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Synthesis and characterization
of Turbinaria ornata mediated
Zn/ZnO green nanoparticles
as potential antioxidant and
anti-diabetic agent of
enhanced activity
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and Mostafa R. Abukhadra1,6*
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Turbinaria ornata marine macro-algae (TUN) have been applied as carriers for the

metallic zinc/ZnO blended nanoparticles, which were synthesized by

implementing the extracted phytochemicals of the algae. The resulting hybrid

bio-composite (Zn@ZnO/TUN) was characterized as a potential product of

promising antioxidant and antidiabetic characteristics in synergetic studies. The

obtained composite demonstrate t6he existing or complex biological active

groups related to zinc (Zn-O stretching and tetrahedral Zn coordination) and

organic groups (amino, methyl, carboxylic, alkynes, P=O, C–C–O, C=N, and N–O)

corresponding to the extracted phytochemicals of algae (polysaccharides,

phospholipids, lipids, fucose, and phosphodiester). The assessment of Zn@ZnO/

TUN hybrid as an anti-oxidant agent validated excellent effectiveness towards the

commonly examined radicals (DPPH (88.2 ± 1.44%), nitric oxide (92.7 ± 1.71%),

ABTS (90.5 ± 1.8%), and O2
●− (30.6 ± 1.32%), considering the determined

performance for the commercially used standard (ascorbic acid). Regarding the

antidiabetic properties, the incorporation of Zn@ZnO/TUN inhibits the function

and activities of the key oxidizing enzymes, either the commercial forms (a-
amylase (88.7 ± 1.3%), a-glucosidase (98.4 ± 1.3%), and amyloglucosidase (97.3 ±

1.4%) or the crude intestinal active forms (a-amylase (66.2 ± 1.4%) and a-
glucosidase (95.1 ± 1.5%). This inhibitory effectiveness of Zn@ZnO/TUN is

significantly better than the measured performances using commercialized

miglitol drugs and slightly better than acarbose. Considering the expense and

adverse effects of conventional medications, the synthesized Zn@ZnO/TUN blend

could be evaluated as a marketable antidiabetic and antioxidant medication. The

findings also demonstrate the influence of the derived phytochemicals from
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Turbinaria ornata and the incorporation of its algae residuals as carriers for the

metal nanoparticles on the biological function of the composite. The cytotoxicity

investigation reflected safety effect of the composite on colorectal fibroblast cells

(CCD-18Co) (96.3% cell viability) and inhibition effect on cancerous colorectal cells

(HCT-116) (47.3% cell viability).
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1 Introduction

The sudden rise in diabetes prevalence, as reported globally in

later periods, is one of the most important and urgent health

concerns. Through 2030, the number of cases might exceed

approximately 366 million, establishing it as the seventh leading

cause of fatalities in the modern world (Arvanag et al., 2019; Behl

et al., 2021; Billacura et al., 2022). Diabetes is a clinical illness

affecting the pancreas and is categorized into two main types: (A)

type-1 (T1-DM) and (B) type-2 (T2-DM), the latter being the most

prevalent kind and is expected to comprise 90% of those diagnosed

with diabetes around 2030 (Hsu et al., 2020; Behl et al., 2021). T2-

DM is a severe metabolic condition characterized by an excessive

production of reactive oxygen species (ROS) or oxidative radicals at

excessive levels, as well as a rise in blood sugar levels after eating

(post-prandial hyperglycemia) (Robkhob et al., 2020; Sagandira

et al., 2021). Post-prandial hyperglycemia has emerged as the

main risk factor for various clinical issues, including renal failure,

cardiomyopathy, excessive hunger, death, excessive thirst, glucose

in the urine, eye disease, and nerve damage (Hajra and Paul, 2018;

Feldman et al., 2019; Dedvisitsakul and Watla-Iad, 2022). However,

the production of reactive oxygen species (ROS) has crucial

pathophysiological negative effects. Oxidative stress is associated

with a clear decline in antioxidant activity, insulin intolerance,

adverse effects on lipid peroxidation, and strong destruction of cell

organelles and blood vessels (Asmat et al., 2016; Feldman et al.,

2019; Robkhob et al., 2020; Kim et al., 2022).

The most frequently utilized commercially available and

efficacious antidiabetic medications that have displayed significant

reduction and control impacts on the concentrations of ROS along

with post-prandial hyperglycemia include biguanides, acarbose,

miglitol, a thiazolidinedione, sulfonylureas, and voglibose

(Feldman et al., 2019; Robkhob et al., 2020). Regrettably, along

with their high prices, the majority of the aforementioned

medications have been associated with a number of health issues,

including diarrhea, meteorism, abdominal distention, severe

hypoglycemia, and hepatotoxicity (Yilmazer-Musa et al., 2012;

Robkhob et al., 2020). As a result, in subsequent years, a variety

of novel multifunctional materials containing a variety of

biologically active chemical constituents have been established as
02
probable strengthened antioxidant and diabetic medications. These

compounds can also be used successfully as oxidative enzyme-

inhibiting and scavenging agents (Robkhob et al., 2020; Malik et al.,

2022). Among the evaluated chemically produced structures, CuO,

ZnO, and NiO are examples of biologically active metal oxides that

have demonstrated strong antidiabetic and antioxidant activities.

Their distinct physicochemical characteristics (the exterior

responsiveness along with surface area), inexpensive production

costs, exceptional biological activities, notable biocompatibility, and

elevated theranostic and therapeutic potential have been

highlighted as reasons for their medical values (Singh et al., 2021;

Malik et al., 2022; Velsankar et al., 2022).

The chemically produced nanoparticles of zinc oxide, along

with their blended forms, have been widely used as biologically

active compounds owing to their excellent anti-oxidant,

biocompatibility, anti-diabetic, non-toxicity, and antitumor

activities (Noohpisheh et al., 2020; Ansari et al., 2022; Velsankar

et al., 2022). Zinc has been recognized as a chemical element that is

essential to the functioning of the human body, particularly during

the production of protein and nucleic acid (Singh et al., 2021;

Ansari et al., 2022). The fabricated zinc oxides and their derivatives

are widely utilized in various pharmaceutical, healthcare, and

biological sectors. They serve as antioxidants, antimicrobial

agents, chemotherapy drugs, and hypoglycemic agents.

Furthermore, they are valuable components during the

administration of drugs as carriers and in the tissue engineering

sector (Singh et al., 2021; Sharma et al., 2022). The latest studies

demonstrated that ZnO nanoparticles serve as beneficial

antioxidants that can assist in controlling mitochondrial

respiration and exhibit remarkable impacts on diminishing and

hindering the activities of the oxidative enzymes and the generated

ROS (Robkhob et al., 2020; Malik et al., 2022).

