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Stokes drift and particle
trajectories induced by surface
waves atop a shear flow
Yan Li1,2*, Zibo Zheng3 and Henrik Kalisch1

1Department of Mathematics, University of Bergen, Bergen, Norway, 2Bjerknes Centre for Climate
Research, University of Bergen, Bergen, Norway, 3Department of Mathematical Sciences, New Jersey
Institute of Technology, Newark, NJ, United States
Surface waves and currents are crucial to the mass transfer in the air-sea

interaction as they can drive a variety of dynamical processes. How mass can

be transported by surface waves and current coupling is addressed through a

study of their induced motions of fluid parcels. To this end, a weakly nonlinear

wavetrain is imposed on the background flow whose direction and magnitude

are permitted to vary with water depth and second-order features of this

configuration are investigated. A leading-order approximation to the Stokes

drift is derived, correct to the second order in wave steepness, and applicable

to an arbitrarily depth-dependent background flow. The reduced forms of the

approximate Stokes drift are provided in a few limiting cases such as a current

with an exponential profile or propagating in an orthogonal direction to the wave

propagation. Novel features related to the Stokes drift and particle trajectories

have been reported for the first time as a result of the rotation induced by the

wave and current coupling. A non-vanishing component of the Stokes drift

velocity and net-mean displacement of fluid parcels in the span-wise direction to

the wave propagation are observed in the cases where a shear current

propagates obliquely to the waves direction. A non-monotonic dependence

on water depth of the stream-wise component of the Stokes drift is shown, and

thereby the largest mass transport induced no longer occurs on the still water

surface but some depth beneath. The non-monotonic behavior occurs beyond

the regime of the near-irrotational assumption of wave-induced motions. It can

also lead to the change of the signs for the stream-wise Stokes drift throughout

the water column, and thus an overall cancellation of the integrated mass

transport by waves over the water column, indicating that the depth-

integrated models can likely lead to underestimated effects of the mass

transport which is non-trivial at a local depth. The results from this study have

far-reaching impact. The Stokes drift profile is a direct input to the

parametrization of the surface waves forcing in ocean circulations and the

obliquely propagating Stokes drift can be plausibly responsible for the

formation of oblique Langmuir rolls to wave propagation in the open ocean.
KEYWORDS

Stokes drift, surface waves (fluid), shear current, ocean modelling, wave-current
interaction (WCI), wave forcing in the upper ocean, particle trajectories
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1 Introduction

Surface waves are ubiquitous in the ocean. They are an essential

factor driving dynamical processes near the ocean surface including

the exchange of mass, momentum, and energy in the upper ocean

with both the atmosphere and deeper sea. One particularly important

process involves the interaction of waves with ocean currents which

has been widely investigated for example in the context of ocean

circulations and the occurrence of rogue waves (Kharif and

Pelinovsky, 2003; Sullivan and McWilliams, 2010; Onorato et al.,

2011). In the present contribution, attention is given to mass transport

due to the interaction of waves with depth-dependent currents, and in

particular how the wave-induced Stokes drift changes if the waves

propagate on a pre-existing depth-dependent background flow.

The net forward drift of fluid particles in a steady periodic

wavetrain was discovered in Stokes (1847). This celebrated result is

very well known and has been famously illustrated in the collection

(Van Dyke, 1982). The Stokes drift has been verified in various recent

wave tank experiments (Chen et al., 2010; van den Bremer et al., 2019),

but it is also well known that the result needs to be modified when

dealing with finite depth due to bottom drag (Longuet-Higgins, 1953;

Ursell, 1953; Monismith et al., 2007), when considering the more

realistic case of wave groups (Smith, 2006; Li and Li, 2021), the

influence of infragravity waves (Bjørnestad et al., 2021), mean

currents and rotation (Constantin and Monismith, 2017), or random

sea states (Myrhaug et al., 2014; Myrhaug, 2015). Nevertheless, Stokes

drift correlates well with the transport of small objects by surface waves

in field observations, for example in the case of oil spills (Yang et al.,

2021). In particular when dealing with wave groups, the depth-

dependent net displacement of fluid parcels in the form of a mean

flow should be taken into account (Dysthe, 1979; McIntyre, 1981;

Davey and Stewartson, 1974; Higgins et al., 2020; Li, 2021). In the last

couple of decades, environmental concerns over plastic pollution in the

oceans have led to several studies assessing the role of surface waves in

the transport of plastic particles near the ocean surface, see, e.g., van

den Bremer and Breivik (2018); Chamecki et al. (2019); Calvert et al.

(2021); Larsen et al. (2023); Sutherland et al. (2023) among others.

While the interaction of surface waves and currents occurs

naturally in the oceans at all times, there are many features which

have not been investigated thoroughly, owing partially to the

technical difficulties in describing various configurations

analytically. On the other hand, understanding wave-current

interaction better is of utmost importance in various applications.

