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synchronized multi-view
camera system
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1Sanya Oceanographic Institution, Ocean University of China, Sanya, China, 2College of Electronic
Engineering, Ocean University of China, Qingdao, China
Introduction: Fish re-identification (re-ID) is of great significance for fishmonitoring

and can contribute to aquaculture and fish breeding. Synchronizing information

from different cameras is beneficial for optimizing re-ID performance.

Methods: We constructed the first underwater fish re-identification benchmark

dataset (FS48) under three camera conditions. FS48 encompasses 48 different fish

identities, 10,300 frames, and 39,088 bounding boxes, covering various lighting

conditions and background environments. Additionally, we developed the first

robust and accurate fish re-identification baseline, FSNet, which fuses information

from three camera positions by extracting features from synchronized video frames

of each position and combining the synchronized information.

Results: The experimental results show that FS48 is universal and of high quality.

FSNet has an effective network design and demonstrates good performance,

achieving better re-identification performance by combining information from

three positions, helping improve overall re-test accuracy, and evaluating the

effectiveness of re-identification among detectors.

Discussion: Our dataset will be released upon acceptance of this paper, which is

expected to further promote the development of underwater fish re-identification.
KEYWORDS

fish re-identification, multiple cameras, within-view, cross-view, synchronized multi-view
1 Introduction

Fish, as essential products of underwater agriculture, provide significant and

sustainable nutrients for humans. Identifying fish individual precisely during their fry

cultivation stage is crucial for precise agriculture and marine aquaculture. This ability

enables us to provide tailored nutrition, optimize farming conditions, and boost sustainable

and efficient farming practices Marini et al. (2018); Zhao et al. (2021). The development of
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information technology allows us to swiftly detect any unusual

features or behaviors with a real-time monitor, making it possible to

take timely actions to prevent disease outbreaks and ensure the

overall health of the fish population Barbedo (2022); Gladju

et al. (2022).

Fish identification technology is fundamental for increasing the

importance of biological, ecological, and aquaculture studies because

it involves tracing the fate of the organism under study Sandford et al.

(2020). Unlike fish classification Alsmadi and Almarashdeh (2022);

Chen et al. (2017); Alsmadi et al. (2019), which focuses on

distinguishing fishes among different species, fish identification

should identify a specified individual from other fishes even if they

belong to one category. Traditional fish identification techniques

depend heavily on fish tagging Macaulay et al. (2021); Runde et al.

(2022); Musselman et al. (2017). Although tagging can provide

relatively reliable measurements, the tagging process may inevitably

bring detriment Runde et al. (2022). In addition, some sensitive

species, such as delta smelt, can be more susceptible to accidental

mortality Sandford et al. (2020). Since deep learning-based person/

vehicle re-identification (re-ID) technologies have achieved great

success Ahmed et al. (2015); Zakria et al. (2021), learning-based

tagging-free fish re-identification technology has become a plausible

solution. Re-ID technology aims to solve the problem of Re-

identifying targets in different scenes or time points and identifying

the identity of the same target in a multi-camera system. Re-id

technology usually includes subtasks such as object detection, feature

extraction, and similarity measurement and involves related

technologies such as deep learning, image processing, and cross-

camera matching. Fish re-identification technology can also support

real-timemonitoring and recording offish growth, which is necessary

for fish breeding and disease prevention.

However, the challenges for most general person/vehicle re-ID

technologies mainly lie in cross-camera matching, lighting changes,

and posture variations Zheng et al. (2023). Owing to the influence of
Frontiers in Marine Science 02
underwater environments and the morphological differences

between persons/vehicles and fish, person/vehicle re-ID

technologies cannot be directly applied to fish re-ID. The

experimental results clearly indicate that our fish re-identification

technology can be used underwater and performs exceptionally

well. Existing fish tracking and matching technologies are typically

conducted via a single camera Chuang et al. (2016); Mei et al.

(2022). In real-time monitoring, a single-view camera may

unavoidably capture awkward poses detrimental to fish re-

identification. Our fish re-identification method employs multi-

view techniques (see Figure 1) to capture the visual characteristics of

fish from different angles, which helps provide more precise and

more accurate fish features and enhances the model’s robustness to

changes in lighting, water flow, and scenes. Even if we build a multi-

view video system for fish re-identification, we still need to

overcome the challenge of multi-view information utilization. To

address these challenges, we captured synchronized video sequences

from three cameras, capturing frontal, left, and top views. The

synchronized video capture system allowed us to construct the first

underwater fish re-identification benchmark (FS48). Additionally,

we developed a robust and accurate multi-view fish re-identification

framework called FSNet (see Figure 2).

Inspired by person re-identification techniques, we propose the

first underwater fish re-identification network, FSNet, which

combines features from three different views. Unlike existing

underwater fish detection and tracking methods, FSNet enables

synchronous information interaction when addressing occluded or

blurry fish caused by reflections. FSNet adopts a traditional

approach in which the information from the three views is

separately fed into ResNet-50 backbones for feature extraction.