The aggregation tendencies of the fabricated ZnO nanoparticles

triggered by van der Waals forces, along with their established

superficial characteristics and fast recombination rates, have

negative impacts on the production effectiveness of the free

radicals and, consequently, the photocatalytic and biological

performances (Saad et al., 2020; Malik et al., 2022). Furthermore,

a number of investigations confirm that the fabrication method,

manufacturing conditions, crystallite dimension, and geometry of
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ZnO all have a major impact on the material’s biological and

medicinal properties (Yusof et al., 2019; Singh et al., 2021;

Velsankar et al., 2022). Researchers have successfully specified

various physical and chemical approaches to enhance the

biological activity, genotoxicity, biocompatibility, antioxidant, and

antibacterial qualities of ZnO. These methods include surface

modifications and hybridization (Singh et al., 2021; Ansari et al.,

2022; Shaaban et al., 2022). The modification approaches frequently

used include (1) doping chemical-based ZnO with different

transitional metal ions; (2) inserting ZnO across a suitable carrier

or base; (3) combining fabricated ZnO with biodegradable

biopolymers to produce composite materials; and (4) synthesizing

chemical-based complexes involving ZnO and certain biologically

active phytochemicals (Naureen et al., 2021; Ansari et al., 2022;

Malik et al., 2022; Meer et al., 2022).

The interaction between zinc-based frameworks and

phytochemical molecules, whether through the development of

complexes or fabrication using plant or bioresource-mediated

techniques, prompts their biological compatibility, antioxidant

activities, and genotoxicity (Abdel Salam et al., 2022; Ansari et al.,

2022; Meer et al., 2022; Prasad and Lall, 2022). As a result, the

environmentally friendly production of zinc oxide employing

bioresource botanical extracts composed of widely recognized

phytochemicals as antioxidants, including sea algae, would have

important beneficial diabetic effects. Green chemical synthesis

approaches have attracted widespread attention over the past few

decades due to their environmentally friendly, economically viable,

effortless, harmless, bio-safe, and highly yielding nature for

synthesizing non-agglomerated nanomaterials (Abukhadra et al.,

2022; Velsankar et al., 2022). Furthermore, the particulates that

develop frequently possess a layer consisting of vital phytochemicals

that include alkaloids, proteins, phenolic molecules, amino acids,

etc (Velsankar et al., 2022).

Additionally, earlier studies have shown that using inorganic and/

or organic materials as base structures along with commonmacro- and

micro-marine algae has a big positive effect on ZnO’s chemical,

physical, biological, and catalytic properties (Rabie et al., 2020;

Saad et al., 2020). Recent studies have evaluated the biomass of algal

species as a potential alternative bioresource, offering nutritional

and medicinal advantages, facile cultivation, significant yields, and

financial feasibility (El Shafay et al., 2016; Atugoda et al., 2021;

Ahmed et al., 2022). They were frequently employed as an excellent

supplier of a variety of essential biologically functioning chemicals that

demonstrate remarkable antibiotic, anti-inflammatory, antifungal,

antibacterial, antioxidant, and anti-tumor qualities (Khairy and El-

Sheikh, 2015; El Shafay et al., 2016; Alreshidi et al., 2023). Turbinaria

algae, a brown marine seaweed, is extensively found in tropical as well

as subtropical areas, particularly the western Pacific, Indian Ocean, and

Red Sea of Egypt, throughout various seasons (Bharath et al., 2021;

Hasan et al., 2022; Pamungkas et al., 2024). Turbinaria possesses a

variety of organic constituents, including terpenes, tannins,

fucoxanthin, phenols, flavonoids, saponins, proteins, fucosterols, and

sulfate carbohydrates. These chemicals display a wide range of practical

applications, such as anticancer, antibacterial, antidiabetic, anti-

ulcerative, antioxidant, and anti-inflammatory agents, in addition to

their values in inhibiting cholesterol absorption (Maggio et al., 2022;
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Rosa et al., 2022; Elshikh and Al Farraj, 2024). The recent research on

seaweed and its bioactive ingredients provides valuable insights into the

development of potent anti-diabetic medications. Algae flourish in

intricate ecosystems that provide quick adaptability to a variety of

severe environmental factors, including temperature, salinity, nutrition,

and ultraviolet (UV) fluctuations. As a consequence, algae develop a

variety of biologically active compounds alongside secondary metabolic

products exhibiting various biological functions to enable them to

adapt to such conditions (De Morais et al., 2015; Hakim and

Patel, 2020; Nguyen et al., 2024). The antioxidant properties of

biologically active chemicals that occur naturally within the structure

of these algae attracted the curiosity of scientists owing to the health

care sector’s interest in developing innovative chemicals possessing

medicinal properties that can combat or mitigate diseases associated

with oxidative stresses, including diabetes, atherosclerosis,

cardiovascular problems, chronic inflammation, and malignancies

(Lauritano et al., 2016; Mellouk et al., 2017; Ali et al., 2024).

As a result, using the Turbinaria framework as a support for

green-developed ZnO and using phytochemicals extracted from

algae as reducing or oxidizing agents could lead to new

multifunctional hybrids with much better biological and

pharmaceutical properties. There have been insufficient studies

conducted to adequately address the biological significance and

potential of employing green synthesized metallic zinc in blended

form with ZnO nanoparticles and their chemical complexes with

the extracted vital phytochemicals from coastal brown macro-algae

(Turbinaria ornata) or hybrids with algae structure as substrate

(Zn@ZnO/TUN). Consequently, this study tackles the biological

activities of green-produced metallic zinc (Zn) for the first time,

employing an extract from Turbinaria algae and its hybrid with the

algae’s structure as potent antidiabetic and antioxidant agents. This

includes investigating the scavenging efficiency of commonly

encountered oxidizing radicals using synthetically produced

structures in synergetic manners, as well as their inhibitory

impacts on the key enzymes.
2 Experimental work

2.1 Materials and chemicals

Zinc nitrate hexahydrate (Zn (NO3)2. 6H2O), which comes

from Sigma Aldrich in Egypt and has a grade of 98%, is used as a

chemical source in the production of green metallic zinc. We

collected the brown marine macroalgae (Turbinaria ornata)

(TUN) from the western coastal region extending from Quseir

and Marsa-Alam in Egypt. These algae have been employed as a

feedstock for the production of green solutions with reducing and

oxidizing characteristics for effective production of health- and

environmentally friendly metallic zinc, as well as a support for

the produced zinc and ZnO nanoparticles. During the anti-

oxidation and anti-diabetic tests, L-ascorbic acid, a-amylase,

starch, 2,2`-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid

(ABTS), para-nitrophenyla-glucopyranoside (pNPG), a-
glucosidase, and saline phosphate buffers were the most
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important biological and chemical substances used (Sigma-

Aldrich; Egypt).

2.2 Preparation of algal samples
for extraction

After the collection process was finished along the coastline, the

samples were transported to the laboratory. Algal species were

identified according to (Botes, 2003) and (Guiry and Guiry,

2015). They underwent a thorough washing with seawater to

eliminate sand and any other material that might have been

attached to them. Then, they have been rinsed repeatedly with

distilled water to get rid of any epiphytes or salts. Next, the algae had

been dried in the shade either mechanically or using an electrical

mixer until they turned into powder. The next step involved

an additional drying stage at 50 °C for approximately 24 hours,

which confirmed the successful and effective dehydration of the

biological structure of TUN algae. Subsequently, the dehydrated

had been extensively pulverized for an additional cycle into tiny

particles using a standard household hand blender before being

passed through a ball mill (Planetary Ball Mill PM 400) to get

micro-fractions with particle sizes ranging from 50 to 190 μm. The

resulting powder had been kept in a dark room and later subjected

to various extraction, synthesis, and characterization techniques.
2.3 Synthesis of green Zn@ZnO/
TUN composite

2.3.1 Extraction of the phytochemicals form
TUN algae

Prior to the synthesis procedures, the green extract solutions were

derived from the algae structure as essential reducing and capping

reagents during the production of the Zn nanoparticles in complexes

with the TUN -based vital phytochemicals (Abukhadra et al., 2022).

