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Hydrodynamic performance of a
submersible net cage integrated
with an offshore platform
Zhenglin Tian1, Hui Yang1 and Hongjie Wen2*

1College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, China, 2School
of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China
The integrated development of offshore platform and net cage is a significant

concern in ocean engineering. To optimize cost-effectiveness and maximize the

utilization of limited ocean space resources, a composite structure is proposed,

which integrates a submersible net cage onto the steel pipe piles of offshore

platform. Based on the OpenFOAM software package, a numerical model is

developed to assess the hydrodynamic performance of this composite structure.

In this model, the net cage is simplified as a closed box structure comprising six

planar nets, with each planar net further represented as a porous structure based

on equivalent resistance. The model is validated by comparing the predicted

results with the relevant experimental and numerical data. Subsequently, the

model is employed to comprehensively investigate the hydrodynamic

performance of the submersible net cage integrated with an offshore platform.

Velocity variations inside and outside the net cage are analyzed under various

wave-current conditions. Additionally, the forces exerted on the steel pipe piles

by the net cage at different submerged depths are also examined.
KEYWORDS

offshore platform, submersible net cage, submerged depth, OpenFOAM,
porous structure
1 Introduction

Offshore aquaculture emerges as a crucial solution to the global food scarcity crisis.

Statistical projections anticipate a surge in demand for aquatic food products by thirty

million tons by 2050 (Ferreira et al., 2014). However, escalating population growth and

overfishing have led to the gradual depletion of offshore aquaculture resources. To

optimize the utilization of limited offshore space, engineers and scholars have proposed

installing net cage on offshore platform, such as offshore booster station. While the

potential impact of net cage on ocean platform remains unclear (Wahlberg and

Westerberg, 2005; Dan et al., 2006), recent studies have shown that integrating

offshore aquaculture with ocean platform can reduce aquaculture maintenance costs

by 10% and increase farming income by 44% (He, 2015).
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The traditional floating net cage typically consists of a frame

structure, netting, and anchorage system (Liang et al., 2021).

Maintaining the stability of the net cage under diverse sea

conditions presents a significant challenge. To mitigate the risk of

capsizing in extreme sea conditions, the lifting net cage has been

proposed and successfully implemented in offshore areas. This

design primarily utilizes a ballast water compensation device to

enable the net cage to dive to a specific depth, thus preventing

overturning in extreme sea conditions (Cardia and Lovatelli, 2016).

Huang et al. (2013) have researched anti-overturning technology

for the lifting net cage, while Kim et al. (2011) have analyzed the

influence of submerged depth.

The flow field characteristics and wake pattern behind the net

cage significantly influence water exchange, which determines the

suitability of fish species for aquaculture and the health of enclosed

fish (Gowen, 1990; Beveridge, 2004; Zhao et al., 2011; Kapetsky

et al., 2013; Johansson et al., 2014). Consequently, attention has

been directed towards understanding the flow field characteristics

around the net cage (Lee et al., 2008; DeCew et al., 2010; Patursson

et al., 2010; Zhao et al., 2013; Shi et al., 2021; Xu et al., 2022).

Wu et al. (2007) experimentally demonstrated that currents

predominantly affected the netting system, while waves had a

notable impact on the overall cage structure. The adverse currents

notably affect the wave field, Chen et al. (2024) investigated the

changes of instantaneous field in wave propagation and wave

breaking due to spatial varying opposing currents. Cha et al.

(2013) provided experimental clarity that flow characteristics

particularly depended on the structural shape of copper nets.

Klebert and Su (2020) experimentally highlighted that the

magnitudes and distributions of fluid velocities inside a

commercial salmon sea cage were influenced by the net cage.

The porous model has been widely used in numerical

simulations to study the hydrodynamic characteristics of net cage.

Chen and Christensen (2016) conducted a comparative simulation

of the flow field characteristics between square and circular cages.

Zhao et al. (2013a); Zhao et al. 2013b) utilized a porous model to

simulate flow through the fishing mesh. Additionally, Shim et al.

(2009); Cornejo et al. (2014); Chen and Christensen (2015), and

Kim et al. (2014) used the porous model to simulate the interaction

between waves and net cages. They systematically analyzed the

influence of relevant parameters on the flow field.