We collected three-view video frames under various conditions,

including occluded and unoccluded daytime and nighttime

scenarios. By leveraging the fused information, FSNet can match

and interact the occluded or blurry parts with any unoccluded or
FIGURE 1

Overview of our three-view video capture system and the re-identification process. The characteristic information of the same fish from different
visual directions is obtained from three positions to find the target fish (fish #34) after feature fusion.
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clear parts in the fused feature space, achieving the highest quality

fish re-identification performance. The main contributions of this

paper are summarized as follows:
Fron
• We constructed the first multi-view synchronous

underwater fish re-identification dataset, FS48, which

consists of 109 video sequences, 10,300 frames, and

39,088 bounding boxes.

• We developed the first underwater multi-view fish re-

identification benchmark, FSNet, which can efficiently

utilize multi-view information for fish re-identification.

• We comprehensively evaluate the most classical and

advanced detection and recognition methods on the FS48

dataset to construct a benchmark.
2 Related work

2.1 Fish detection and classification

While data-driven methods based on deep learning have made

significant progress in various computer vision tasks such as

classification, detection, segmentation, and image retrieval, most

existing research on fish-related studies has focused on fish

detection and classification. Fish detection aims to detect and

recognize the presence and location of fish in images or videos.

Zeng et al. improved the underwater object detection capability of

the standard Faster-RCNN detection network by integrating

adversarial networks and conducting joint training. The detection

performance for fish was significantly enhanced Zeng et al. (2021).

Liu et al. introduced an attention mechanism called efficient

channel attention to enhance the YOLOX model. They also used

Real-ESRGAN to handle multiple targets and blurry images in

detection, significantly improving the fish detection accuracy Liu,

Dongcai et al. (2022). Fish classification aims to train the model to

automatically recognize and classify different fish species and
tiers in Marine Science 03
accurately classify fish in various scenarios Spampinato et al.

(2010). Automatic fish classification can provide helpful

information for water monitoring, ecological research, and

marine conservation. This information can be used to understand

the distribution, abundance, and ecosystem health of the fish in the

water Chen et al. (2017); Alsmadi et al. (2019); Saleh et al. (2022).

Despite the recent impressive progress in fish detection and

categorization, monitoring studies of individual fish have yet to

be conducted. In this work, we perform underwater fish re-ID

evaluation tests supported by detection and classification

experiments on the FS48 dataset for fish re-identification.
2.2 Re-identification benchmark

Re-identification work has focused on person/vehicle re-

identification in recent years Ren et al. (2023a), Ren et al. (2023b).

Person re-identification research begins with multi-camera tracking.

In 1997, Huang and Russell Huang and Russell (1997) proposed a

Bayesian formula to estimate and predict the posterior probability of

the appearance of objects in a camera on the basis of the information

observed in other camera views. In 2006, Gheissari et al. Gheissari

et al. (2006) used the spatiotemporal segmentation algorithm to

segment images and then used human visual cues for foreground

detection. This work begins with person re-identification and multi-

target separation as independent computer vision tasks. In 2014, Xu

et al. Xu et al. (2014) solved the impact of person detectors on re-ID

accuracy by combining detection (commonness) and re-ID

(uniqueness) scores. Owing to the significant changes in

appearance and posture, person recognition is complex across

cameras; therefore, it is used in security monitoring, personnel

tracking, and other fields. Another critical area of re-identification

is vehicle re-identification, in which the sensor-based approach phase

occurred between 1990 and 1999 Fullerton et al. (1990). The

historical stage of vehicle re-identification based on depth features

occurred in 2017 and 2018 Liu et al. (2017). The vehicle’s appearance

is relatively stable, and it is easy to extract features for matching. The
FIGURE 2

Pipeline of Mixed Three Views (FSNet). The image feature is extracted via the backbone. Then, overall feature fusion is performed.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1429459
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fan et al. 10.3389/fmars.2024.1429459
development process of two significant research fields has led to the

rapid development of re-identification technology. Inspired by these

two fields, this paper focuses on fish re-identification with a

synchronized multi-view camera system.
2.3 Fish identification

In fisheries management research, individual or batch

identification marking systems have been widely utilized for fish

tracking, which is crucial for assessing fish growth, survival, mortality

rates, and monitoring fish population sizes Buckley et al. (1994).

However, the current labeling methods often cause damage to

individual fish, thus affecting their survival rate of after labeling.

These marking techniques include the use of tags or changing the

parts of the fish (cutting off some fins, etc.) Dare (2003), and the

relevant identification information, including species, sex, and length-

related details, is typically recorded in databases. With the

advancement of biological internal tagging technology Cooke et al.

(2013); Wilder et al. (2016); Musselman et al. (2017), such as visible

implant alphanumeric (VIA) tags Turek et al. (2014); Lindberg et al.

(2013); Osbourn et al. (2011), passive integrated transponder (PIT)

tags Castillo et al. (2014); Schumann et al. (2013); Hühn et al. (2014),

and acoustic tags, the study of small fish individuals has become

feasible. However, internal tagging still faces challenges, such as visual

identification limitations applicable to small species and potential

sublethal effects on fish behavior Murphy et al. (1996); Skalski et al.

(2009). Recent studies on fish marking have focused primarily on

visible implant alphanumeric (VIA) tags, adipose fin clips (suitable

for subadult to adult stages), and calciummarks (ideal for the juvenile

stage). However, currently, only VIA tags can provide effective

individual identification. Analysis of different tagging methods and

species combinations revealed significant differences in tag retention

rates and survival rates. Methods such as adipose fin clips,

particularly those affecting juvenile fish, have been shown to

decrease postmortem survival rates. Even the currently most widely

adopted VIA tags still involve harm to individual fish Sandford

et al. (2020).

