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Genomic hotspots: localized
chromosome gene expansions
identify lineage-specific
innovations as targets for
functional biodiversity and
predictions of stress resilience
Eric Edsinger 1* and Leonid L. Moroz 1,2

1Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States,
2Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
Functional and biodiversity genomics is essential for assessment and monitoring

of planetary health and species-specific management in changing ecosystems.

However, experimental knowledge of gene functions is limited to a few species,

and dependencies on distantly related models. Combined with unrecognized

degrees of lineage-specific gene family expansion, this means that traditional

comparative methods are insufficient. Here, we introduce the concept of a

hotspot, defined as innovations underlying the evolution of lineage-specific

biology. We illustrate hotspots using molluscs having chromosome-scale

genome assemblies and focus on heat-sensing TRPM channels and species

living in environments of extreme heat stress (e.g., high intertidal and

hydrothermal vent gastropods and bivalves). Integrating gene family,

orthogroup, and domain-based methods with genomic hotspots (local

homolog expansions on chromosomes), we show that conventional

approaches overlook substantial amounts of species-specific gene family

diversity due to limitations of distant homology detection. In contrast, local

segmental duplications are often recent, lineage-specific genetic innovations

reflecting emerging adaptions and can be identified for any genome. Revealed

TRPM gene family diversification highlights unique neural and behavioral

mechanisms that could be beneficial in predicting species’ resilience to heat

stress. In summary, the identification of hotspots and their integration with other

types of analyses illuminate evolutionary (neuro)genomic strategies that do not

depend on knowledge from model organisms and unbiasedly reveal

evolutionarily recent lineage-specific adaptations. This strategy enables

discoveries of biological innovations across species as prospective targets for

modeling, management, and biodiversity conservation.
KEYWORDS

homology, genomic dark matter, hotspot, functional and biodiversity genomics, TRP
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1 Introduction

Environmental impacts, including record-setting marine heat

waves (Li et al., 2023; Minière et al., 2023), are affecting global

biodiversity and planetary health (Claudet et al., 2020; Armstrong

McKay et al., 2022; Hansen et al., 2023; Lamboll et al., 2023; Minière

et al., 2023). For marine ecosystems, recovery may be slow due to

the massive heat-buffer capacity of oceans (Lubchenco et al., 2015;

Hoegh-Guldberg et al., 2019; Claudet et al., 2020; Erskine et al.,

2021; Jacquemont et al., 2022) but understanding how local species

respond to accelerating environmental extremes is critical to

biodiversity management. For example, Marine Protected Areas

are isolated refugia with connectivity for benthic marine

invertebrates provided by recruitment of pelagic swimming larvae

(Christie et al., 2010; Moksnes and Jonsson, 2020; Lu et al., 2023;

Muenzel et al., 2023). However, a larva’s binary decision to undergo

settlement or not can be temperature sensitive (Da-Anoy et al.,

2020; Viladrich et al., 2022; Weeriyanun et al., 2022), with

implications for species survivorship and distribution in

management. Powerful, accessible approaches to predict the

adaptive potential of local species are needed for long-term

modeling and mitigation of environmental impacts.

Biodiversity Genomics and the umbrella Earth BioGenome

Project aim to produce reference genomes with chromosome

assemblies for every eukaryotic species (Zoonomia Consortium,

2020; Blaxter et al., 2022; Cartney et al., 2022; Hogg et al., 2022;

Lewin et al., 2022; of Life Project Consortium TDT et al., 2022;

Sherkow et al., 2022; Stephan et al., 2022), including diverse

spiralians (Lawniczak et al., 2022; Hawkins et al., 2023), with

opportunities to address environmental stresses (Zoonomia

Consortium, 2020; Blaxter et al., 2022; Cartney et al., 2022; Hogg

et al., 2022; of Life Project Consortium TDT et al., 2022; Sherkow

et al., 2022). Yet, genomic data are generally not accompanied by

molecular-functional knowledge. Furthermore, there are limited

tools to evaluate adaptive potential from diverse lineages (Lopez

et al., 2018; Zoonomia Consortium, 2020; Hogg et al., 2022; Marx,

2022; of Life Project Consortium TDT et al., 2022; Stephan et al.,

2022), and integrative approaches across fields, like neuroscience

and conservation biology (Zoonomia Consortium, 2020; Marx,

2022; Michaiel and Bernard, 2022; Stephan et al., 2022; Anttonen

et al., 2023; Doell et al., 2023).