The steel pipe pile foundation, crucial for offshore platform, is

suitable for water depths ranging from 20 m to 50 m. This foundation

type offers several advantages, including structural integrity,

significant stiffness, and resilience against wind, waves, and currents

(Hao and Liu, 2017). Consequently, installing net cage on steel pipe

pile represents a bold initiative aimed at maximizing the utilization of

limited offshore space resources. Compared to the traditional net

cage, installing a lifting net cage on the steel pipe pile of an offshore

platform reduces overturning accidents and minimizes deformation,

thanks to the sturdy steel construction of both the steel pipe pile and

the net cage. However, there is a lack of relevant research findings and

practical applications. The hydrodynamic performance of a

submersible net cage integrated with an offshore platform largely

depends on the parameters of the steel pipe pile, the net cage, and its

lifting height, requiring further systematic investigation.
Frontiers in Marine Science 02
This study proposes an integrated structure that combines an

offshore foundation with a net cage. As shown in Figure 1, the

integrated structure includes the steel pipe pile, the net cage, the four-

pile cap, and the ballast water compensation device. The steel pipe

piles facilitate the transfer of the superstructure load to the subsea

foundation. The net cage provides a suitable living space and

environment for fish, preventing escape and protecting against

external threats. Figure 2 illustrates the detailed structure of the net

cage. The foundation platform serves as operational space for staff

living quarters, net cage handling, and fish feeding activities. The

ballast water compensation device ensures a balanced lifting motion

for the net cage. The lifting net cage connects to the steel pipe pile

foundation via a sleeve piece, enabling stable lifting facilitated by the

lifting device and ballast water compensation device.

The paper is structured as follows: after the introduction, the

numerical model is outlined, including the governing equations and

the primary boundary conditions. Section 3 validates the developed

model using experimental data on wave and current interaction
FIGURE 1

Integrated structure of the offshore foundation and the net cage.
FIGURE 2

Sketch of the lifting net cage.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1436992
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tian et al. 10.3389/fmars.2024.1436992
with a single net cage. Section 4 presents the results of combined

wave-current interaction with a lifting net cage integrated into an

offshore platform. Finally, the main conclusions are drawn.
2 Numerical model

The net cage can be analyzed at microscopic or macroscopic

scales. The microscopic scale method considers the net cage as a

flexible structure, offering a comprehensive analysis of its geometric

attributes. Consequently, the computational demands associated

with the microscopic method are significant. In contrast, the

macroscopic scale approach treats the net cage as a permeable

structure, utilizing a porous model to simulate its drag resistance to

water flow. By eliminating the necessity for precise computation of

individual net structure deformations, this method substantially

alleviates the computational load in numerical simulations,

establishing itself as the predominant approach for simulating the

interaction between wave-current and net cage. In this study, we

introduce the macroscopic method by disregarding the deformation

of the net cage.

Fluid flow through porous media is governed by the volume-

averaged Reynolds-averaged Navier-Stokes equations (VARANS).

According to Jensen et al. (2014), the VARANS equations can be

written as Equations 1, 2

∂

∂ xi

ui
n
= 0 (1)

(1 + c)
∂

∂ t
rui
n

+
uj
n

∂

∂ xj

rui
n

= −
∂

∂ xi
p + rgi +

∂

∂ xj
meff

∂

∂ xi

ui
n

� �
+ Ri (2)

where u represents the averaged velocity; n denotes the equivalent

porosity of the net cage; p represents the total fluid pressure; r is the

fluid density; t is time; g is gravity acceleration; meff = r(υ + υturb)

represents the efficient dynamic viscosity; υ and υturb are the

kinematic and turbulence viscosity, respectively. The turbulence

viscosity is determined by the k- e model. c = gp(1 − n)=n is the

added mass coefficient, accounting for the inertial effect due to the
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presence of the net cage. gp is a dimensionless empirical coefficient,

set as 0.34 throughout this study based on recommendations and

previous experience (Van Gent, 1995).