Based on the current research background, the fish re-

identification technology proposed in this paper provides a new way

to solve the problem of the impact of previous marking methods on

individual fish. Our method, which relies on synchronized cameras,

can effectively achieve individual identification without endangering

individual fish. The proposed fish re-identification technology avoids

the potential threat to survival caused by direct contact with fish,

provides actual economic benefits and value for farmers, and avoids the

risk of financial loss.
3 Fish re-ID

3.1 Problem formulation

Owing to the changes in underwater scenes and other factors,

such as different water depths, underwater lighting, and rapid flow,

underwater fish detection and identification are much more
Frontiers in Marine Science 04
complex than human re-identification. We propose multi-view

fish re-identification, which provides an innovative solution to

solve these problems. Following the single image person re-ID

settings Zheng et al. (2016), let us define X as a fish database

composed of N images from M identities, denoted as X = (xi, yi)f j
yi ∈ YgNi=1. Given a query image q, its identity is determined by:

i* =  arg max sim(q, xi)

    i ∈ 1, 2,…,N
(1)

where i* represents the correct identity label of image q and

where sim(, ) is a similarity measurement.

For a multi-view synchronized camera system, we can obtain P

images for each identity as xi = xpi
� �P

p=1, simultaneously. Similar as

the single image re-ID setting, we split the database X = (xi, yi)f jyi
∈ YgNi=1 into training set X tra and test set X test with the same

identity set Y, in which there is no identity overlap between X tra

and X test (X tra ∩
  X test = ⊘). Then, we obtain the training set as

X tra = (xi, yi)f jyi ∈ YtragMi=1 and the test set as X test = (xi, y)f jyi ∈
YtestgMi=1, separately. Both X traand X test include independent gallery

and probe subsets. We train the multi-view fish re-ID model onX tra

and test it on X test .
3.2 Preliminary

We consider fish re-ID as an image retrieval problem that aims to

recognize and match the identities of the same fish between different

scenes and cameras. We conducted three different fish re-ID settings

on the FS48 dataset and aimed to provide a valuable baseline for

further research in this area (please refer to Section 5.1 for details).

We comprehensively evaluate two CNN models, VGG-16 Simonyan

and Zisserman (2014) and ResNet-50 Kaiming et al. (2016), for image

feature extraction Kumar and Bhatia (2014). Our approach to fish re-

identification mainly involves configuring two backbone networks

with different loss functions. We explored the VGG-16 and ResNet-

50 backbone networks on the FS48 dataset along with several loss

functions of [SoftTriple Loss Qian et al. (2019), NormSoftMax Zhai

and Wu (2019), ProxyAnchor Loss Kim et al. (2020), ArcFace Loss

Deng et al. (2022), ProxyNCA Loss Yang et al. (2022)]. The fish re-ID

baseline that is better for within-view and cross-view settings is a

combination of the ResNet-50 backbone network with SoftTriple

Loss, and the fish re-ID baseline that has better performance for

synchronized multi-view settings is a combination of the ResNet-50

backbone network with SoftTriple Loss. The results of these

experiments will provide helpful guidance and insights for future

research and technology development. This paper aims to reveal the

model’s ability to adapt to other scenes, camera conditions, and

changes in fish appearance. The generalization of the FS48 dataset to

the fish re-ID problem is demonstrated through an in-depth analysis

of the experimental results.
3.3 FSNet

Following the baseline pipeline, we propose a fish re-ID

framework named FSNet. In most cases, the information between
frontiersin.org
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synchronized video frames of the same fish in different orientations is

closely related. We can utilize this relationship to improve fish re-

identification performance by relying on globally fused features to

infer obscured or blurred semantic information between

synchronized frames. Inspired by the joint representation strategy

Baltrušaitis et al. (2018), we input the images from each of the three

viewpoints into separate ResNet-50 networks for feature extraction.

As shown in Figure 2, three synchronized video frames are fed to the

backbone for feature extraction. Next, the extracted features from the

three frames are sent to the FC layer for feature fusion. With the help

of fusion features, video frames affected by underwater environments

or other adverse factors can be effectively re-identified.
3.4 Normalization functions

We comprehensively evaluated multiple losses for

normalization and chose SoftTriplet Loss Qian et al. (2019) and

NormSoftMax Loss Zhai and Wu (2019) as our objective functions

to achieve a balance between maximizing the interidentity distance

and minimizing the intraidentity distance for different tasks.

Following the definition in Section 3.1, let vi = f(xi) denote the

embedding vector extracted from a multi-view identity xi. The

objective functions are as follows:

LSoftTri(vi) = −log 
exp(l(S0i,yi − d ))

exp (l(S0i,yi − d )) +oj≠yi
exp (lS0i,j)

(2)

where the relaxed similarity S0i,j can be represented as follows:

S0i,c =o
k

exp 1
g v

⊤
i w

k
c

� �

ok
1
g
v⊤i w

k
c

� � v⊤i w
k
c (3)

Here w represents the trainable weights from the FC layer, and c

is the identity label. We follow the default setting and set l = 20, k =

10, d = 0:01, g = 0:1.