Homology-based annotation of gene function is commonly

used in the absence of direct molecular knowledge, wherein

sequence and increasingly structural similarities enable mapping

of gene function in genetic models, like humans, Drosophila

melanogaster, and Caenorhabditis elegans, to a target species

(Blaby-Haas and Merchant, 2019; de Crécy-Lagard et al., 2022;

Bordin et al., 2023; Kim et al., 2023; Kirilenko et al., 2023; van

Kempen et al., 2023; Svedberg et al., 2024). Still, gene families

present in a target species but absent in a popular reference species

can go mis-annotated or unannotated, or their presence in the

genome can go unrecognized due to failures in assembly and/or

structural annotation of gene models. Similarly, detection of the

phylogenetic signal of remote homologs in sequence alignment

becomes difficult at 20-35% sequence similarity (twilight zone) and

goes beyond the theoretical limits at less than 20% (midnight zone)
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(Chang et al., [[NoYear]]; Chung and Subbiah, 1996; Rost, 1999;

Koehl and Levitt, 2002), though, for example, deep-learning

structural approaches are pushing these limits (Bordin et al.,

2023; Kim et al., 2023; van Kempen et al., 2023; Pantolini et al.,

2024; Svedberg et al., 2024). For instance, it is common for 25% or

more of genes in a spiralian genome to go unannotated.

Genetic innovations underlying speciation adaptations can be

most relevant to functional biodiversity assessments (Hahn et al.,

2007; Toll-Riera et al., 2016; Villanueva-Cañas et al., 2017; Richter

et al., 2018; Kim et al., 2022; Wu et al., 2022; Wu and Lambert, 2023;

Mantica et al., 2024) but are the most likely to go undetected in

current bioinformatic pipelines (detailed below; Figure 1A) (Blaby-

Haas and Merchant, 2019; Peng and Zhao, 2024). Even the well-

studied Drosophila has over 500 unannotated genes that arose

during the recent evolution of its genus (Peng and Zhao, 2024).

Overall, annotation methods that reduce reliance on distantly

related species and highlight genetic innovations underlying

lineage-specific biology are desirable.

In deciphering those mechanisms, it was established that gene

families commonly expand through segmental duplication of

chromosome regions during DNA replication, generating new

gene copies (paralogs within the initial species but becoming

orthologs or homologs in subsequent derived species) physically

adjacent to existing gene copies on a chromosome (Ohno, 1970;

Zhang, 2003; Bergthorsson et al., 2007; Innan and Kondrashov,

2010). Evolutionary recent gene copies can diverge in function

(division of labor), enabling biological novelties (Force et al., 1999;

Bergthorsson et al., 2007; Hittinger and Carroll, 2007). Parallel

processes, including deletions, inversions, and translocations, result

in the spatial mixing of genes, with chromosomes forming “bags of

genes” over time (Putnam et al., 2007; Putnam et al., 2008; Innan

and Kondrashov, 2010; Session et al., 2016; Hart et al., 2018; Robert

et al., 2022; Simakov et al., 2022; Yu et al., 2024). Thus, initial

clusters of newly formed gene copies will eventually disperse in the

evolution of genomes, meaning localized gene copies on a

chromosome likely reflect recent evolutionary events and underlie

lineage-specific biology. These genomic regions of evolutionary

history could also act as catalytic sources of gene network

innovations, taking advantage of the proximity of genes and their

regulatory sites.