The drag resistance force Ri is typically described by Darcy-

Forchheimer equation as Equation 3:

Ri = −mCijui −
1
2
rDij │ u│ ui (3)

where Cij and Dij present the linear and nonlinear drag resistance

coefficient matrices, respectively. The significance of these two

terms depends on the pore Reynolds number, which is defined as

Re = ud
nυ= and d is the twine diameter of the fishing nets. Previous

studies have indicated that the pore Reynolds number generally

ranges from 100 to 1000 for flow through a net cage. In this

predominantly turbulent flow regime, the linear term is negligible

compared to the dominant nonlinear term. Therefore, Cij is set as 0

in the present study, and the drag resistance force is solely

calculated based on the nonlinear term. Following Chen and

Christensen (2016), the nonlinear coefficient matrix Dij is written

as Equation 4:
FIGURE 3

Numerical setup of current interaction with a net cage.
FIGURE 4

Horizontal velocity distribution along a vertical section located
0.15 m downstream from the net cage.
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D1 =
1
V k1Cd(S1 + S2)

D2 =
1
V k2CdS2

D3 =
1
V k2CdS1

(4)

where S1 =oN
j=1A1,j and S2 =oM

j=1A2,j represent the total projected

areas for the in-plane and out-of-plane twines, respectively. N and

M denote the number of the in-plane and out-of-plane twines. Cd is

the drag force coefficient of the net twines, which depends on the

physical parameters of the net, incoming velocity, attack angles,

Reynolds number, and other factors. The introduced k1 and k2 in

the expressions for the normal and tangential quadratic drag

resistance coefficients are used to mitigate the side effects of

neglecting the interaction between the fishing twines in the

Morison-type force model. The values of k1 and k2 are

determined by Equations 5, 6:

k1 =

2:3484Sn + 1     0 < Sn ≤ 0:13

1:3128Sn + 1:1346     0:13 < Sn ≤ 0:243

5:3094Sn + 0:1634     0:243 < Sn ≤ 0:317

8>><
>>:

(5)
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k2 =

0:9241   0 < Sn ≤ 0:13

−0:6310Sn + 1:0061   0:13 < Sn ≤ 0:243

8:7581Sn − 1:2754   0:243 < Sn ≤ 0:317

8>><
>>:

(6)

where Sn represents the solidity ratio of the net cage, defined as

complement of porosity.

The volume of fluid approach is employed to capture the free

water surface. The local water volume fraction a is obtained by

solving the following advection equation:

∂a
∂ t

+
∂

∂ xi

ui
n
a +

∂

∂ xi

uC
n

(1 − a) = 0 (7)

The final term on the left-hand side of Equation 7 acts as an

artificial compression term to inhibit excessive diffusion of the

interface, where uC represents the compression velocity. The above

equations are discretized by the finite volume method implemented

on the OpenFOAM platform.

Since the geometry of the net cage is unresolved, obtaining the

instantaneous force on the net cage by integrating the pressure

over the fishing twine is not feasible. Based on the linear

momentum conservation in a control volume that enclose a

porous structure, the force acting on the fluid from the porous

structure is equal to the momentum loss in the control volume.

Therefore, following Patursson (2008), the expression for the

instantaneous force anting on the net cage can be written as

Equation 8:

Fi = −
∂

∂ t

Z
CV

ruidV
� �

−

Z
CS
ruiujnjdS −

Z
CS
pnidS

+
Z
CS
tijnjdS +

Z
CV

rgidV (8)

where tij is the viscous stress tensor, CV is the control volume and

CS is the control surface.
TABLE 1 Parameters of the net cage used in Lader et al. (2007a, b) physical test.

Mesh bar
length/mm

Twine diameter/
mm

Sn S1/m
2 S2/m

2 k1 k2

21 3.6 0.288 0.0738 0.0756 1.69 1.25
FIGURE 5

Sketch of the computational domain for wave interaction with a net cage panel (Unit: m).
FIGURE 6

Comparison of the time series of wave force acting on the net
cage panel.
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3 Model verification