LNormSoft(vi) == −log 
exp (v⊤i py)

t

oz∈Z
exp(v⊤i pz)

t

(4)

where we follow the default setting Zhai and Wu (2019) and set

the temperature t = 0.05;Z represents the set of all proxies; and py is

the target proxy.
4 FS48 dataset

4.1 Camera setup

This study used two kinds of common freshwater fish, 17

crucian carp and 31 common carp, to construct the FS48 dataset.

Crucian carp and common carp also belong to common ornamental
Frontiers in Marine Science 05
fish. We chose these two categories since they are highly adaptable,

omnivorous, and disease-resistant Li et al. (2022).

During the rearing process, we referred to some existing

research; for example, the fish face recognition study based on

rotated object detection considered 12 days for data collection Li

et al. (2022). We adopted ten days from October 15, 2023, to

October 25, 2023. During this period, each individual was removed

from the rearing pool and placed in a small transparent fish tank for

imaging every day. We used three cameras to construct a multi-view

video recording system to obtain comprehensive data and ensure

that the cameras were synchronized in time. Our experimental

setup for multi-view re-identification, along with multi-view video

synchronization and feature extraction techniques, is shown

in Figure 3.

This research set up synchronization triggers to ensure that

multiple cameras started capturing video simultaneously. In

addition, during the acquisition process, we use timestamps for

each frame to determine the temporal relationship between video

frames. This setup allowed us to photograph the fish from three

directions Yadav and Vishwakarma (2020): front, top, and side,

providing a more three-dimensional and comprehensive dataset for

subsequent experiments. We followed the camera angle setting of

Wu et al.’s work Wu et al. (2022) to ensure that our methodology

aligns with established standards and comparability. Additionally,

we have made comprehensive adjustments to ensure clear images

are obtained in our data sets. At the end of the experiment, we

captured 109 video sequences, including 48 videos of individual fish

instances and 61 videos of scenes containing multiple fish. During

the manual labeling process, we obtained 10,300 images covering

various angles, such as the front, left, and top of all the fish. A total

of 39,088 bounding boxes were labeled Wei et al. (2018), supporting

the accuracy and richness of the experimental results. This tedious

and systematic data collection provided a solid foundation for our

subsequent study. All labeled data from 10,300 sheets were used

during the detection experiments.
4.2 Labeling

Before delving into fish re-identification (re-ID) tasks with the

FS48 dataset, we should ensure accurate labeling of the fish in the

images. This step was imperative for providing reliable ground truth

data for model training and evaluation. This work presents a fish

re-ID dataset named FS48, specifically labeled to support

re-ID experiments.

The labeling process involved meticulous manual annotation of

the bounding boxes around each fish in the video sequences Baltieri

et al. (2011). We cropped these bounding boxes for the following

re-ID experiments. The detailed structure of the fish re-ID process

is illustrated in Figure 4. For the re-ID experiments, the training and

gallery sets utilized manually labeled bounding boxes Li et al. (2012)
frontiersin.org
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to emulate a manual query request, while the query set employed

bounding boxes generated by the Co-DETR detector to simulate an

automatic re-ID process. The details of the proposed FS48 dataset

used in each experimental setup is presented in Table 1.
4.3 Comparison with existing fish datasets

We conducted a comparative analysis of existing typical

datasets along five dimensions: 1) the number of images within

the dataset; 2) the tasks intended to be accomplished by the image

dataset; 3) whether the annotated entities in the dataset possess

unique identifiers; 4) the quantity of bounding boxes (BBOX)

present in the dataset; and 5) the number of cameras utilized

during data collection. We compared these aspects between

several established datasets and our proposed FS48 dataset.

In Table 2, a direct comparison is presented between these

datasets and our FS48 dataset. Our FS48 dataset exhibits

fundamental disparities compared with existing public datasets,

with significant differences in the tasks it aims to fulfill. The unique

feature within our proposed FS48 dataset is of particular

importance, where each fish is endowed with a distinctive

identifier, ensuring precise and accurate identification. This aspect
Frontiers in Marine Science 06
holds paramount practical importance for future marine

aquaculture and economic activities.
5 Experiments

5.1 Implementation details

5.1.1 Baselines
The main highlight of our baseline is the use of three different

settings, and the excellent experimental results obtained under these

settings prove the feasibility of our baseline method. Specifically,

our baseline method first captures the video frames of the fish

synchronously through three viewing angles and then inputs these

video frames to the backbone for feature extraction. The extracted

features are subsequently fused in the fully connected (FC) layer,

followed by normalization. Finally, the loss function is used to

reduce the distance between the corresponding images. We extract

video frames every 5 seconds to avoid providing frame-to-frame

semantic details. This comprehensive process enhances the

accuracy and robustness of our baseline model in capturing

multi-angle information about fish.
Camera configuration and synchronization

Begin

A

N

N

B

Camera synchronization
configuration

Begin

Multiview data construction 39088

Experimental scene segmentation

End

Training and evaluation

Timestamp embedding

Dataset acquisition

Feature extraction

Feature fusion and
representation

Heatmap visualization

Feature fusion and optimization

Experimental evaluation

End

Synchronized
multi-viewWithin-view Cross-view

FIGURE 3

Overall Fish Re-identification (Fish ReID) Flowchart: Experimental Setup for multi-view re-identification (A) and techniques for multi-view video
synchronization and feature extraction (B).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1429459
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fan et al. 10.3389/fmars.2024.1429459
5.1.2 Evaluation metrics
In the field of visual inspection, the indicators used to evaluate

the detection accuracy usually include true positive (TP), false

positive (FP), and false negative (FN), as well as the average

precision (AP) and mean average precision (mAP) used in this

paper. Among them, TP, FP, and FN are usually used to calculate

the accuracy and recall rate of the detection model, and the accuracy

(precision) is used to evaluate how many of the samples predicted

by the model are real positive samples. Its calculation formula is as

follows:

