-15/10/2018, with each colour and track representing a different event.
FIGURE 10

Daily maximum water level (m) from the tide gauge records (blue lines) and from PCVAR model (red lines) (panels A-F) and the corresponding
scatter plots vs the perfect-fit line (black dots and magenta lines, at panels G-L) at Aalesund (Norway), Salt River (Florida, USA), Pointe Noire (Congo),
Base Prat (Chile), Chittagong (Bangladesh) and Mornington island (Australia) tide gauge stations.
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agreement between the L4+DAC dataset and the PCVAR, although

the latter seems to be aligned with the L3 records.

3.2.3 15-day medium-term ensemble water
level forecast

Working as in subsections 3.2.1. and 3.2.2, we apply PCVAR

using the 51 ensemble member ECMWF (ECMWF ENS)5 forecast
5 https://www.ecmwf.int/en/forecasts/datasets/set-iii#III-i-a
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atmospheric conditions, aiming to derive the corresponding WL

forecasts at the global ocean, specifically for the 15-day period, 25/

09/2018-10/10/2018. For this period, the 10m wind components

and the mean sea-level pressure from the medium range 51

ensemble members were first interpolated down to the 0.25°

x0.25° grid. Then, the daily maximum wind components, the

minimum pressure and the pressure gradients were calculated.

Due to the short forecast period of 15 days, in this demonstration

we derived a second set of PC coefficients with PCVAR for each grid

node and for the entire altimeter period 31/12/1992-31/10/2019,
FIGURE 13

Daily maximum water level (m) during the period 1/8/2018-15/10/2018 from the tide gauges (blue lines) and from the PCVAR model (red lines)
(panels A-F) and the corresponding scatter plots vs the perfect-fit line (black dots and magenta lines, panels G-L) at Naha (Japan), Currimao
(Philippines), Ballyglass (Ireland), Dingle Harbour (Ireland), Fort Point (New Hampshire, USA) and North Spit (California, USA) tide gauge stations.
FIGURE 12

Maximum daily water level as estimated by PCVAR model during the period 1/8/2018-15/10/2018.
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following subsection 3.1.3. However, in this case we used the non-

standardized ERA5 reanalysis atmospheric conditions, instead of

the standardized ones. The validation of the PCVAR WL with the

GESLA-3 TG records is similar as in subsection 3.1.3 and is

not shown.

Figure 14A shows the global ocean 15-day probability that the

daily maximum WL forecasts will exceed the 99.5th percentile of

the ECMWF ERA5-driven daily maximum WL hindcast

(subsection (3.2.1)). We estimated probabilities using the 51

ensemble member ECMWF ENS. PCVAR estimates with high

probability of exceedance the landfall of tropical cyclone Kong-

rey offshore Japan and Taiwan, Hurricane Leslie at N Atlantic

Ocean and Hurricane Rosa offshore W Mexico, as well as the

induced water level (Figure 14C). The ensemble median daily

maximum WL from PCVAR (green line in Figure 14C) is in

good agreement with the GESLA-3 Hirarako TG record (black

line in Figure 14C) for the first seven days of the forecast (25/09/

2018-01/10/2018). PCVAR accurately estimates the ensemble-

median WL peak on 28/09/2018, despite being forced with the

ECMWF ENS atmospheric forecast, issued four days before the

actual cyclone-induced WL peak recorded at the Hirarako TG

station. According to the GESLA-3 TG stations in Kushiro and

Esashiko, the WL peak was recorded on 01/10/2018 (black lines in

Figure 14D, E, respectively), seven days after initializing the PCVAR

forecast (blue lines in Figure 14D, E, respectively), which accurately

estimates the arrival time of the WL peak. The ensemble-median

forecast WL peak from PCVAR appears lower than in the TG

records, an indicator of the degrading forecast skill after seven days

of both the atmospheric and the PCVAR models.
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4 Discussion

We assessed and demonstrated the feasibility of using detided

sparse satellite water level measurements to estimate the water level

at the open ocean during highly energetic atmospheric events.

Aiming to complement the effort of obtaining high frequency

water level estimates, first, we evaluated the temporal and spatial

distribution of all the available along-track DT DUACS L3 altimeter

water level measurements.