3.1 Current interaction with a net cage

In this section, the performance of the numerical model is

verified by comparing with Bi et al.’s (2013) experimental results

for current interaction with a rectangular net cage. As displayed in

Figure 3, the dimensions of the numerical basin are 1.2 m×0.45

m×0.8 m (Length×Width×Height). The left and right boundaries are

set as the inflow and outflow boundary conditions. The front and rear

as well as the bottom boundaries are set as the wall boundary

conditions. Following the experimental setup, the net cage

dimensions are 0.3 m×0.3 m×0.05 m (Length×Width×Thickness),

positioned 0.3 m from the end of the numerical flume, as displayed in

Figure 3. The plane net is oriented perpendicular to the bottom and

the side wall of the flume, and it aligns with the incoming flow

direction. The water depth D is 0.4 m and the incoming flow velocity

is 0.17 m/s. The net cage is modeled as a porous media, with the

porosity and the average grain diameter set to 0.32 and 0.016 m,

respectively. Following Zhu et al.’s (2021), the drag force coefficient of

the net twines is set as Cd=1.54. The computational domain is

discretized using the structured hexahedral mesh with a

dimensions of Dx=0.02 m in x-direction, Dy=0.02 m in y-direction

and Dz=D/(20~40) in z-direction. The mesh is refined near the free

water surface and the net cage to capture the flow characteristics. It is

worth mentioning that prior to the formal numerical simulations, all
Frontiers in Marine Science 05
cases discussed in this paper underwent grid convergence verification.

The grid sizes provided here reflect a careful balance between

computational accuracy and efficiency.

Figure 4 shows the horizontal velocity distribution along a

vertical section located 0.15 m downstream from the net cage.

Additionally, Zhu et al.’s (2021) numerical results are provided for

further validation of the numerical model. As shown in Figure 4, the

velocity noticeably decreases in the downstream area due to the

drag effect of the net cage, while there is an obvious increase below

the net cage models. The numerical results are in good agreements

with the experimental data of Bi et al. (2013) and the numerical

results of Zhu et al. (2021), with the velocity relative errors of less

than 10%, indicating that the numerical model can effectively

simulate the interaction between the flow and the net cage. It is

worth noting that there is an obvious deviation between the
B

A

FIGURE 7

Location of the net cage and distribution of testing points.
TABLE 2 Wave and current parameters in numerical simulation.

Case 1 Case 2

Wave height H (m) 0.08 0.36

Wave period T (s) 0.9 2.1

Average velocity U (m/s) 0.216 0.364

Water depth D (m) 1.6 1.6
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numerical results and the experimental data at z=-300 mm. The

deviation is presumed to result by the discrepancies of the

numerical and physical models. In Bi et al.’s (2013) test, a round

steel frame structure with a diameter of 6 mm is installed at z=-300

mm to fixed the net cage, and the additional resistance caused by the

steel frame results in a more pronounced velocity attenuation.

However, the numerical model does not include the steel frame.
Frontiers in Marine Science 06
3.2 Wave force acting on a net cage

This section further examines the performance of the numerical

model in predicting wave loads acting on a net cage panel by

comparing it with Lader et al. (2007a, b) experimental data. Table 1

gives the principal parameters of the net cage tested in the physical

model. Following the experiment setup, a 2D wave flume is developed
B

C

D

A

FIGURE 8

(A-D) Flow field characteristics throughout a wave cycle under operational conditions.
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and shown in Figure 5. The dimensions of the numerical flume are 7.2

m×1.0 m (Length×Height). The bottom boundary is set as the wall

boundary condition. The left and right boundaries are set as the wave

generation and absorption boundary conditions following Pablo et al.

(2013). The computational domain is discretized using the rectangular

mesh with a dimensions of Dx=L/60 in x-direction and Dy=H/40 in y-

direction. In the numerical model, the net cage panel is represented by

a sheet of porous media with a thickness of 50 mm and a height of

1.0 m. The drag force coefficient of the net twines is set asCd=1.56. The

still water depth is set to 0.62 m, the regular wave period is T=0.7 s, the

wave height is H=0.084 m. Figure 6 shows the comparison of the time

series of wave force acting on the net cage panel between the present

numerical results and Lader et al. (2007a, b) experimental data. As can

be seen in Figure 6, the numerical results have a good agreement with

the corresponding experimental data, which indicates the present

model can accurately predict the wave loads acting on a net cage panel.
4 Hydrodynamic performance of the
net cage integrated with an
offshore platform

4.1 Setup of numerical model

The offshore foundation is represented by four steel pipes with a

diameter of 2.0 m, spaced 15.0 m apart. The net cage dimensions are
Frontiers in Marine Science 07
15m × 15m × 12m (Length × Width × Height). In the numerical

simulation, a scale of 1/25 is used, resulting in the net cage dimensions

of 0.6m × 0.6m × 0.48m (Length × Width × Height). The diameter of

the steel pipe pile is reduced to 0.08 m. Additionally, the mean nominal

diameter of the material and the porosity of the porous model are set to

0.016 m and 0.32, respectively.