Precision =
TP

TP + FP
(5)

The recall rate (Recall) is used to assess how many actual

positive samples are successfully detected by the model.

Recall =
TP

TP + FN
(6)

Through precision and recall, we can further obtain the

evaluation index of average accuracy (AP). The AP considers the

accuracy of the model under different confidence thresholds. The
Frontiers in Marine Science 07
index corresponding to the AP is the mean average precision (mAP).

In multi-category visual inspection, each category calculates an AP

and then averages all categories of the AP to obtain mAP.

mAP =
1
No

N

i=1
APi   (7)

This paper divides all the fishes into 48 categories; thus, N =

48. This paper divided all the fishes into 48 categories, where n is

the total number of categories. In this study, all fishes were

divided into 48 categories. Considering the number of 48

categories and the requirements for evaluation, we chose

precision and mAP as the primary evaluation indicators of

interest in this study.

5.1.3 Experimental setting
• Within-view fish re-ID:

Under this experimental setting, this setup is more

straightforward since the captured images are from a known

camera, and both the query and gallery images are from different

known cameras. It allows three distinct experiments to

be conducted.

• Cross-view fish re-ID:

We used the images captured from the three camera views for

training and testing in this experimental setting. We performed

experiments under the view-agnostic setting, indicating that both

the query and gallery images could come from any camera view. In

other words, the model was optimized to perform cross-view fish

re-ID, learning feature representations that are robust to view

changes. Notably, the input of the model is a single image.

• Synchronized multi-view fish re-ID:

Under this setting, we aimed to demonstrate that combining the

three camera views could lead to more robust and accurate fish

reidentification. In parallel, we concatenate the images from the
Gallery

Raw video frames

Detection result

cam1

cam2

cam3

cam1 cam3

cam2

Mixed Three
Views
Setting
probe

retrieve
cam1

cam2

cam3

Mixed Single View

Setting

probe

(A) Fish Detection (B) Fish Re-identification

cam1

cam2

cam3

cam1
or

cam2
or

cam3

FIGURE 4

Pipeline of an end-to-end fish re-ID system. It consists of two modules: detection (A) and fish re-identification (B).
TABLE 1 The details of the FS48 dataset under three re-ID experimental
setups, C1 is the front view, C2 is the top view, and C3 is the side view.

Experimental
setting

bbox_train bbox_gallery query

Within-view

C1 6,475 5,832 262

C2 6,607 5,962 242

C3 6,321 5,779 216

Cross-view 19,403 17,573 720

Synchronized Multi-view 18,558 14,955 612
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three camera views (front, side, and top views). To ensure consistent

feature representations between the query and gallery, we set the

input of both the query and the gallery as a mixture of the three

images from the corresponding camera views. Notably, the three

concatenated images were strictly time-synchronized. The pipeline

under this setting is shown in Figure 2.
5.2 Fish detection

5.2.1 Fish only detection
We report the results using the classical detection models

Faster-RCNN Ren et al. (2015), Reppoints Yang et al. (2019),

Foveabox Kong et al. (2020), and YoloX Ge et al. (2021) in

MMDetection, and the newest models, GFL Li et al. (2020), and

Co-DETR Zong et al. (2023), are used as advanced object detection

frameworks. These several detectors are fine-tuned via pre-trained

models on the ImageNet dataset, and only one target, fish, is

detected in this section. Note that these several detection models

use default settings during training. We use average precision (AP)

to measure the detection performance. Table 3 shows that in the

detection experiments in which all the fish are treated as a single

class, Faster-RCNN, Reppoints, Foveabox, YoloX, and the newest

GFL and Co-DETR detectors achieve an average accuracy of

approximately 70% at IoU 95, with Co-DETR performing the

best with an AP of 0.838 at AP95, 0.975 at AP50. The visualization

of Co-DETR is shown in Figure 5. Notably, multi-view fish re-

identification makes the re-identification of high-density fish more

accurate because the occlusion phenomenon becomes more severe

in the case of high fish density.
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5.2.2 Fish classification results with
ID detection (48 fish)

In this section, the basic setup is the same as that in Section 5.1,

except we further consider the identity information of the fish by

treating individual fish as different categories. Specifically, we treat the

48 individual fish as 48 distinct categories during training Chang et al.

(2018). The experimental results illustrated in Table 4 indicate that

such a category-aware training approach significantly decreases the

detection performance of the fish. The best Faster-RCNN AP95 for

detection is only 0.082, with the AP50 reaching only 0.208.