Here, we introduce the concept of hotspots with an emphasis on

genome architectures. Genomic hotspots can be identified using

simple bioinformatic methods for reference-free identification of

gene copies locally clustered in a genome and integrated with

genome-scale homology-based methods of molecular function

gene annotation, orthogroups, and gene trees. We focus on

genome-sequenced molluscs living in typical vs. extreme heat-

stress environments. The selected molluscs include bivalves and

gastropods species found in subtidal vs. intertidal or hydrothermal

vent habitats (Supplementary Materials). We also emphasize

evolutionary dynamics of the Transient Receptor Potential (TRP)

ion channel superfamily, including the thermo-sensitive TRPM

family (Lamas et al., 2019; Himmel and Cox, 2020; Szollosi, 2021;

Kashio and Tominaga, 2022), which are diverse and expressed

under heat stress in species used here (Zhang et al., 2012; Sun et al.,

2020; Zeng et al., 2020; Fu et al., 2021; Lan et al., 2021; Moreira et al.,
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FIGURE 1 (Continued)
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FIGURE 1 (Continued)

Genomic dark matter, Species16 species, and their proteomes. (A) A schematic highlighting one possible scenario where genomic dark matter arises due to
patterns of gene and species evolution. (B) The phylogenetic tree for species and their habitats highlighting thermal stress. Molluscan classes are indicated in
color blocks with cephalopods dark gray, gastropods medium gray, and bivalves light gray. Independent origins of heat-stress habitats (intertidal or
hydrothermal vent) are indicated in color blocks. Four independent origins of intertidal habitats or upper-intertidal regions include 1) oyster - purple, 2) mussel
- light purple, 3) Mya - light blue, and 4) snail - teal. Two independent origins of hydrothermal vent habitats are 1) Chrysomallon light red and 2) Gigantopelta
light orange. (C) Percentage of genomic dark matter in each species, where genomic dark matter is defined as genes that lacked functional annotation based
on sequence homology to reference species and their functionally assessed genes. Assessments for functional annotations were based on 1) HMM-based
GO-Pfam domain and PANTHER gene family annotations, 2) top hit in reference genomes based on one-direct Blast annotations, and 3) Diamond-based
genome clustering of all Species16 species annotations (see Methods for details). Supplementary material contains BUSCO values for the complete proteins
percentages in respected reference species with sequenced genomes.
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2021; Peng et al., 2021; Chi et al., 2023; Zhang et al., 2023). Our

findings illustrate that approaches leveraging hotspots could enable

predictions of adaptation and resilience in response to

environmental change.
2 Materials and methods

Genome sources and computational methods are provided as

Supplementary Materials. Python-Unix pipelines are provided as

GitHub repository Hotspots_Paper_2024 v0.1.0-alpha.1 (GitHub

Hotspots_Paper_2024 v0.1.0-alpha.1: https://github.com/

000generic/Hotspots_Paper_2024/tree/v0.1.0-alpha.1). The

repository is archived with a permanent DOI at Zenodo

(Zenodo DOI: 10.5281/zenodo.11069191: https://zenodo.org/

records/11069191).
3 Results

3.1 Hotspots highlight innovations
underlying the origins and evolution of
lineage-specific biology

Homology and the origins of novelties are at the core of

evolutionary paradigms. Like others, we define homology as a

state where biological features within or between individuals or

species arise from the same ancestral feature in evolution. Use of the

term ‘genomic dark matter’ has varied, including definitions based

on regions of the genome resistant to assembly vs. regions of the

genome resistant to functional annotation (Wilusz and Sharp, 2013;

Bornberg-Bauer et al., 2015; Chi, 2016; Sedlazeck et al., 2018; Ebbert

et al., 2019; Girardini et al., 2023). In the case of functional

annotation, genomic dark matter was highlighted first and is

commonly used in contexts of unannotated non-coding

sequences, classically known as “junk DNA” and later ‘upgraded’

with recognition that the “junk” sequences included unannotated

regulatory elements, transposons, and non-coding RNAs that are

operational (ENCODE Project Consortium et al., 2007;

Rosenbloom et al., 2010; Derrien et al., 2012; ENCODE Project

Consortium, 2012; Harrow et al., 2012; Yip et al., 2012; ENCODE

Project Consortium et al., 2020; Pang and Snyder, 2020; Sisu et al.,

2020; Fagundes et al., 2022; Horton et al., 2023). Here, we define

genomic dark matter simply as genomic structures resistant to

functional annotation and highlight inclusion of both coding genes

and non-coding regions. We also highlight the use of sequence
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homology approaches across species in performing structural and

functional annotation in this definition, (Figure 1A). Finally, we

introduce the concept of a hotspot and focus on its application in

evolutionary genomics (Figure 1A). The rationale behind these

terms and definitions is provided in Supplementary Materials.