A preliminary validation of the altimetry measurements was

performed with the detided GESLA-3 tide gauge records. In order to

overcome both the temporal and the spatial scarcity of the tide

gauge data, but also to identify the contribution of each one of the

altimeter components, we assessed the validity of the altimetry

measurements also with 6-hour water level from the validated

hydrodynamic unstructured numerical model D-FLOW. Both

validation assessments revealed regions with variable performance

when different altimeter components were considered. Overall,

the altimeter sea-level anomalies after being corrected both with

the long-wavelength error component and the tidal level (but

without applying the dynamic atmospheric correction), they

exhibit better agreement with the tide gauge measurements and

with the D-FLOW numerical data. In fact, this indicates that the

water level is more accurately represented when the altimeter sea

level anomaly measurements are not corrected by a hydrodynamic

numerical model with similar spatial resolution. At the tropical

zone, the lower agreement between all the examined water

level components highlights where the hydrodynamic models

need improvements.
FIGURE 14

Daily maximum water level (m) forecast exceedance probability of the PCVAR ECMWF ERA-5 hindcast daily maximum water level during the period
25/09/2018-10/10/2018 (A). Ensemble median daily maximum water level (m) on 27/09/2018 (B). Daily maximum water level from the GESLA-3 tide
gauge records (black solid line) and the corresponding 51 ensemble members daily maximum water level (grey solid lines) and ensemble median
daily maximum water level (green solid line) estimated from the PCVAR model at Hirarako (C), Kushiro (D) and Esashiko (E) tide gauge stations in
Japan. The 99.5th percentile from the PCVAR ERA-5 hindcast water level is indicated by the magenta dashed line. The box plots display the 25th and
75th percentile of the 51 ensemble members daily maximum water level and the red line the ensemble median daily maximum water level.
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Our study underscores how the daily maximum water level due

to episodic high energetic atmospheric conditions and persistent sea

level currents can be estimated from altimetry data, in conjunction

with the local atmospheric conditions. We developed two

multivariate linear regression models and checked their skill in

reproducing the continuous daily maximum water levels spanning

27 years in comparison with the GESLA-3 tide gauge records.

Indicatively, ~11% more tide gauge records were used for the

validation of the statistical derived water level, compared to the

original temporally sparse altimeter measurements, a potential

indication that the temporal scarcity of altimeter measurements

may be reduced even further by deploying simple statistical models.

Despite the simplicity of the two statistical models and the

inherent temporal scarcity of the altimeter measurements, we

demonstrated that the inferred water level from these two models

exhibited a reasonable to excellent skill (l-index 0.4 to 0.8) at ~68%
and ~51% of the tide gauge records respectively. Moreover, we

showed that atmospheric conditions alone do not suffice to describe

the water level for the vast majority of examined locations, but that

satellite measurements are needed. These findings underscore the

high value of the altimeter water level measurements for the

assessment of the atmospheric-induced hydrodynamic disasters,

and emphasize the need for continuous collection, analysis,

exploration and incorporation of both publicly-available and

proprietary altimeter measurements for the comprehensive

understanding of eminent risks at the coastal zone.

Additionally, we presented a less computationally expensive

method to derive the detided global ocean water level from satellite

measurements, compared to process-based numerical models that

may suffer from limitations, such as the low accuracy of topo- and

bathymetry data or not resolving all the relevant hydrodynamic

processes. We demonstrated our approach with two case studies

where we derived global ocean water levels based on the best

performing multivariate linear regression model from our study.

The first case study was the hindcast of the continuous daily

maximum water level at 0.25°x0.25° spatial resolution (~633x103

points) for the global ocean and for a period of 63 years, 1/1/1959-

31/12/2021. This long-term hindcast was attained for each grid

node utilizing its surrounding principal components of the

atmospheric conditions that had been derived for the validation

period (31/12/1992-31/10/2019) and the ECMWF ERA5 reanalysis

atmospheric conditions. It revealed both the areas of the general

circulation currents and the areas exposed to intense tropical

cyclone activity. For this period of intense tropical cyclone

activity, the proposed model was also compared with the water

level resulting from the linear addition of the L4 gridded sea level

anomalies with the dynamic correction from the Aviso-CNES data

center (L4+DAC). This analysis highlighted regions where the two

datasets agree and where further developments are required.

Significantly, the proposed model demonstrated good agreement

with the L4+DAC dataset for the tropical cyclone induced high

water level events, despite the limited or complete absence of the

original L3 satellite measurements with which our model was

trained. Although it is recommended to compare the two datasets
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for a longer period, for the areas of high water level events the

derived product using PCVAR may serve as a single dataset,

simplifying the post-processing of multiple datasets. Identifying

which of the two datasets performs better is beyond the scope of the

current study. Indicatively, as in our study, Lobeto and Menendez

(2024) derived the extreme sea level along the global coastline

utilizing the DT DUACS L3 along-track altimeter derived detided

water level. Their validation analysis using tide gauges

demonstrated the efficiency of altimeter water level measurements

to represent the variability of the return water levels. Alternatively,

Almar et al. (2021) utilized the SSALTO/DUACS multi-mission

data from Pujol et al. (2016) combined with the dynamic

atmospheric correction from the MOG2D-G model, in order to

estimate the overtopping along the global coastline. Moreover, it is

recommended to further examine whether PCVAR could identify

extreme hydrodynamic events at higher temporal resolution than

the maximum daily examined in the current study, and at spatial

synoptic scales. If nothing else, the altimeter-derived water level

measurements provide an indisputable source of information for

the assessment of both sea level rise rate analyses, but also for the

rapid estimation of intense episodic hydrodynamic events.