Under this experimental setup, the detection model faces more

significant challenges in localizing and identifying different fish while

considering different fish identities, thus leading to an overall

decrease in performance. Furthermore, we demonstrated the

intrinsic limitations of the above detection-based algorithms, which

cannot detect unseen fish while assigning the correct IDs. This fact

indicates that the model’s performance will be severely constrained

when encountering new, untrained fish in real-world scenarios, thus

significantly reducing its utility. Therefore, to remedy this

shortcoming, the following section focuses on fish re-identification

experiments by introducing the re-ID technique, in which an

individual fish’s identity is considered essential for re-identification

experiments. In this research direction, we are committed to the re-

ID model to capture fish identity information effectively and thus

improve the model’s recognition accuracy in multiple viewpoints and

scenarios. By introducing re-ID based on the detection results, we

expect to realize a more accurate and robust re-identification of fish

identity and provide theoretical support and practical guidance for

constructing a multi-view fish re-identification system. The

exploration of this research direction will hopefully overcome the

limitations of detection models in practical applications and provide

more powerful technical support for the real-time identification of

multiple unknown fish species.
5.3 Fish re-identification

In the re-ID experiments, the bounding boxes were first calibrated

manually to perform the experiments, and the fish re-ID was

performed under three different settings, namely, within-view, cross-

view, and synchronized multi-view. We fine-tuned the entire model

for 40 epochs using the Adam optimizer. We set the initial learning

rate to 1e-4 and measured the fish re-ID performance via the checking

accuracy and mean average precision (mAP).
TABLE 2 Direct comparison between OzFish, Fish4-Knowledge (F4K), Fishnet Open Images, DeepFish, and our proposed FS48 dataset according to
different properties.

Dataset Images Tasks Bbox ID Camera

OzFish Al Muksit et al. (2022) 1,800 Detection about 43k – 1

Fish4-Knowledge (F4K) Qin et al. (2016) 27,320 Clf – – 1

Fishnet Open Images Kay and Merrifield (2021) 86,029 Detection, Clf 406,463 – 1

DeepFish Saleh et al. (2020) 39,726 Clf, Cnt, Loc, Seg about 15k – 1

FS48 10,300 re-ID 39,088 48 3
Clf, Cnt, Loc, Seg refers to the task of classification, counting, localization, and segmentation.
TABLE 3 Fish-only detection results.

Detectors AP95 AP50

Faster-RCNN Ren et al. (2015) 0.770 0.962

Reppoints Yang et al. (2019) 0.582 0.916

Foveabox Kong et al. (2020) 0.740 0.963

YoloX Ge et al. (2021) 0.618 0.917

GFL Li et al. (2020) 0.675 0.918

Co-DETR Zong et al. (2023) 0.838 0.975
We regard all the fish as one class and use several representative detection backbones to
conduct detection experiments on our data sets. Bold highlighted as best.
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We present the fish re-ID performance under the within-view

setting in Table 5. For the front view, the combination of SoftTriplet

loss and ResNet-50 achieved the highest mAP@all value of 39.31.

From a top view, the SoftTriplet Loss and ResNet-50 combination

also achieved the highest mAP@all value of 37.51. For the side view,

the combination of NormSoftMax and VGG-16 achieved the

highest mAP@all value of 38.14. Hence, the benchmark model

that performs well across all views combines SoftTriplet loss and

ResNet-50. We can conclude that the front view provides more

semantic information about the fish than the top and side views.

We present the fish re-ID performance under the cross-view

setting in Table 6. The SoftTriplet Loss and ResNet-50 combination

achieved the best performance with a mAP@all value of 32.78. As

shown in Tables 5 and 6, we can conclude that SoftTriplet Loss

combined with ResNet-50 achieved the best performance in two

different experimental settings.

We performed time-independent in within-view and cross-

view, respectively, in Tables 7 and 8, where we trained FSNet

using video frames captured in the first five days and evaluated

video captured in the next five days. Specifically, we choose the loss

functions with the highest recognition performance and backbone

for evaluation in Tables 5 and 6. The experimental results in

Tables 7 and 8 show that our model still has high recognition

performance in time-independent data sets.
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We observe that multiple fish may easily trigger occlusions

under the within-view (Figure 5). The occlusions would hinder

some key features and reduce the performance. The re-

identification system cannot perform robust and accurate feature

extraction and identification. Thus, we propose mixing the

information of the images captured from the three camera views.

We believe that different views can provide more complementary

information through information fusion, which can lead to more

accurate re-ID performance. We used the query images under

cross-view and multiple synchronized multi-view settings to

verify our idea. By comparing the experimental results of Tables 6
FIGURE 5

Visualization of Co-DETR under the “fish only” setting.
TABLE 4 Fish classification results with ID detection (48 fish).

Detectors AP95 AP50

Faster-RCNN Ren et al. (2015) 0.082 0.208

Reppoints Yang et al. (2019) 0.045 0.098

Foveabox Kong et al. (2020) 0.042 0.109

YoloX Ge et al. (2021) 0.042 0.160

GFL Li et al. (2020) 0.052 0.091

Co-DETR Zong et al. (2023) 0.003 0.010
We further consider the identity information of the fish by treating each individual as a
different category. Bold highlighted as best.
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and 9, we can find that the mAP@all scores of the synchronized

multi-view experimental setting are much higher than those of the

cross-view experimental setting under various loss restrictions and

backbones. The results indicate that synchronized multi-view

images can provide richer information than cross-view images

can provide to support fish re-identification tasks. Our FSNet can

effectively utilize the multi-view information for fish identification.