The obtained TUN micro-fractions (10 g) were first dispersed inside

100mL of distilled water and stirred continuously at 700 rpm for 48 h

in the presence of an ultrasonic generator (240 W) at a maintained

temperature of 75 °C. The system was supplemented with 20 mL of

methanol to enhance the liberation of the main phytochemicals,

maintaining the mixing conditions for an additional 10 h. After that,

the extracted phytochemicals as soluble chemicals in solution were

isolated from the solid residual biomass of the TUN algae by filtration

using Whitman filter paper. The methanolic extracts underwent

initially phytochemical screening using Trease and Evans (1989)

and Harborne (1973) reported techniques and the measured results

were presented in Table 1.

2.3.2 Supporting of Zn@ZnO into TUN substrate
The remaining biomasses after the extraction stage as residuals or

byproducts were washed extensively repeatedly for 5 cycles using

distilled water, and each cycle continued for 10 minutes. This was

followed by a drying step for 12 hours at 50 °C to be incorporated in the

second synthesis process. The dried TUN biomass (5 g) was then

pulverized within an aqueous solution of zinc nitrate (5 M; 100 mL)

under complex mixing with a magnetic stirrer (700 rpm) and an
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ultrasonic generator (240 W). This was followed by the sudden

incorporation of the previously prepared extracted TUN solutions

(100 mL), and the mixture was homogenized by the same mixing

system for an additional 24 hours at ambient temperature (30 °C) to

ensure the successful precipitation of the green Zn and ZnO

nanoparticles as decorated nanograins over the surfaces of TUN

biomass. By the end of the synthesis step, the resulting composite

(Zn@ZnO/TUN) was obtained by filtration, rinsed effectively using

distilled water, and dried gently at 50 °C for 10 hours. Figure 1 showed

a schematic representation of the synthesis processes. The green ZnO

particles are frequently developed by a donor-acceptor process

whenever zinc ions react with oxygen atoms originating from

pytochemical compounds encountered in the algae-derived extracts

(Abukhadra et al., 2022). The procedure consisted of three phases: (a)

the activating phase, where Zn2+ ions were liberated out of their bearing

salts; (b) the transformation of Zn2+ into a metallic state through the

biofunctional groups existing throughout the obtained extract; (c) the

oxidation of the metallic zinc to generate ZnO throughout the drying

step; and (d) the stabilization of the resulting ZnO through further

phyto-components within the extract (Abukhadra et al., 2022).
2.4 Characterization techniques

The crystalline forms and structural characteristics of each

material have been evaluated by analyzing their X-ray diffraction

patterns employing a PANalytical XRD diffractometer (Empyrean)

equipped with a Cu-Ka radiation generator. The measurements

have been performed within the range of 5° to 80°. The chemical

structure was determined using the energy dispersive X-ray (EDX)

technique, which analyzes the various elements based on their EDX

spectra. The key chemical functionalities have been determined

based on the FT-IR spectra of the examined ingredients using a

Fourier transform infrared spectrometer (FTIR-8400S). The

exterior features of the fabricated materials and their overall

geometries have been assessed using SEM images acquired using

a scanning electron microscope (Gemini-Zeiss, Ultra 55). The

HRTEM photographs of synthetically produced products were

used for examining and analyzing their internal characteristics
TABLE 1 Qualitative estimation of the existed phytochemicals in the
extract of TUN algae.

Content TUN

Alkaloids +

Tannins -

Flavonoids +

Glycosides +

Saponins -

Phenols +

Terpenoids +

Steroids +
+ (Existed).
- (Absent).
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and blending procedures. The photos had been captured using a

transmission electron microscope (JEOL-JEM, 2100). The surface

area had been measured using a Beckman Coulter surface area

analyzer (SA3100 type), based on the N2 adsorption and desorption

isotherm curves produced.
2.5 Antioxidant studies

2.5.1 Scavenging of nitric oxide radical
The scavenging qualities of the NOR radicals using commercial

ZnO (C.ZnO), green ZnO by the extracted solution of the algae

(T.ZnO), the ground fractions of the Turbinaria alga (TUN), ZnO/

TUN, and Zn@ZnO/TUN composite have been tested

implementing the method described by (Kitture et al., 2015). The

ingredients were individually incorporated into sodium

nitroprusside (2 mL; 10 mM) within buffering phosphate fluids of

pH 7.4 (500 mL). The mixes underwent incubation individually at a

specific temperature of 25 °C over a duration of 150 minutes.

Following the incubation time frame, the solutions have been

blended with diluent sulphanilic acid (500 mL; 1 M) before being

cultivated for an additional brief duration of 5 minutes.

Subsequently, the solutions had been diluted using naphthyl

ethylenediamine dihydrochloride (0.1% w/v; 1 mL) and then

incubated again over a further 30 minutes. In order to compute

the scavenging percentage as described in Equation 1, the

absorbance of the examined mixes was eventually measured using

a microplate reader at 540 nm as compared to pure solutions

lacking the assessed ingredients (controls).

Scavenging   ( % ) =
A540Control − A540Test

A540Control
X   100   (1)
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2.5.2 Scavenging of DPPH radical
The effectiveness of C.ZnO, T.ZnO, TUN, ZnO/TUN, and Zn@

ZnO/TUN composites as DPPH radical scavengers has been

determined using the antioxidant assessment that was successfully

carried out by (Robkhob et al., 2020). The produced ingredients

(100 mg/mL; 20 mL) had been individually incorporated into 80 mL
of methanolic fluids that had been adequately supplemented by the

analyzed DPPH radicals (100 mM) employing appropriate 96-well

plates. The resulting blends were placed in incubators individually

for 20 minutes with no source of light. By the completion of the

incubation process, the absorbance levels of the examined mixes

had been measured using a microplate reader at 517 nm with

respect to the untested solutions lacking the evaluated products.

The findings were subsequently employed to estimate the

scavenging percentage using Equation 2.

Scavenging   ( % ) =
A517Control − A517Test

A517Control
X   100   (2)
2.5.3 Scavenging of ABTS radical
Utilizing the scavenging test developed by (Dappula et al.,

1273), the suitability of C.ZnO, T.ZnO, TUN, ZnO/TUN, and

Zn@ZnO/TUN composites to be ABTS radical eliminators was

assessed. The ABTS fluids implemented throughout the assays have

been generated by dissolving the ABTS component (44 mg) in 10

mL of deionized water. Subsequently, these buffers were

individually reinforced using K2S2O8 (3 mM) as an important

ingredient to produce the unbound cations (ABTS●+) that

comprise the ABTS radicals. The whole process had been carried

out under dark conditions at a controlled temperature of 25°C for a

duration of 18 hours. At the final stage of this procedure, the

resulting systems were diluted with alcohol at a ratio of 1:29 to
FIGURE 1

Schematic diagram for the synthesis of Zn@ZnO/TUN composite.
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generate newly formed ABTS●+. Following the above-mentioned

procedures, all of the synthesized ingredients had been combined

individually (at a concentration of 100 mg/mL) with the ABTS

solutions that had been generated earlier (at a volume of 290 mL).
The resulting blends then underwent incubation for a duration of

30 minutes. The absorbance levels resulting from the examined

mixes were measured using a microplate reader at 734 nm, in

contrast to the untreated fluids lacking the investigated components

(controls). The obtained values were then used to compute the

scavenging percentage, as described in Equation 3.