As indicated in Table 2, this study examines two wave

conditions. Case 1 represents the annual operational condition,

while Case 2 depicts the extreme condition occurring once every 50

years. The average velocity in the depth direction is 0.216 m/s for

Case 1 and 0.364 m/s for Case 2, with a water depth (D) of 1.6m.

The net cage is simplified as a three-dimensional enclosed space

composed of six plane nets. Figure 7 depicts the location of the net cage

and the distribution of testing points for each operating condition. In

the numerical calculations, the horizontal position of the net cage

remains constant, considering only vertical movement. This approach

enables the examination of how changes in the submerged depth of the

net cage affect the variation patterns of flow field characteristics.
4.2 Numerical results and analysis

4.2.1 Flow field characteristics under the
operational condition (case 1)

Figure 8 illustrates the flow field characteristics throughout a

wave cycle under operational conditions. The water depth (D) is
FIGURE 9

Velocity variation curve of the measuring points under operational condition when d=0.0 m.
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1.6 m, with a wave period (T) of 0.9 s, a wave height (H) of 0.08 m,

an average flow velocity along the depth direction of 0.216 m/s, and

a submerged depth (d) of 0.0 m. As depicted in Figure 8, the net

cage exhibits a resistance to flow during the interaction between

waves-currents and the structure, leading to a reduction of velocity

inside the net cage. Downstream from the net cage, there is a

noticeable decrease in flow velocity, accompanied by the formation

of vortices on the downstream side. The flow velocity beneath the

net cage increase due to the obstruction caused by net cage. This
Frontiers in Marine Science 08
phenomenon is consistent with the results of Bi et al.’s physical

model experiment, where the flow velocity beneath the net cage

increased under the influence of currents.

Figure 9 displays the velocity variation curves of nine

measurement points labeled 4a-4c#, 5a-5c#, and 6a-6c#. From

Figure 9, it is evident that the flow velocity gradually decreases as

the testing points move farther from the leading edge of the net cage

(points 4, 5, and 6). Moreover, the flow velocity decreases with

increasing submerged depth (points a, b, and c). Notably, the flow
B

C

D

E

A

FIGURE 10

(A-E) Flow field characteristics when the wave crest reaches the top of the net cage under extreme conditions.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1436992
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tian et al. 10.3389/fmars.2024.1436992
FIGURE 11

Time history variations of flow velocity for measuring points in front of the net cage.
FIGURE 12

Time history variations of flow velocity for measuring points inside the net cage.
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FIGURE 13

Time history variations of flow velocity for measuring points at the rear of the net cage.
FIGURE 14

Velocity fluctuation inside the net cage under varying submerged depths.
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velocity near the water surface inside the net cage exceeds that of the

middle and lower parts, while the velocity is lowest at the bottom

and back half of the net cage.

4.2.2 Flow field characteristics under the extreme
condition (case 2)

Figure 10 illustrates the flow field characteristics when the wave

crest reaches the top of the net cage under extreme conditions. The

water depth (D) is 1.6 m, with a wave period (T) of 2.1 s and a wave

height (H) of 0.36 m. The average flow velocity along the depth

direction (U) is 0.364 m/s, and the submerged depths are d=0.0 m,

d=0.2 m, d=0.4 m, d=0.6 m, and d=0.8 m. From Figure 10, it is

evident that the net cage exhibits a damping effect on fluid velocity

under the combined action of waves and currents, resulting in a

reduction of the flow velocity inside the net cage. However, as a

result of this damping effect, the fluid velocity under the net cage

experiences a slight increase.

Figures 11–13 depict the time history variations of flow

velocity for 27 measuring points under the combined action of

waves and currents. Points (1a-1c#, 2a-2c#, 3a-3c#) are situated

in front of the net cage, points (4a-4c#, 5a-5c#, 6a-6c#) are

inside the net cage, and points (7a-7c#, 8a-8c#, 9a-9c#) are

located at the rear of the net cage. Submerged depths of d=0.0

m, 0.2 m, 0.4 m, 0.6 m, and 0.8 m are examined. From Figure 11,

it is evident that the flow velocity in front of the net cage

decreases to some extent, the velocity curve experiences

disturbance, and the velocity at the upper measuring point

exhibits a secondary peak change. As depicted in Figure 12, at
Frontiers in Marine Science 11
a submerged depth of d=0.0 m, the velocity fluctuation at each

measuring point within the net cage is the most pronounced.