We define a hotspot as the set of innovations underlying the

evolution of lineage-specific biology (Figure 1A). Hotspots can be

composed of structural components within and across hierarchical

levels, from base elements to ecosystems. The term is scaleless. It

can have diverse complex contexts, from molecular (e.g., genomic

hotspots below) to cellular (e.g., neural circuit hotspots) to

organismal (population hotspots; see also Supplementary

Materials 3.2.4) and can include their cross-level integration.

Here we focus on genomic hotspots formed as regions of

chromosomes delineated by spatial clusters of gene paralogs. This

is similar to synteny, in that the identity of genes in genomic

proximity on a chromosome is evaluated, but is distinct, as syntenic

methods are defined by identifying patterns across species while

hotspots are defined internal to the target without outside reference.

Methodologically, genomic hotspots are free of external

requirements of high-quality genome assemblies and annotations

outside a given target species or lineage, in contrast to syntenic

approaches. Thus, although additional reference genomes can be

useful in evaluating hotspots, they are not required in the

identification and initial use of hotspots to guide deciphering of

novelties and adaptions underlying lineage or species-specific

biology and evolution.

To illustrate the ‘hotspot’ approach, we selected 16 genomes with

chromosome-level assemblies. Initial assessments of assembly

completeness were based on BUSCO Metazoa evaluation of

processed proteomes having one representative single longest

sequence per gene, with most species found to be 95% BUSCO

Complete or better, but with exceptions of highly derived

Caenorhabditis (75%), Patella vulgata (89%), Patella pellucida (86%)

and Chrysomallon squamiformis (83%). These results are indicative of

high-quality genome assemblies and structural gene model

annotations (see the summary figure in Supplementary Materials).

Additional details are provided in Supplementary Materials.
3.2 Genomic dark matter is prevalent in
functional biodiversity annotations

We found substantial amounts of genomic dark matter in

species after running commonly used functional annotation

methods, highlighting limitations of these methods. To illustrate
frontiersin.org
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this, we performed three independent types of annotation for the

proteomes, specifically: 1) by blasting against best-annotated

reference genomes of model organisms (human, Drosophila, and

Caenorhabditis) for one-direction top hit annotations, 2) by blast-

based genome clustering for orthogroup annotations, and 3) by

HMM-based identification of gene features for protein domain and

gene family annotations. We then determined what percentage of

genes were annotated or not for each method and across all

methods, with genes going undetected in all three declared

genomic dark matter.

For Blast annotations, unannotated genes ranged from 12-32%

of the genome, with a 23% average (SD 5%) (Figure 1C). The

method was intermediate in its ability to annotate but common e-

value cut-offs of 1e-3 to 1e-10 mean there can be promiscuous

domains and low-level false positives complicating the annotations

in unknown ways.

For orthogroup annotations, we found unannotated genes

ranged from 33-57% of the genome with a 47% average (SD 9)

(Figure 1C). This method is the most powerful for inference of gene

function, as its scope of comparison is restricted to orthogroup

orthologs across species, thereby avoiding most false-positive issues.

However, it is also the most conservative approach, producing

exceedingly high levels of unannotated genes, more than double

the other two methods, and lacking identification of deeper levels of

homology commonly of interest.

For HMM-based domain annotation using Pfam and GO and

HMM-based gene family assessment using PANTHER,

unannotated genes ranged from 9-25% of the genome with a 19%

average (SD 4) (Figure 1C). Although some degree of

misannotation due to false positives is likely, it is thought that the

highly sensitive information-rich aspects of how HMMs are built

can reduce this issue in comparison to Blast and other tools

(Girardini et al., 2023). Thus, the HMM method is the most

effective for functional gene annotation in Species16 biodiversity

genomes but still leaves significant numbers of genes unannotated.