Scavenging   ( % ) =
A734Control − A734Test

A734Control
X   100 (3)
2.5.4 Scavenging of superoxide radical
Utilizing the scavenging experiment developed by (Robkhob

et al., 2020), the possible applications of C.ZnO, T.ZnO, TUN, ZnO/

TUN, and Zn@ZnO/TUN as antioxidants against the super oxide

radicals (O●–) were assessed. The produced ingredients (100 mL)
had been individually combined with pre-made mixes containing

EDTA (200 mL; 12 mM), NBT (100 mL; 0.1 mg), riboflavin (100 mL;
20 mg), and ethanol (200 mL). Following a 5-minute exposure to an

illumination provider, the outcomes of the preceding blending

processes were complemented individually with 3 mL of

phosphate-based buffers. Then, using a microplate reader set to

540 nm, the absorbances corresponding to the examined mixes

were tracked in relation to the untreated fluids with the materials

(controls). The data were then used to compute the scavenging

percentage using Equation 4.

Scavenging   ( % ) =
A540Control − A540Test

A540Control
X   100 (4)
2.6 Anti-diabetic studies

2.6.1 Inhibition assay of porcine pancreatic
a-amylase

The effectiveness of C.ZnO, T.ZnO, TUN, ZnO/TUN, and Zn@

ZnO/TUN as inhibitor compounds towards the frequently

employed commercialized pancreatic a-amylase enzymes has

been investigated by implementing the inhibitory assays by

(Robkhob et al., 2020). The ingredients were combined

individually with the a-amylase enzymes at a specific

concentration (100 mg/mL and 50 mg/mL, respectively). The

resulting mixtures were then incubated for 10 minutes at a

temperature of 37 °C. Subsequently, the apparatus was enriched

by administering a starch substrate at a concentration of 1%. The

absorbance levels were thereafter measured using a microplate

reader at 540 nm with respect to the untreated fluids lacking the

materials being investigated (controls). The outcomes established

were used to estimate the percentage of inhibition using Equation 5.

Inhibition   ( % ) =
A540Control − A540Test

A540Control
X   100   (5)
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2.6.2 Inhibition assay of crude murine
pancreatic a-amylase

This experiment was conducted to determine the efficacy of

C.ZnO, T.ZnO, TUN, ZnO/TUN, and Zn@ZnO/TUN in inhibiting

the crude effective enzymes as compared to the marketed enzymes

studied. The pancreatic enzyme has been obtained through the

pancreas of a male Swiss mouse approximately 10 weeks of age. The

pancreas under investigation was treated through a 12-hour period

of fasting. Next, the starved pancreas had been surgically extracted

and submerged delicately within a phosphate-based buffered

solution that included inhibitors of protease. Subsequently, the

supernatant-deficient cells had been eliminated using a rapid

centrifugation procedure (15 min; 10000 rpm). The apparatus

was subsequently diluted systematically until the microplate

reader (240 nm) detected 0.4 as absorbance. Under such

situations, the pancreas could potentially be employed as a

supplier of functional crude enzymes. The inhibiting examination

of synthesized ingredients towards the enzyme was then conducted

using the identical protocols outlined in Section 2.5.1.

2.6.3 Inhibition assay of a-glucosidase
The efficacy of C.ZnO, T.ZnO, TUN, ZnO/TUN, and Zn@ZnO/

TUN as inhibitor agents towards the commercially available version

of a-Glucosidase enzymes was assessed using the inhibitory

experiments developed by (Sanap et al., 2010). The derived

ingredients had been individually combined with the examined

a-glucosidase enzymes at a specific concentration (100 mg/mL and

100 mL; 0.1 unit/mL, respectively). The resultant mixtures were then

incubated for 60 minutes at a temperature of 37°C. Subsequently,

the apparatus was further enriched by adding a pNPG solution (10

mL) prior to being re-incubated for a further 10 minutes.

Afterwards, 2 mL of Na2CO3 solution with a concentration of 0.1

M was introduced into each apparatus individually in order to

immediately stop the ongoing processes. The absorbance levels of

the released nitrophenol from pNPG had been measured using a

microplate reader at 420 nm with respect to the untreated fluids

lacking the compounds being studied (controls). The findings

obtained were then used to estimate the inhibitory percentage, as

described in Equation 6.

Inhibition   ( % ) =
A420Control − A420Test

A420Control
X   100   (6)
2.6.4 Inhibition assay of crude murine
intestinal a-glucosidase

The natural intestinal a-glucosidase enzymes had been obtained

using the approach that was outlined earlier throughout the

separation of the raw a-amylase enzymes in the specified

section.2.5.2. Inhibiting experiments of C.ZnO, T.ZnO, TUN, ZnO/

TUN, and Zn@ZnO/TUN towards the crude intestinal a-glucosidase
enzymes had been performed using identical protocols as those

described for inhibiting the commercially available enzymes in the

previous section.2.5.3 The potential involvement of p-nitrophenyl-a-
D-glucopyranoside as a base is being considered.
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2.6.5 Amyloglucosidase inhibition assay
C.ZnO, T.ZnO, TUN, ZnO/TUN, and Zn@ZnO/TUN were

tested for their suitability as amyloglucosidase-inhibiting agents

using the inhibitory assay described by (Lawande et al., 2017). The

ingredients were combined individually with the amyloglucosidase

enzymes at a specific concentration (100 mg/mL) and enzyme load of

0.1 unit/mL. The resultant mixtures were then incubated at 37 °C for

10 minutes in the presence of 1% starch substrates. Subsequently, the

mixtures’ absorbance levels had been measured using a microplate

reader at 540 nm in relation to untreated solutions devoid of the

investigated components (controls). The inhibiting percentage was

then computed using the formula in Equation 5.
2.7 Cytotoxicity properties

The cytotoxicity of Zn@ZnO/TUN had been determined by

measuring its effect against normal colorectal fibroblast cells (CCD-

18Co) and cancerous colorectal cells (HCT-116). The cell lines

underwent cultivation in Dulbecco’s Modified Eagle Media

enriched in 10% fetal bovine serum, 100 mg/mL of penicillin, and

100 mg/mL of streptomycin. The cells underwent incubation at a

temperature of 37°C containing a 5% concentration of CO2 in a

completely humidified atmosphere. The Y79 cells went through

cultivation and were distributed into 96-well plates at a density of

about 1 × 106 cells per well. The cells then underwent incubation for

24 hours in order to conduct cytotoxic assessment utilizing the 3-(4,

5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium bromide (MTT)

test. Different doses of Zn@ZnO/TUN in a solution of 0.1% DMSO

were incorporated and underwent incubation for 24 hours within

an incubator with an atmosphere of 95% air and 5% CO2. Following

incubation, 10 ml of MTT solution (5 mg/mL in PBS) was

introduced into each well and placed in the incubator for 4 hours

at a temperature of 37°C. The formazan that was produced was

dissolved in 100 mL of DMSO, and the number of live cells was

determined by measuring the absorbance at 570 nm. The impact of

the structure on the growth of Y79 cells was quantified as the

percentage of cell viability, determined by applying Equation 7.