The result in Table 10 illustrates the impact of the backbone

(VGG-16 and ResNet-50) and five loss functions in Table 9 on all

metrics (P@5, mAP@10, P@10, mAP@all), with the most notable

effects observed in P@5 and mAP@10. In this case, the p-value is

used as the evaluation criterion. A p-value less than 0.05 helps

strengthen the experimental conclusions in Table 9, while a p-value

less than 0.01 strengthens the experimental conclusions to a greater

extent. Furthermore, the loss functions significantly influence

mAP@10 and P@10, emphasizing their pivotal role. These results

validate the critical significance of the backbone architecture and

affirm the crucial importance of method selection, thus validating

the decision to employ the ResNet-50 and NormSoftMax (the

highest mAPall) in Table 9 to build the proposed FSNet.

Automatically detecting and re-identifying an unknown fish is a

fundamental requirement of fish re-ID. Using the best detection

model trained under the detection experiment (Co-DETR), which

only trains fish as a category of the model, we can obtain bounding

boxes as queries under within-view and cross-view settings. To

maintain the same scale and variety of Table 1, the single-fish query

dataset also includes 612 samples, while the train and gallery

datasets still used manually annotated data under the

synchronized multi-view setting. Notably, the bounding boxes

generated by the detection model do not include fish IDs. Thus,

we only consider the single-fish scene case (only one fish exists in

the tank) for cross-view and synchronized multi-view automatically

fish re-ID task with Co-DETR detector. We evaluate and locate the

best loss functions and backbones for different settings in Table 11.

Since we did not consider the multi-fish scene for the automatic re-

ID task, the scores in Table 11 are even higher than those in Tables 6

and 9.

The heatmap visualizations in Figure 6 demonstrate that the

front view contains the key information, including areas

surrounding the fish eyes for identification. In contrast, the

semantic information in the top and side views is related mainly

to contours (such as the dorsal fin, pectoral fin, ventral fin, anal fin,

and caudal fin). In other words, the front view plays a vital role in

providing feature information for judgment in recognition. The top

and side views compensate for the information deficiency the front

view. Our FSNet network extracts features from the three views and

builds feature embedding to complete the fish re-identification

process. We show four examples in Figure 6; the images in line

one show an example of carp (#05), and the other three examples

are carp (#00, #02, and #14). To verify the proposed FSNet can

capture the key features, we use the Grad-CAM method to obtain

the heat map of FSNet, focusing on the convolutional layers to

visualize the important regions identified by the network Selvaraju

et al. (2017). From top to bottom, there are two different species of

fish. From the cam1 column, we can find that the ventral fin of the

carp is highlighted on the heat map of FSNet, and the dorsal fin is
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TABLE 7 Time-independent within-view fish re-ID.

Loss functions Backbone

Frontal
view

Bird of view Side of view

P@5 mAP@10 P@10 mAP@all P@5 mAP@10 P@10 mAP@all P@5 mAP@10 P@10 mAP@all

NormSoftMax
Zhai and Wu (2019)

VGG-16 54.24 46.99 55.21 33.46 52.13 41.98 50.01 32.84 58.06 50.12 57.22 36.87

SoftTriplet
Qian et al. (2019)

ResNet-50 65.37 58.04 61.43 37.66 60.11 49.85 57.31 36.13 64.79 55.46 60.33 35.29
F
rontiers in Marine Sci
ence
 11
 fron
We train the FSNet with video frames captured in the first five days and evaluate videos captured in the next five days. Specifically, we choose the loss functions with the highest recognition
performance as well as backbones in Table 5 for evaluation. Bold highlighted as best.
TABLE 8 Time-independent cross-view fish re-ID.

Loss function Backbone P@5 mAP@10 P@10 mAP@all

SoftTriplet Qian et al. (2019)
VGG-16 54.98 44.11 51.67 28.87

ResNet-50 64.12 55.03 60.91 30.12
We train the FSNet with video frames captured in the first five days and evaluate videos captured in the next five days. Specifically, we choose the loss functions with the highest recognition
performance as well as backbones in Table 6 for evaluation.
TABLE 6 Cross-view fish re-ID. Experiments are carried out under view-independent settings.

Loss functions Backbone P@5 mAP@10 P@10 mAP@all

SoftTriplet Qian et al. (2019)

VGG-16

54.75 44.78 52.10 30.30

ProxyNCA Yang et al. (2022) 47.67 37.89 45.46 27.71

ProxyAnchor Kim et al. (2020) 53.58 43.73 51.19 26.48

NormSoftMax Zhai and Wu (2019) 55.28 45.33 52.72 29.82

ArcFace Loss Deng et al. (2022) 46.94 34.95 43.44 18.00

SoftTriplet Qian et al. (2019)

ResNet-50

66.72 57.40 64.04 32.78

Proxynca Yang et al. (2022) 56.75 47.34 54.46 31.10

ProxyAnchor Kim et al. (2020) 64.28 55.15 61.85 29.66

NormSoftMax Zhai and Wu (2019) 63.72 53.52 60.74 31.36

ArcFace Loss Deng et al. (2022) 60.11 50.48 57.36 30.49
Bold highlighted as best.
TABLE 9 Synchronized multi-view fish re-ID.