Finally, we find that 7-22% of genes in a genome remained

unannotated across all three methods, forming conservatively

defined genomic dark matter (Figure 1C). These results highlight

the degree to which reference-based methods for the functional

annotation of genomes can fail in biodiversity assessments and

illustrate the extent to which genetic novelty arises in evolution. We

also found that for some species within a genus, their genomes

exhibited quite different degrees of unannotated genomic dark

matter, for example, 7% vs. 14% vs. 22% in the intertidal snails

P.vulgata, P.pellucida, and Patella caerulea, respectively, suggesting

dynamic patterns of gene innovations in recent speciation.
3.3 Genomic hotspots are common
in genomes

We developed a simple stand-alone/reference-free method to

identify genomic hotspots and found they are common in 16

bilaterian genomes, suggesting their identification can enable

targeting of genes underlying species or lineage-specific biology.
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Focusing on molluscs, we blasted each predicted proteome against

itself. We opted for an e-value cutoff of 1e-60 and identified all hits

of a query gene located within a window of 20 genes centered on the

query gene location in a chromosome or scaffold. These initial sets

of genes were then merged based on overlapping membership

between sets to form final genomic hotspot gene sets per genome.

We found that the number of hotspots and their genes ranged

from 483 with 1,982 genes (average 31 genes per hotspot) in the

shallow-water octopus Octopus bimaculoides to almost 8x as many

in the intertidal infaunal clam Mya arenaria, with 3,747 hotspots

and 11,982 genes (average 104 genes per hotspot). For initial test

cases using nineteen species and focusing on hotspot identification

in the sea hare Aplysia californica, small numbers of false positives

arose at an e-value of 1e-40, most likely due to promiscuous

domains or motifs. However, a substantially less restrictive e-

value of 1e-10 was required to recover the Hox gene complex, an

ancient chromosomal gene copy cluster and the most deeply

studied and widely recognized (Wilusz and Sharp, 2013;

Bornberg-Bauer et al., 2015; Chi, 2016; Sedlazeck et al., 2018;

Ebbert et al., 2019; Fagundes et al., 2022). Also, while larger

initial windows of 200 genes, rather than 20, sometimes detected

additional hotspot members, the hits often appeared to be distantly

related or due to a domain shared between unrelated gene families,

greatly increasing false positives. At the same time windows smaller

than 20 genes often lost likely hotspot members. Thus, we

optimized for a window of 20 genes, as it best provided a stable

core number of hotspot true positives, no obvious false positives,

and reduced over-aggregation of distantly related hotspots.
3.4 Genomic hotspots are enriched in the
TRP superfamily and TRPM family

To explore genomic hotspots in the context of gene family

evolution, we focused on the TRP superfamily of ion channels and

TRPM family within it. We identified all TRP superfamily members

for 13 target mollusc species and 3 reference species (Species16). We

identified in each species by reciprocal blast, using as queries a

reference gene set of all human, Drosophila, and Caenorhabditis

TRP proteins and then blasting back all target hit sequences against

the reference proteomes. All target genes having a top hit back to a

TRP family member in at least one reference proteome were accepted

as candidate homologs. While TRP family size is 17, 22, and 32 genes

respectively inDrosophila, Caenorhabditis, and human, it varied from

31 in Octopus to 167 in the upper intertidal musselMytilus trossulus,

with an average of 81 genes per species (SD 35).

Next, we tested if the TRP superfamily is enriched for hotspots

relative to the genome in general for each Species16 species. We

found that while the average background density of genome

hotspots per 100 genes varied from 3 in Octopus, the lowest of all,

up to 10 in Mya, the average TRP hotspot density varied from 4 in

the lower intertidal limpet Patella caerulea to 19 in Mya. Overall,

the TRP superfamily was enriched for hotspots relative to the

genome in nearly all selected species, suggesting that TRPs play

important roles lineage-specific adaptations across molluscs.
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FIGURE 2