Cell   viability   % =
A 750 of treated cell

A   750   of   control   cell
 �100   (7)
2.8 Statistical analysis

The reported data have been included in their mean values ± the

established standard errors for these mean data (S.E.M.), assuming

the n value equals 3. The significance and accuracy of the statistical

tests for the outcomes depend on the pairing tests and analyses of

variance (ANOVA), where *P levels are less than 0.05.
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3 Results and discussion

3.1 Characterization of the
synthetic structures

The obtained XRD patterns of the incorporated algal structure of

Turbinaria ornata as substrate, in addition to its residual biomass after

treatment and extraction processes, as well as the obtained Zn@ZnO/

TUN composite, are presented in Figure 2. The recognized pattern of

the algae as the raw precursor exhibits the common broad peak of the

amorphous organic materials (a round 2 Theta angle of 22°), in

addition to several peaks that might be related to the associated

impurities and salts (Figure 2A). Regarding the recognized pattern

after the washing and extraction steps, the observed patterns

demonstrate strong reductions of the previously identified peaks

corresponding to the associated impurities of salts. Furthermore, the

pattern clearly reveals the amorphous nature of the organic

carbonaceous structures of the resulting biomass after the extraction

procedures (Figure 2B). The synthesized Zn@ZnO/TUN composite’s

recognized pattern, characterized by a remarkable, very broad peak or

hump, clearly demonstrates the amorphous nature of the incorporated

TUN biomasses (Figure 2C). Moreover, the existence of the decorated

green metallic zinc in blend with ZnO as crystalline phases was

confirmed by detecting their corresponding peaks. The existence of

ZnO as hexagonal wurtzite was confirmed by its detectable
FIGURE 2

XRD patterns of Turbinaria ornata algae (TUN) (A), residuals of TUN
after extraction (B), and synthetic Zn@ZnO/TUN composite (C).
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characteristic peaks around 31.8° (100), 34.4° (002), and 36.7°(101)

(JCPDS no. 65–3411; JCPDS no. 36–1451) (Figure 2C). For the

blended metallic zinc as separated crystalline phase, it was confirmed

by the observable peaks at 39.03° (100), 43.24° (101), and 54.36° (102)

(PDF. card: 04–0831; JCPDS 36–1451; JCPDS no. 00–004-0784)

(Figure 2C). The average crystallite size of formed ZnO phase was

determined according to the Debye-Scherer formula to be 4.2 nmwhile

the detected average crystallite size of the blended Zn metal is 8.4 nm.

The previous findings also relied on the FT-IR spectrum of the

synthetic materials, which was compared to the spectrum obtained

from the algal structure of Turbinaria ornata (Figure 3). The mean

chemical groups derive from proteins, lipids, and polysaccharides that

are found in the algal cell wall. The cell wall contains a variety of

chemical groups, which include carboxyl (found in fatty acids along

with amino acids), hydroxyl (found in polysaccharides), phosphate,

amine, and sulfonate (Dmytryk et al., 2014). The broad band around

3409 cm-1 indicates the stretching vibration of O-H bonds within the

existed the amine groups or the structures of polysaccharides

(Figure 3A) (Fauziee et al., 2021; Fawzy et al., 2022). The spectrum

also reflected the remarkable detection of the corresponding bands of

the C-H bonds that signifies the carboxylic groups of the existed

phospholipids and lipids within the structure of TUN biomass,

pyranoid rings, and C6 groups of fucose (2927 cm−1) (Palanisamy

et al., 2017; Dulla et al., 2018; Fauziee et al., 2021). Carboxylic along

with amino groups constitute 70% of the structural components

within the cell walls of the majority of brown algae. These

compounds play a crucial role in facilitating the binding of metallic

ions (Fawzy et al., 2022). The marked bands around 1630 cm-1, 1529

cm-1, and 1430 cm-1 signifies the stretching of C=N, N–O stretch-

nitro compounds, bending of CH2 alongside CH3 within the methyl
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groups (Itroutwar et al., 2019; Fawzy et al., 2022). The detectable band

around 1266 cm-1 can be assigned to the stretching of C–C–O or

phosphodiester P=O corresponding to the existed protein (Fawzy and

Gomaa, 2020). Moreover, the identified band at 1038 cm-1 declared

the existence of primary alcohol by signifying the stretching vibration

of its C-OH bond (Raj et al., 2023). Also, the detectable bands at 818

cm-1 and 687 cm-1 donate C=H bending-alkenes and –C=C– stretch

alkynes, respectively (Itroutwar et al., 2019).

After the extraction procedures, the obtained FT-IR spectrum

retains the same characteristic bands reported for the raw algae’s

chemical structure (Figure 3B). However, these bands exhibit a

remarkable declination in their intensities, along with observable

fluctuations in their positions. This indicates the impact of the

washing and extraction processes on the algae’s chemical structure,

as they leach some of its vital phytochemical compounds. Regarding

the Zn@ZnO/TUN composite’s spectrum, there is also clear

detection for the declination in the intensities of the common

bands corresponding to the functional structure of the algae,

reflecting a significant interaction effect for the loaded zinc

particles (Figure 3C). The newly detected bands with considerable

intensities around 822 cm-1, 546 cm-1, and 478 cm-1 signified the

coordination of tetrahedral Zn, ZnO stretching, and Zn-O

stretching, respectively (da Silva-Neto et al., 2019; Yang et al.,

2022). The reported findings from the FT-IR analysis are strongly

consistent with the results obtained from the EDX spectrum and

elemental composition (Figure 4). The EDX spectrum of Zn@ZnO/

TUN clearly demonstrated the presence of zinc as a crucial

component in the composite, alongside the algal structure serving

as the substrate, represented by the C element (Figure 4).

The morphological studies were performed based on the SEM

images of the natural TUN algae, the residuals of the algae after the

washing and extraction procedures, and the green supporting of

Zn@ZnO nanoparticles (Figure 5). The recognized particles of the

algae prior to any modification display the commonly reported

geometries for algal structure as massive and compacted particles

with no definite outlines (Figure 5A). High magnification images of

the algae structure’s surface reveal its irregular topography, which

includes exposed and partially tortuous sections, as well as the

detection of cellular network structure (Figure 5A). These features

can significantly enhance the interacting interface and surface area.

The extraction procedures resulted in a remarkable impact on the

previously described surficial morphologies of the algae, in addition

to the considerable detection of intersected blended plates forming

observable porous framework that might indicate stripping for the

main component of the algae or considerable separation of other

species of polysaccharides (Figures 5B, C). The obtained SEM

images of the Zn@ZnO/TUN composite reflected the extensive

existence of the zinc particles as nanograins (Figure 5E). These zinc

nano-grains appeared as coating layers over the algae’s surface, and

their development over the algal biomass resulted in numerous

interstitial nano-pores, giving the composite porous properties and

a higher surface area per volume (Figures 5D–F).