Loss functions Backbone P@5 mAP@10 P@10 mAP@all

SoftTriplet Qian et al. (2019)

VGG-16

91.27 81.40 83.58 49.22

ProxyNCA Yang et al. (2022) 86.50 73.04 75.56 39.49

ProxyAnchor Kim et al. (2020) 87.84 77.61 79.82 45.94

NormSoftMax Zhai and Wu (2019) 90.62 80.93 82.88 50.61

ArcFace Loss Deng et al. (2022) 85.13 73.81 76.83 42.66

SoftTriplet Qian et al. (2019)

ResNet-50

79.18 74.03 77.43 52.07

Proxynca Yang et al. (2022) 73.53 67.21 71.63 47.06

ProxyAnchor Kim et al. (2020) 77.32 72.52 76.00 49.50

NormSoftMax Zhai and Wu (2019) 77.22 72.94 76.52 52.17

ArcFace Loss Deng et al. (2022) 77.68 71.01 74.75 50.17
We concatenate the images from three camera views. To ensure that the feature representation between the query and the gallery is consistent, we set the input of the query and the library to a
mixture of three images from the corresponding camera view. Note that these three images are strictly synchronized. Bold highlighted as best.
tiersin.org

https://doi.org/10.3389/fmars.2024.1429459
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fan et al. 10.3389/fmars.2024.1429459
TABLE 10 An analysis of variance was performed on the loss functions and backbone cross-performance indicators in Table 9.

Metric Source Sum Sq df F P(>F)

P@5 Loss functions 33.479 4 2.880 0.165

P@5 Backbone 318.434 1 109.555 0.000**

mAP@10 Loss functions 80.162 4 9.563 0.025*

mAP@10 Backbone 84.565 1 40.354 0.003**

P@10 Loss functions 64.422 4 10.050 0.023*

P@10 Backbone 49.908 1 31.142 0.005*

mAP@all Loss functions 86.686 4 5.652 0.061

mAP@all Backbone 53.13 1 13.857 0.020*
F
rontiers in Marine Science
 12
*P<0.05; **P<0.001; df, degrees of freedom; F, F-statistic; P(>F), p-value for the F-statistic.
TABLE 11 Performance of the bounding boxes generated by the Co-DETR detection model as a query.

Loss functions Backbone View P@5 mAP@10 P@10 mAP@all

SoftTriplet Qian et al. (2019) ResNet-50 Cross-view 77.82 67.57 71.74 34.77

NormSoftMax Zhai and Wu (2019) Synchronized
multi-view

77.52 72.46 76.18 52.27
FIGURE 6

Heatmap visualization of images from three views, with the image in the left column of the same shot being the original image and the heatmap
image in the right column. The first one is the crucian carp, and the last three are the common carp.
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highlighted in a relatively straight shape on the heat map. The

abdominal fin of the crucian carp is highlighted at a higher position

on the heat map, and the dorsal fin is highlighted in a relatively

round shape on the heat map. The two yellow fish have similar

contours and colors but different texture shapes. The heat map

shows that the FSNet’s attention usually focuses on the eyes and fin

areas to distinguish different fish identities. These results prove that

our model can distinguish between similar but different fish based

on small but critical features.

The detection and re-identification experiments perform well on

the FS48 dataset, indicating that our FS48 dataset is reliable and

practical. To evaluate the efficiency of the strategy, we set a baseline

model (shared backbone) and designed an ablation study in Table 12.

The baseline used a shared backbone to extract information from

three perspectives and perform feature fusion. As shown in Table 12,

our network FSNet, which can utilize the information from the three

viewpoints more effectively, performs better than the baseline. The

results verify the effectiveness of the joint representation strategy for

multi-view fish re-identification tasks. The T-test results in Table 13

further verify the above conclusions.
6 Conclusions

To the best of our knowledge, this work takes the first step

toward deep learning based fish re-identification, and the reliability

of this work is confirmed, mainly because of the large number of

experiments we conducted. We present FS48, a fish re-identification

multi-view dataset comprising 10,300 three-view images from 48
Frontiers in Marine Science 13
crucian carp and carp, accompanied by 39,088 manually labeled

bounding boxes. Using the FS48 dataset, we have developed a

robust and accurate fish identification framework called FSNet to

facilitate the advancement of aquatic species identification and

promote research in fish monitoring and aquaculture.
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TABLE 12 Ablation study of the proposed FSNet.

Methods P@5 mAP@10 P@10 mAP@all

baseline 63.72 53.52 60.74 31.36

baseline (multi-view) 77.22 72.94 76.52 52.17

FSNet 79.24 71.98 80.15 53.33
TABLE 13 We used the T-test method to verify the results in Table 12

is reliable.

Metric T-statistic P-value

P@5 -11.171 0.000**

mAP@10 -1.527 0.205

P@10 -16.02 0.001*

mAP@all -3.918 0.017*
The experiment calculated T statistics and degrees of freedom from three independent sets of
data from baseline and FSNet.
*P<0.05, **P<0.001.
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