Integration of gene trees, orthogroups, and hotspots for the TRP superfamily in Species 16 species. TRP superfamily and TRPM family (A–D). These
evolutionary expansions are visually evident in the gene trees as blocks of species-specific color (A, B). The color blocks are indicative of multiple
paralogous gene copies in a species that arose within its immediate lineage on the Species16 species tree (Figure 1B). For a limited number of subbranches,
we observed formation of many fine resolution rainbows of color, indicative of deeply conserved sequences with little lineage-specific evolution since the
common ancestor (A–C). (A–H) Integration of gene families, hotspots, and/or orthogroups for TRPs or TRPM and either all Species16 species or Mytilus.
(A) Species16 TRP gene tree with blocks of color on the species side indicative of lineage-specific gene family expansions. (B) Species16 integration of
gene families, hotspots, and orthogroups on the TRP gene tree. Annotated orthogroups are orthogroups that include membership of at least one reference
species gene. Genomic dark matter is all sequences not part of an annotated orthogroup. The tree is the same as in (A). (C) A Species16 TRPM gene tree
with blocks of color on the species side indicative of lineage-specific gene family expansions. (D) Species16 TRPM integration of gene families, hotspots,
and orthogroups. The tree is the same as in (C). (E) Integration of gene families, hotspots, and orthogroups on the TRP gene tree for Mytilus, highlighting
individual hotspots in color. (F) Integration of gene families, hotspots, and orthogroups on the TRP gene tree for Mytilus, highlighting general patterns of
hotspots vs orthogroups. The tree is the same as in (E). (G) Integration of gene families, hotspots, and orthogroups on the TRPM gene tree for Mytilus,
highlighting individual hotspots in color. (H) Integration of gene families, hotspots, and orthogroups on the TRPM gene tree for Mytilus, highlighting general
patterns of hotspots vs orthogroups. The tree is the same as in (G). Higher resolution trees can be found in the Supplementary Material.
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3.5 Recent diversification of TRPs
in molluscs

To further explore the role of TRPs in molluscan evolution, we

assessed patterns of TRP superfamily evolution in Species16 species.

Specifically, we constructed phylogenetic trees for the entire TRP

superfamily (Figures 2A, B), and TRPM in particular (Figures 2C,

D). We found that Mytilus exhibited the greatest diversification

with 167 TRP genes (Figures 2E, F), including TRPM (Figures 2G,

H). We find that the majority of TRP gene diversity across species

lies outside reference species subbranches, indicating more recent

lineage-specific expansions. We also find that hotspot sequences

commonly form their own orthogroups, lacking functional

annotation (genomic dark matter). Only rarely do hotspots

belong to orthogroups that can be functionally annotated based

on inclusion of reference genes (Figures 2B, D–H).

Finally, we find that species that have independently evolved to

live in extreme heat stress environments, such as those found in the

intertidal or at hydrothermal vents (Figure 1B), have independently

expanded the thermosensitive TRPM gene family, often extensively

and uniquely so within the TRP superfamily (Figures 2C, D, G, H).