For example, wave-current interactions have been reported as a

plausible mechanism for the generation of rogue waves, i.e.

unexpected and abnormally large waves which pose a great risk

to maritime transportation and man-made structures in coastal

waters. The physical origins of such unexpected waves are indicated

as linear refraction (White and Fornberg, 1998) or nonlinear effects

like modulational instability and crest amplification as a result of

bound waves (Shrira and Slunyaev, 2014; Pizzo et al., 2023; Zheng

et al., 2023; Li and Chabchoub, 2024).

Stokes drift has been considered in a few regional ocean models

in the last few decades as it is the main physical origin for various

forces sometimes called Stokes forces, as has been explained in-

depth by Suzuki and Fox-Kemper (2016) and Zippel et al. (2022).
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Craik and Leibovich (1976) have demonstrated the role of Stokes

drift in triggering Langmuir circulations through the so-called

Craik-Lebovich Type 2 (CL2) Instability. Based on large-eddy

simulations, McWilliams et al. (1997) first showed that Stokes

drift in wind-induced mean current leads to Langmuir turbulence

in the ocean which represents flow structures similar to Langmuir

cells but considerably more irregular in both time and space. The

role of Langmuir turbulence in both vertical mixing and the

horizontal transport of materials has been addressed in a variety

of papers, see, e.g., Sullivan and McWilliams (2010); McWilliams

(2016). Stokes velocity profiles are parameterized in the form of

explicit expressions for better numerical efficiency in oceanic

models, accounting for different sea states like short-crested

waves, swell, or well-developed wind seas, see, e.g., Kenyon

(1969); Ardhuin et al. (2009); Breivik et al. (2014); Webb and

Fox-Kemper (2011), Webb and Fox-Kemper, 2015); Breivik and

Christensen (2020). In contrast to the Stokes forces, there are

various models which have accounted for the roles of surface

waves in ocean models through radiation stress (Lane et al., 2007;

Qiao et al., 2010; Mellor, 2015) and steep wave-induced turbulence

(Babanin, 2006; Babanin and Chalikov, 2012; Ghantous and

Babanin, 2014).

Among the works which have examined the effect of a depth-

dependent flow on waves at the free surface, most have considered

the special case of a linearly sheared current. This configuration

induces a number of mathematical simplifications which have been

exploited by many authors (see Ali and Kalisch (2013); Flamarion

et al. (2023) and many others). Constant background vorticity

introduces a directional asymmetry in the linear dispersion

relation and rotational wave-induced motions (Peregrine, 1976;

Ellingsen, 2014a), giving rise to novel features in the pattern of both

ship waves and these generated by a moving oscillating body, see,

e.g., Ellingsen (2014b); Li and Ellingsen (2016a); Li and Ellingsen,

(2016b); Li (2018). Touboul et al. (2016) derived a mild envelope

equation for waves in a water region with a slowly varying

bathymetry and linearly sheared current. In accordance with

Craik (1970), a second-order theory for three-dimensional waves

in a linearly sheared current has been derived by Akselsen and

Ellingsen (2019). Expressions for Stokes drift velocity and particle

trajectories are particularly presented, which differ from Hsu (2013)

by that the linearly current advection effects in the linear orbital

velocity of fluid parcels have been properly considered. Thomas

et al. (2012) have derived a nonlinear Schrödinger (NLS) equation

for the evolution of the energy of surface waves with constant

vorticity. It is especially shown that different vorticity strengths can

result in various instability regions and growth rates when a Stokes

wavetrain is subject to modulational instability, which is

experimentally validated by Steer et al. (2020). Curtis et al. (2018)

have extended the NLS equation to a higher order and additionally

considered the surface tension, where a formula for the Stokes drift

velocity on a still surface has also been obtained.

In contrast, studies on waves atop an arbitrarily depth-dependent

flow have been scarce. A majority of the very few exceptions have

placed their focus on the linear dispersive properties of surface waves,

see, e.g., Stewart and Joy (1974); Skop (1987); Kirby and Chen (1989);

Shrira (1993); Ellingsen and Li (2017); Li and Ellingsen (2019);
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Ellingsen et al. (2024). Both Quinn et al. (2017) and Li and Ellingsen

(2019) lead to the linear wave action equation which in addition to the

shear flow can handle non-trivial bathymetry in a consistent manner.

Based on a newly derived second-order theory for narrowband waves

in a depth-dependent flow, Xin et al. (2023) report that the wave-

current coupling leads to much amplified loads on a bottom-fixed

vertically installed slender cylinder, posing a big risk to the safety and

reliability of offshore structures. Zheng et al. (2023) extended Xin et al.

(2023) and Li and Ellingsen (2019) to permit broadband waves, where

statistical features of surface elevation altered by a depth-dependent

flow are examined, showing the important relevance of depth-

dependent structure of current to extremely large wave events. In

both Xin et al. (2023) and Zheng et al. (2024), considerably different

wave kinematics are shown as a result of shear current-modified

second-order bound waves, where a non-vanishing velocity field

forced by second-harmonic deep-water waves is shown by both and

the latter in addition a considerable Eulerian mean flow even in the

limit of extremely narrow-banded waves.