The previously mentioned geometries had a significant impact on

the calculated surface area as well as the particle size distribution. With

the different modification procedures, the measured surface area shows
FIGURE 3

FT-IR spectra of algal structure of Turbinaria ornata algae (A), the
algal structure after the extraction process (B), and synthetic
Zn@ZnO/TUN composite (C).
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a noticeable increase. The starting TUN exhibits a surface area of

6.2 m2/g, and this value increased to 8.3 m2/g after the washing and

extraction steps. The calculated value for Zn@ZnO/TUN increased

significantly, reaching 16.4 m2/g. This reflects the impact of the

crystallite size of the zinc nanoparticles and the interstitial nanopores

on the textural qualities of the resulting composite. The synthetic Zn@

ZnO/TUN particulates display narrow particles size distribution

properties ranged from 293 nm up to 312 nm and the majority

exhibit particle size around 300 nm (Supplementary Figure S1).
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3.2 Antioxidant properties

3.2.1 Nitric oxide scavenging
The production of reactive oxygen species (ROS) throughout

aerobic respiration, along with electron transportation pathways,

leads to significant oxidative damage and several degenerative

illnesses (Dhall and Self, 2018). Regarding these reactive species,

the inconsistent formation of volatile free nitric oxide radicals

(NOR) is having some serious drawbacks, including DNA
FIGURE 5

SEM images of natural TUN algae (A, B), the algal structure after the washing and extraction steps (C, D), and the synthesized Zn@ZnO/TUN
composite showing the supporting zinc nanoparticles (E, F).
FIGURE 4

EDX spectrum of the synthesized Zn@ZnO/TUN composite.
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breakage, cellular cytotoxicity, and neurons dying (Sharpe et al.,

2011; Parul et al., 2013; Robkhob et al., 2020). The metal oxides

usually evaluated as beneficial antioxidants exhibited notable

scavenging powers for NOR. The scavenging performance of ZnO

towards NOR significantly increased following the implementation

of the integration of metallic Zn and the incorporation of TUN

particulates as a support (Figure 6A). The scavenging% of NOR as

determined by TUN, commercialized ZnO (C.ZnO), and green-

produced ZnO utilizing the TUN-extracted chemicals (T.ZnO)

were 26.3 ± 1.64, 35.7 ± 1.57%, and 39.8 ± 1.12, respectively

(Figure 6A). Hence, the integration of TUN-extracted

phytochemical-rich solutions throughout the “green” production

procedure enhances the antioxidant properties of T.ZnO against

NOR by about 4% as compared to C.ZnO. These findings align with

the outcomes published in earlier studies (Figure 6A) (Song et al.,

2022). This may be attributed to the controlled dimensions of the

ZnO crystals and their non-agglomerated characteristics.

Furthermore, the metallic oxides synthesized using these

techniques frequently develop a complex with the essential

botanical compounds present in the applied extract that serve as

reduction ingredients, resulting in the formation of a fine capping

layer across the outermost layer of the metallic oxides. This often

triggers the biological functions of the metallic oxides, in addition to

their scavenging or capturing performances, particularly

towards NOR.
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The insertion of the TUN support to generate the ZnO/TUN

and Zn@ZnO/TUN hybrids leads to a significant increase in the

NOR capturing or trapping function, reaching 63.4 ± 1.45% and

92.7 ± 1.71% (Figure 6A). The observed behaviors of ZnO/TUN and

Zn@ZnO/TUN exhibit a notable increase compared to the actions

of unbound TUN, C.ZnO, and T.ZnO. The beneficial effects of the

TUN base material on the exposed and interfacing surfaces of

the supported zinc particles, together with its lowering influence on

the accumulation affinities associated with the loaded particulates,

were attributed to the enhancing influence that has been identified

(Robkhob et al., 2020). Additionally, it has been revealed that

chemical ingredients belonging to TUN, a coastal brown

macroalgae, have significant antioxidant properties. This leads to

increased rates of contact with liberated reactive oxidative species

(Rudayni et al., 2023). Also, the higher performance of Zn@ZnO/

TUN as compared to ZnO/TUN might be assigned to the existed

surficial electrons across the interfaces of Zn@ZnO which pair

successfully with the lone pairs of OH free radicals (Rabie et al.,

2020; Song et al., 2022). It was proved that the electron-supplying

efficiency display strong controlling effect on the antioxidant

activities of investigated metal oxides. Therefore, the integration

between metallic zinc and ZnO in green blend enhances effectively

the production rates and quantities of surficial electrons and in

turns the scavenging properties of the free radicals. Hence, the

synthesized Zn@ZnO/TUN hybrid has superior antioxidant
A B

C D

FIGURE 6

The antioxidant performances of TUN, C.ZnO, T.ZnO, ZnO/TUN, and Zn@ZnO/TUN structures against (A) Nitric oxide; (B) DPPH; (C) ABTS; and (D)
super oxide radicals. The values are the averages of 5 replicates, the error bars indicate the standard error of means, and different letters specify a
statistical difference between the means (P<0.05).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1444618
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Diab et al. 10.3389/fmars.2024.1444618
properties neither toward NOR in contrast to the individual ZnO,

TUN, and ZnO/TUN components, alongside the commercially

applied ascorbic acid as a reference (21.6 ± 1.33%) (Figure 6A).

3.2.2 DPPH radical scavenging
Synergistic experiments have evaluated the DPPH-scavenging

efficiency of Zn@ZnO/TUN, comparing it with TUN, C.ZnO,

T.ZnO, and ZnO/TUN. The described characteristics closely

correspond to the observable aspects throughout the scavenging

activities of NOR (Figure 6B). The scavenging % achieved utilizing

Zn@ZnO/TUN is 88.2 ± 1.44%, and this is significantly greater than

the level of effectiveness noticed for each separate ingredient

(Figure 6B). The establishment of zinc as metallic particles in

composite with ZnO combined with the insertion of the TUN

support greatly boosted the scavenging performances of zinc-

dependent structures alongside the algal functional groups to

eliminate the DPPH radical. Therefore, the reported performance

of the composite is considerably greater than the effectiveness of

ascorbic acid as a commercially used standard (76.3 ± 1.28%)

(Figure 6B). The previously declared findings rely on the realized

behaviors reported for TUN (40.2 ± 1.4%), C.ZnO (41.7 ± 1.58%),

T.ZnO (63.8 ± 1.33%), and ZnO/TUN (74.2 ± 1.63%) (Figure 6B).

The sequestration process of DPPH radicals through the exteriors of

synthesized metals and metal oxides involves electron (e-) and

proton (H+) transfer processes targeting the organic structures of

DPPH radicals (Dappula et al., 1273; Rudayni et al., 2023). The

improved charge separation effectiveness of metal-based

frameworks may boost their performance throughout the

scavenging processes. The inserted metallic zinc in blend with

ZnO enhances the production rates of the surficial electrons

alongside the charge separation effectiveness which in turns

improve the activity of Zn@ZnO in comparison with ZnO. Also,

presence of numerous negatively charged chemical groups within

the TUN structure may expedite the charge separation events,

alongside the algal substrate’s ability to enhance the interacting

surfaces across the DPPH radicals and the biologically active zinc

nanostructures (Liu et al., 2017).

3.2.3 ABTS radical scavenging
The scavenging assays of ABTS were extensively studied as a

reliable measure of the antioxidant capacity of synthetically

produced materials, particularly blends or hybridized frameworks.