In bivalves, this includes TRPM gene family expansions within each

heat-stress tolerant lineage. In the lineage of oysters, Ostrea is lower

intertidal and exhibits fewer expansions than the Crassostrea species

C. gigas and C. virginica, which are found in the more extreme

upper intertidal. Similarly, the mussel Mytilus and the clam Mya

live in heat stress environments of the upper intertidal and infaunal

intertidal mudflats, respectively, and exhibit a number of extensive

lineage-specific TRPM gene family expansions. In contrast, the

scallop Pecten maximus is closely related to oysters and mussels but

is a subtidal species and has few TRPM genes and no substantial

expansions in TRPM diversity (Figures 2C, D). In gastropods, the

three Patella species are intertidal vs. Aplysia, which is a primarily

shallow-water subtidal species. Although patterns of gene

expansion are less striking, the Patella species have more TRPM

genes than Aplysia and with more small-scale expansions of 1 or 2

genes (Figures 2C, D). The two hydrothermal vent gastropods,

Chrysomallon squamiferum and Gigantopelta aegis, belong to the

same family but they have adapted to the extreme heat stress

independently (Sun et al., 2020; Zeng et al., 2020; Lan et al.,

2021). Their genomes show striking patterns of parallel expansion

in TRPM genes, less so than expansions found in bivalves but much

greater than expansions seen in the other gastropods and Octopus

(Figures 2C, D). Interestingly, the two main expansions in each

species occur on the same branch within the greater TRPM gene

tree (Figures 2C, D).
4 Discussion

The presented discussions of hotspots, homology and genomic

dark matter agree with previous work (Wagner, 1989; Striedter and

Northcutt, 1991; Hall, 1994; Abouheif, 1997; Chi, 2016; Strausfeld

and Hirth, 2016; Ebbert et al., 2019; DiFrisco et al., 2023; Girardini

et al., 2023; Rusin, 2023) but can help frame comparative genome–

scale studies across functional biodiversity.
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First, identification of genomic hotspots provides a reference-free

means to identify candidate genes underlying the origins of lineage-

specific biology, as their localization represents more recent

evolutionary events due to the eventual dispersal of localized genes

in eukaryotic genomes, with some notable exceptions, like Hox genes

(Putnam et al., 2007; Putnam et al., 2008; Simakov et al., 2022; Schultz

et al., 2023; Yu et al., 2024). It is striking that Species16 hotspots are

predominately genomic dark matter and only more rarely associated

with orthogroups and gene tree branches that include reference

sequences of three model organisms used here. Future genome-

scale statistical analyses and modeling could elucidate potential

protection of older gene copies from hotspot formation and/or

preferential utilization of new copies in more recent lineage-specific

biology, perhaps due to associated gene regulatory elements that

might be fully intact in older copies but variable in younger ones.

Second, the observed patterns of TRP family evolution are

similar to previous studies in molluscs, including oysters

(Himmel and Cox, 2020; Fu et al., 2021; Peng et al., 2021; Kashio

and Tominaga, 2022). TRP gene family members form hotspots at

substantially greater levels than observed background levels per

genome. The TRP hotspots are predominately composed of

unannotated genomic dark matter, which highlight the potential

roles of TRP ion channels in lineage-specific biology. The number

of TRP ion channels in bivalves and gastropods, with relatively

simple nervous systems and behaviors, is much greater than that of

humans and Octopus, which have independently evolved large

brains (Moroz, 2009) and sophisticated behaviors suggesting

functional pressures that limit gene diversification in complex

nervous systems and/or lead to molecular expansion in simpler

nervous systems (Moroz and Romanova, 2021; Moroz et al., 2021;

Moroz and Romanova, 2022).

The TRPM gene family is recognized as a primary molecular

sensor of temperature, including their elevated expression in

response to heat stress in oysters and other molluscs (Himmel

and Cox, 2020; Fu et al., 2021; Peng et al., 2021; Kashio and

Tominaga, 2022; Chi et al., 2023; Zhang et al., 2023). Upper

intertidal and hydrothermal vents are both environments

featuring heat extremes, and bivalve and gastropod lineages have

independently entered these environments with greatly expanded

TRPM gene family diversity through lineage-specific hotspots.

Future studies that provide genome-scale evaluations of hotspot

sets as clearly functional, and not degraded or established

pseudogenes, and as having evidence of positive selection, will be

important to support the idea that hotspots function in recently

diverged species and critical for understanding lineage-specific

adaptations. Similarly, at gene family levels, evidence of full-

length transcripts that include signature domains or domain

combinations will strengthen broader inclusion of genomic

regions. It will also clarify that local expansions of genes by

duplication are real and not a result of broken gene models or

unrelated sequences sharing a similar domain in the region.

In summary, identification of the environmental molecular

sensors of direct interest as part of newly emerging mechanistic

work in functional biodiversity, enable new tools and resources to

predict resilience and adaptability of a species facing rapid

environmental change.
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5 Conclusion

Overall, our findings highlight the idea that genomic hotspots

represent relatively recent genetic innovations and that their

unbiased reference-free identification can provide a novel and

potentially powerful means to elucidate genomic mechanisms of

evolution and the origins of genes underlying lineage-specific

biology without any greater knowledge beyond the genome itself.

TRP ion channels are important targets for understanding lineage-

specific adaptations under regimes of environmental change and

predicting outcomes for populations in response to such impacts.
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