Notably, the velocity peaks at the vertical midpoint of the net

cage, with the greatest velocity variation observed in the first

half of the net cage, while the velocity in the second half remains

relatively stable. Conversely, at a submerged depth of d=0.8 m,

the velocity fluctuation at each measuring point inside the net

cage is minimal, and velocity changes across the structure are

modest. Analysis of the velocity time history at each measuring

point under various submerged depths reveals that velocity

duration curves align most closely when the submerged depth

is 0.4m, 0.6m, and 0.8m, indicating a consistent flow field

distribution within the net cage. Figure 13 illustrates that the

flow velocity diminishes to some extent behind the net cage,

attributed to the flow-blocking effect of the structure. While the

submerged depth of the net cage influences the velocity

consistency at deep-water measuring points, those closer to

the water surface exhibit significant nonlinearity, each

demonstrating distinct characteristics.

In order to quantify the velocity fluctuation inside the net cage,

a quantitative index DV is introduced to assess the flow field’s

fluctuation within the net cage. It is defined as Equation 9:

DV =
VMax − VMaxCenter

VMax
� 100% (9)

Here, VMax represents the maximum velocity of the front and

backmeasuring points inside the net cage, whileVMaxCenter denotes the

maximum velocity of the measuring point in the center of the net
FIGURE 15

Time series of forces at the support location between the net cage and steel pipe piles under extreme conditions.
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cage. Figure 14 displays the velocity fluctuation inside the net cage

under varying submerged depths. From Figure 14, it is evident that the

relative velocity of each measuring point inside the net cage reaches its

minimum value when the submerged depth is d=0.4 m, indicating a

relatively uniform flow field distribution within the net cage.

During normal aquaculture cage operations, it is recommended

to position the net cage near the water surface. However, during

extreme conditions, adjusting the net cage’s depth becomes necessary

to maintain the internal flow field characteristics similar to those

under regular operating conditions, ensuring structural safety and an

optimal fish habitat. Nevertheless, the submerged depth must also

account for bottom contact and economic factors. Analysis of the

calculation results reveals that successive reductions in the net cage’s

submerged depth from 0m to 0.8m, under extreme working

conditions, result in increasingly stable changes in the flow field

inside the net cage. Notably, the velocity time series of measuring

points are most closely aligned at submerged depths of 0.4m, 0.6m,

and 0.8m. These findings indicate minimal influence on the flow field

within the net cage within the range of 0.4m to 0.8m of submerged

depth, resulting in overall stability. Specifically, the relative velocity

between the front, middle, and back of the flow within the net cage

reaches its minimum value at d=0.4m.

Figure 15 displays the time series of forces at the support

location between the net cage and steel pipe piles under extreme

conditions. Piles 1a and 1b denote the front piles, while Piles 2a and

2b denote the rear piles. As illustrated in Figure 15, the force exerted

on the front pile of the net cage consistently exceeds that on the rear

pile, with greater force exerted on the lower part of the pile

compared to the upper part. Moreover, as the submerged depth

of the net cage decreases, the force on the pile escalates, indicating a

progressively significant contribution of the current to the force

acting on the net cage.
5 Conclusions

An integrated structure comprising an offshore steel pipe pile

foundation and a submersible net cage is proposed in this study.

The hydrodynamic performance of this composite structure

under the combined action of waves and currents is evaluated

using a three-dimensional numerical model implemented on the

OpenFOAM platform. The research results indicate that the

optimal submerged depth of the net cage, considering flow

field stability, ranges from 1/4 to 1/2 of the water depth under

extreme conditions. Within this range, the flow field distribution

inside the net cage becomes more uniform, and the velocity

variation remains relatively stable. Furthermore, the force

exerted on the steel pipe piles decreases with the net cage’s

submerged depth, with the maximum force occurring on the

windward side steel pipe pile. These findings provide valuable

insights for the design of net cages installed on steel pipe

pile foundations.

The current study aims to numerically investigate the

hydrodynamic characteristics of a lifting net cage installed on

steel pipe piles. In our model, the net cage is represented by a

porous structure. Consequently, the model does not account for the
Frontiers in Marine Science 12
flexible deformation or the solidity ratio variations of the net cage.

These limitations will be addressed in future research.
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