These experiments assess the decrease in the content of the released

ABTS cationic radicals (ABTS●+), which indicates the antioxidant

qualities of the materials being tested. Synthetically manufactured

nanostructures with efficient hydrogen-donating antioxidant

processes can potentially be used as successful scavengers to

eliminate the ABTS●+ radicals. As a result, synthesized metals

and metal oxides, whether in their pure state or modified by

hybridizing with an appropriate support or carrier, are strongly

recommended as effective scavengers against ABTS●+. The

ABTS●+ scavenge% encountered for TUN (36.2 ± 1.3%), C.ZnO

(36.4 ± 1.45%), T.ZnO (40.2 ± 1.34%), and ZnO/TUN (60.3 ±

1.22%) were considerably less than the value that was determined

for the ascorbic acid as the implemented control (75.4 ± 1.14%)
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(Figure 6C). The incorporation of metallic zinc/ZnO nanoparticles,

produced using environmentally friendly methods, directly into the

TUN matrix along with important bioactive phytochemicals

derived from algae (Zn@ZnO/TUN), led to a substantial increase

in its ability to scavenge ABTS●+ radicals, reaching a level of 90.5 ±

1.8%. This activity was considerably greater than that of ascorbic

acid, as shown in Figure 6C.

3.2.4 Superoxide radical scavenging
The superoxide anions (O2

●−) are a type of chemically active

oxygen radical that are frequently produced inside cellular

organelles, including mitochondria. It rapidly converts into

different oxidative species that include hydroxyl radicals (●OH)

in addition to H2O2. The spontaneous production of O2
●− along

with its altered forms leads to serious physiological disorders and

poses multiple threats to health, involving the degradation of DNA,

RNA, and proteins and eventually the development of degenerative

illnesses (Hamasaki et al., 2008; Xie et al., 2018). It is generally

thought that the human body has built-in defenses against released

oxygen and its byproducts, as well as the oxidizing stresses that

come from them. These mechanisms are crucial for maintaining

stable physiological homeostasis. Nevertheless, different disorders

negatively impact the physiological reactions of human beings

throughout the process of generating defensive mechanisms,

either in terms of the kind or the necessary amounts needed to

counteract the concentrations of the released radicals.

Consequently, it is highly advised to use distinctive and

biocompatible nanostructures for efficient removal of O2
●−. The

scavenging performance of O2
●− by TUN (16.7 ± 1.11%), C.ZnO

(8.7 ± 1.16%), and T.ZnO (15.8 ± 1.43%) is significantly lower than

that of the ascorbic acid as the incorporated control (17.3 ± 1.34%)

(Figure 6D). However, the antioxidant capacity of and ZnO/TUN

(20 ± 1.65%) and Zn@ZnO/TUN (30.6 ± 1.32%) is much greater

than that of the frequently employed ascorbic acid, as shown

in Figure 6D.
3.3 Antidiabetic properties

3.3.1 Porcine pancreatic a-amylase
inhibition assay

The anti-diabetic behaviors of TUN, C.ZnO, T.ZnO, ZnO/

TUN, and Zn@ZnO/TUN were evaluated using synergistic

experiments focusing on the inhibitory impacts on the a-amylase

enzymes. The a-amylase enzyme is a crucial and predominant

enzyme for digestion that effectively disintegrates complicated

carbohydrate molecules, like starch, into less complicated types,

including maltose, that quickly converts to sugar (Robkhob et al.,

2020). Hence, synthesized nanomaterials that exhibit notable and

rapid inhibitory properties towards the a-amylase digestive enzyme

will ultimately lead to a substantial reduction in the degradation and

disintegration levels of complicated sugars. Consequently, this will

ultimately result in diminished absorption effectiveness of dietary

carbohydrates and decreased quantities of blood glucose (Shu et al.,

2023). As a result, diabetes-related post-meal hyperglycemia may be
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effectively managed at notable and secure thresholds (Meer et al.,

2022). The inhibiting % of the a-amylase enzyme using Zn@ZnO/

TUN (88.7 ± 1.3%) shows significant antidiabetic action in

comparison with the common commercially accessible

medications, acarbose (75.2 ± 1.68%) as well as miglitol (18.3 ±

1.42%) (Figure 7A). The synthesized T.ZnO (51.8 ± 1.3%) and ZnO/

TUN (73.4 ± 1.5%) showed greater inhibitory impacts on the a-
amylase enzymes in contrast to TUN (41.2 ± 1.8%) and C.ZnO

(40.3 ± 1.6%) in addition to miglitol medication (18.3 ± 1.42%)

(Figure 7A). The detectable improvement in the antidiabetic

effectiveness of the synthesized ZnO and Zn/ZnO blend may be

attributed to the presence of the capping layer that formed through

the phytochemicals extracted from algae and the incorporation of

the TUN support. The implementation of the TUN support

significantly decreased the tendency of synthesized nanoparticles

to clump together, hence increasing their interactions and exposure

to enzymes across their exteriors (Deng et al., 2022; Malik et al.,

2022; Song et al., 2022; Shu et al., 2023). The clustering and

accumulation of metals and metal oxides have a negative impact

on their biological functions and their potential to hinder oxidizing

enzymes (Yang et al., 2022). In comparison to costly commercially

available medications that frequently have undesirable effects, Zn@

ZnO/TUN can be suggested as a possible strengthened, affordable,

successful, and reliable antidiabetic agent, depending on its

inhibitory effects on the porcine pancreatic a-amylase enzyme

(Rehana et al., 2017; Vinotha et al., 2019).

3.3.2 Murine pancreatic a-amylase inhibition
The inhibitory effects of TUN, C.ZnO, T.ZnO, ZnO/TUN, and

Zn@ZnO/TUN on the function of the murine pancreatic a-amylase

enzyme have been evaluated to determine their capacity to suppress

the functions of metabolically primitive living enzymes. The

inhibiting experiments were conducted using a synergistic

approach, implementing the influence of green fabrication

procedures and integrated TUN support. The synthesized Zn@

ZnO/TUN blend effectively reduces the activity levels of the a-
amylase enzyme (in its crude activated form) by 66.2 ± 1.4%. This
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investigation reveals the better antidiabetic effects of the tested

composite (Zn@ZnO/TUN) in comparison to acarbose (61.4 ±

1.55%) along with miglitol (11.2 ± 1.61%), which are routinely

prescribed commercialized medicines and employed as standards

(Figure 7B). The synthesized ZnO/TUN (56.8 ± 1.9%) showed

stronger inhibitory impacts on the a-amylase enzyme than TUN

(13.4 ± 1.2%), C.ZnO (9.8 ± 1.12%), and T.ZnO (14.3 ± 1.53%)

alongside the miglitol medication (18.3 ± 1.42%) (Figure 7B). The

study’s outcomes demonstrated the great potential of Zn/CSR as

powerful and efficient antidiabetic drugs towards both the

commercially available a-amylase enzyme and the biologically

active enzyme.