For our second case study, we combined the principal

components of the atmospheric conditions at each grid node with

the 51 ensemble members from the ECMWF ENS forecast

atmospheric conditions for a period of 15 days. For each one of

the 51 atmospheric conditions, one daily maximum water level

realization was obtained, demonstrating the efficacy of the satellite

altimeters even for probabilistic water-level forecast applications.

Moreover, this case study indicated an alternative and not

computationally demanding method even for real-time water

level applications, since the 15 days global ocean water level

forecast was completed in less than 1 hour wall-clock time

utilizing 50 2.10GHz processors. Similar studies could possibly be

performed also for forecast studies at seasonal scale. For both the

medium term and the seasonal water level forecasts, we recommend

evaluating the forecast skill of the statistical data driven model, for

each daily forecast cycle of the atmospheric conditions. Overall,

depending on the geographical area extent and period of study, the

proposed framework is capable of being executed across a spectrum

of systems, from simple desktop computers to high-performance

computer systems.

The long-term hindcast of detided daily maximum water level is

free and publicly available through the Joint Research Centre Data

Catalogue (see section Data availability) together with the best

performing multivariate linear regression model principal

components to potential users, aiming to support both global and

local risk assessment studies but also to stakeholders, local

authorities and policy makers. A user could potentially estimate

the water level threshold within operational early warning systems

or derive the return period of the water level (Bij de Vaate et al.,

2024), such as for the design of hydraulic structures and offshore

wind farms. Despite that water level amplifications are expected due

to deep-to-shallow water wave transformations and the local

bathymetry, combining the long-term hindcast with the water
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level forecast may serve as a potential indicator of imminent

offshore water level hazards. Building upon the study of Almar

et al. (2021), the detided water level from the current study may be

integrated with the tidal level and the wave runup, aiming to

provide an estimation of the wave overtopping at open coasts.

Superimposing the hydrodynamic components linearly implies that

the involved non-linear interactions are neglected, potentially

increasing the uncertainty in estimating the extreme coastal water

level (Bertin et al., 2015; Idier et al., 2019). Nonetheless, for both the

spatial and temporal scales analyzed in this study this assumption is

considered reasonable. Finally, the presented long-term hindcast

could serve to identify short and long term changes of the vertical

datum which is a common issue when analyzing tide gauge water

level records.

In this study, we developed multivariate linear regression

models using only the 10m wind velocity components and the

mean sea level pressure from the ECMWF atmospheric conditions,

globally. In contrast, Tadesse et al. (2020) and Tadesse and Wahl

(2021) used machine learning data-driven models utilizing remote

sensing metocean parameters obtained from altimeter and

numerical models to calculate storm surge levels, locally, at tide

gauges. Despite what they did, there is an urgent need to further

explore the applicability of machine learning algorithms to fill in

missing time-series of the current dataset (French et al., 2017;

Kadow et al., 2020). These in turn might be applied as boundary

conditions to local high-resolution hydrodynamic numerical

models along with wind wave models (Mlakar et al., 2024) for

better estimating evolving coastal hazards.

In fact, we developed and deployed a linear Principal

Component Analysis as discussed earlier, instead of a more

complex machine learning approach, for instance a Long Short-

Term Memory (LSTM) Recurrent Neural Network (RNN), for two

reasons. Firstly, our model requires low computational power while

it can be easily reproduced by other researchers. Secondly, linear

Principal Component Analysis provides transparency and

interpretability in the results, which is often crucial in

understanding and validating the relationships between physical

variables. Furthermore, we aimed to emphasize the applicability of

the method and the usability of the satellite data in simpler and

more cost effective models, highlighting the added value of our

proposed methodology. Although a linear Principal Component

Analysis assumes a linear relationship among the variables, which

may not always be the case, given the large amount of available data

and geographical extent, this assumption could be considered

reasonable. Certainly, further research could explore more

complex algorithms using our data to compare the output and

provide further insights. Aiming to facilitate the community’s

efforts in addressing the needs for reliable water level estimations,

it is essential to further evaluate the robustness of PCVAR both with

tide gauge records and numerical hydrodynamic data, as outlined

also in Bernier et al. (2024).

While there is tremendous room for improvement, our study

suggests that satellite altimetry can augment tide gauge

measurements and can provide useful forecasts for storm surges
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and other weather driven episodic changes in sea level, with fairly

low computational cost.
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