3.3.3 Pancreatic a-glucosidase inhibition
The inhibitory impacts of TUN, C.ZnO, T.ZnO, ZnO/TUN,

and Zn@ZnO/TUN on the a-glucosidase enzyme have been

investigated in order to regulate its activity as a crucial and highly

efficient enzyme involved in the metabolic processes of dietary

starches and polysaccharides. Consequently, the generation of

potent inhibitors targeting the a-glucosidase enzymes may

effectively modulate and manage the digestion of glucose

molecules within the bloodstream, leading to a significant

reduction in hyperglycemia (Velsankar et al., 2022). The blend of

Zn@ZnO/TUN exhibited a high inhibitory activity (98.4 ± 1.3%)

with respect to the pancreatic a-glucosidase enzymes, indicating

that it might function as an anti-diabetic agent. This efficacy was

assessed in comparison with that of miglitol (90.2 ± 1.31%) and

acarbose (96.4 ± 1.45%), together with the individual phases of

TUN, C.ZnO, T.ZnO, and ZnO/TUN (Figure 8A). T.ZnO (75.8 ±

1.5%) and ZnO/TUN (94.3 ± 1.8%) have stronger inhibiting

properties than TUN (41.6 ± 1.3%) and C.ZnO (38.2 ± 1.2%)

(Figure 8A). The observed responses align with the findings in the

existing literature regarding the combined impact of transitional

metals complexing with vital phytochemicals and the use of

appropriate supports on the biological activities of ZnO and zinc

metallic nanoparticles. These nanoparticles have demonstrated

potential as both antioxidants and antidiabetic agents.
A B

FIGURE 7

The inhibition properties of TUN, C.ZnO, T.ZnO, ZnO/TUN, and Zn@ZnO/TUN structures against Porcine pancreatic (A) and Murine pancreatic
(B) a-amylase enzyme. The values are the averages of 5 replicates, the error bars indicate the standard error of means, and different letters specify a
statistical difference between the means (P<0.05).
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3.3.4 Murine intestinal a-glucosidase inhibition
The inhibitory impacts of TUN, C.ZnO, T.ZnO, ZnO/TUN,

and Zn@ZnO/TUN against the functional crude intestine a-
glucosidase enzyme have been investigated along with the earlier

investigated commercialized forms for a more feasible analysis. The

findings demonstrate a significant inhibitory effect of Zn@ZnO/
Frontiers in Marine Science 13
TUN (95.1 ± 1.5%) on the activity of the crude intestine a-
glucosidase enzymes. The therapeutic value of Zn/CSR is much

greater than the observed impacts of miglitol (88.6 ± 1.42%) and

similar to the reported performance of acarbose (94.6 ± 1.34%)

medications (Figure 8B). The synthesized T.ZnO (69.6 ± 1.3%) and

ZnO/TUN (87.4 ± 1.6%) still have stronger inhibitory effects than
A B

FIGURE 8

The inhibition properties of TUN, C.ZnO, T.ZnO, ZnO/TUN, and Zn@ZnO/TUN structures against pancreatic (A) and Murine intestinal
(B) a-glucosidase enzyme. The values are the averages of 5 replicates, the error bars indicate the standard error of means, and different letters
specify a statistical difference between the means (P<0.05).
FIGURE 9

The amyloglucosidase inhibition activities of TUN, C.ZnO, T.ZnO, ZnO/TUN, and Zn@ZnO/TUN assessed materials. The values are the averages of 5
replicates, the error bars indicate the standard error of means, and different letters specify a statistical difference between the means (P<0.05).
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both TUN (35.3 ± 1.8%) and C.ZnO (58.4 ± 1.7%) (Figure 8B). The

properties of the synthesized Zn@ZnO/TUN hybrid, as established

earlier, are sufficient considering the established health adverse

effects of conventional medications and their high manufacturing

cost. In general, green zinc metallic nanoparticles have significant

potential as antidiabetic agents and have a substantial impact on

reducing blood sugar concentrations. In addition, synthesized

nanomaterials exhibit significant improvements in the function of

insulin-related receptors, glucokinase genes, blood insulin levels,

and glucokinase activity (Alkaladi et al., 2014).

3.3.5 Amyloglucosidase inhibition
The amyloglucosidase enzyme is highly efficient in facilitating the

disintegration of complicated starch molecules and enhancing the

digestion efficiencies of the resulting simple molecules. Consequently,

the use of affordable, efficient, and secure synthesized materials that

inhibit amyloglucosidase will greatly reduce the conversion of

complicated sugar molecules into less complicated versions (Dhobale

et al., 2008). The amyloglucosidase inhibitory % were determined by

analyzing TUN, C.ZnO, T.ZnO, ZnO/TUN, and Zn@ZnO/TUN were

found to be 56.4 ± 1.1%, 65.4 ± 1.27%, 77.2 ± 1.7%, 80.6 ± 1.2%, and

97.3 ± 1.4%, respectively (Figure 9). Nevertheless, all the examined

nanostructures (TUN, C.ZnO, T.ZnO, ZnO/TUN, and Zn@ZnO/

TUN) have significant inhibitory impacts on the amyloglucosidase

enzyme; only the Zn/CSR hybrid material exhibits greater activity

compared to either miglitol (88.3 ± 1.83%) or acarbose (95.6 ± 1.72%)

medications (Figure 9). Hence, the Zn@ZnO/TUN hybrid, which

consists of green-fabricated metallic zinc nanoparticles supported on

a TUN substrate, can be suggested as a highly effective antidiabetic

agent. This hybrid material is characterized by its inexpensive price of

manufacturing, excellent biocompatibility, negligible adverse effects,

and potent inhibition of frequently encountered oxidizing enzymes.
3.4 Cytotoxicity properties

The biologic compatibility, along with the safety of Zn@ZnO/

TUN was evaluated by investigation for their cytotoxic impacts on

conventional colorectal fibroblast cells (CCD-18Co). The

toxicological properties of Zn@ZnO/TUN have been assessed in

HCT-116 human colorectal tumor cells to identify their potential as

a tumor suppressor. Concerning the harmful impact of Zn@ZnO/

TUN against CCD-18Co normal cells, its structure possesses

significant biological compatibility and bio-safety characteristics

throughout the tested dose spectrum (20 to 100 μg/L). The

tracked viability % when exposed to the greatest investigated dose

of the Zn@ZnO/TUN particulates is 96.3%. With respect to the

cytotoxic effects of liberated unloaded particulates upon HCT-116

cells, the synthesized hybrid material in the form of unbound

particulates exhibits notable cytotoxicity towards the cancerous

cells, particularly at administered doses exceeding 500 μg/mL.

The results reveal that the administration of Zn@ZnO/TUN (500

μg/mL) caused considerable cytotoxicity effects with 47.3% cell

viability, 52.7% inhibiting %, and 188 μg/mL IC-50.
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4 Conclusion

Turbinaria ornatamarine macro-algae (TUN) were successfully

mediated with zinc/ZnO blended nanoparticles using the derived

extract and its phytochemicals. The obtained green nano- and bio-

composite (Zn@ZnO/TUN) was applied effectively as an affordable

and biocompatible antioxidant and antidiabetic agent in

comparison with the commercialized forms. The Zn@ZnO/TUN

structure revealed enhanced scavenging efficiencies against the

essential ROS ((DPPH (88.2 ± 1.44%), nitric oxide (92.7 ±

1.71%), ABTS (90.5 ± 1.8%), and O2
●− (30.6 ± 1.32%) in

comparison with either ascorbic acid or its individual

components or ZnO. This was also reported during the inhibition

reactions of the most effective oxidizing enzymes, considering the

common medications (miglitol and acarbose), including

commercial a-amylase (88.7 ± 1.3%), a-glucosidase (98.4 ±

1.3%), and amyloglucosidase (97.3 ± 1.4%)) and crude (a-amylase

(66.2 ± 1.4%) and a-glucosidase (95.1 ± 1.5%)) forms. This

demonstrates the significance of the green synthesis process of the

metallic zinc in complex with algae-derived vial chemicals, in

addition to the application of the algal structure as support. Also,

induce the potential implementation of the composite in

commercial and realistic studies, considering the biological factors

across deep in-vivo studies.
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