Through laboratory observations, Pizzo et al. (2023) have, for

the first time, reported how modulational instability can be

suppressed by a background current whose profile is similar to

the Stokes drift as a result of the Stokes wave. Using a newly derived

higher-order Shear-Current Modified NLS (SC-MNLS) equation, Li

and Chabchoub (2024) also lead to a similar conclusion but due to a

wave-modified rotational flow whose profile is arbitrarily

dependent on depth instead. Interestingly, Li and Chabchoub

(2024) have led to a hypothesis that states the plausible link

between the formation of rogue waves owing to modulational

instability and the CL2 instability, addressing the need for

resolving wave phases in ocean circulations for the test of the

hypothesis. Fully nonlinear depth-integrated models for two-

dimensional waves in a depth-dependent current have been

developed by Yang and Liu (2022).

Despite of the aforementioned extensive literature, Stokes drift

accounting for the effects of an arbitrary depth-dependent flow in

both the dispersion relation and the magnitude of wave-induced

orbital motions has, to the best of the authors’ knowledge, not been

derived before, and thus never been physically elucidated. The main

objective of this work is to fill in this gap by deriving the Stokes drift

and the particle trajectories of passive fluid parcels in such a

physical setting. Novel physical features are demonstrated. With

the widely recognized role of Stokes drift, the results from this work

can be used to assessing shear current-modified wave effects in

ocean circulations, particularly in wave phase resolved oceanic

models, as addressed by Li and Chabchoub (2024). We highlight

that Stokes drift itself will be shown to possess a misalignment with

the wave propagation, and thereby likely to trigger misaligned

Langmuir rolls in realistic scenarios. Such misaligned Langmuir

rolls would differ from Van Roekel et al. (2012) in the physical

origin, where they are a result of wind surface stress and Stokes drift

which is assumed to be aligned with the wave propagation direction.

This paper is laid out as follows. A theoretical description of the

system is introduced in section 2, covering the underlying

assumptions, perturbation expansion, and the solution to a

linearized boundary value problem. The quadratic features of
Frontiers in Marine Science 03
surface waves atop a depth-dependent flow have been newly

derived in section 3 with a special focus on the Stokes drift and

particle trajectories. Approximations to Stokes drift in a few limiting

cases are particularly derived. Novel features of Stokes drift and

particular trajectories are demonstrated in section 4 in which the

approximations are tested. The conclusions from this paper are

drawn in section 5.
2 Theoretical description

2.1 System description

Let U(z) = (Ux(z),Uy(z)) be the velocity vector of a horizontally-

oriented depth-dependent flow and V(x,z,t) = [u(x,z,t),w(x,z,t)] be

the flow velocity induced by surface waves in an Eulerian frame

which has accounted for the modified effects by the depth-

dependent flow, where u and w denote the velocity vector in the

horizontal plane and the vertical velocity, respectively; x = (x,y)

denotes the position vector in the horizontal plane and z is the

vertical axis with z = 0 denoting a still water surface, Ux and Uy are

the component of the flow velocity in the x and y direction,

respectively. Assuming an incompressible flow, negligible

viscosity, and Coriolis force, the fluid system of surface waves in a

large-scale flow is described by the continuity and Euler momentum

equations given by

∇3 � V =  0, (1)

∂t (V + U) + ½(V + U) � ∇3�(V + U) + ∇3p =  0, (2)

where U = ½U, 0� is the velocity vector due to a background

depth-dependent flow; ∇3 = (∇, ∂z ) denotes the spatial gradient

operator in three dimensions with ∇ = ( ∂x , ∂y ) the gradient

operator in the horizontal plane, p(x, z, t) = P(x, z, t)=r + gz is the

dynamic pressure, with P the total pressure, r the water density

which is assumed constant, and g the gravitational acceleration. The

system is described by the dynamic and kinematic boundary

conditions at the free water surface z = z , respectively,

p − gz = 0 and  ∂t z + (u + U) � ∇z = w; (3)

and the finite-water seabed boundary condition

w = 0 for z = −h, (4)

where h denotes the water depth. The perturbed approximate

solution to the boundary value problem described by Equations 1–4 are

obtained with additional assumptions detailed in the following sections.
2.2 Perturbation expansion

Following the derivations by Zheng et al. (2023); Xin et al.

(2023), the wave-induced velocity is expressed in an approximate

form of power series in wave steepness e which is a non-

dimensional scaling parameter,
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½u,w, p, z � = є½u(1),w(1), p(1), z (1)� + є2½u(2),w(2), p(2), z (2)�, (5)

where the corrections at the third and higher orders are

truncated, and the superscript ‘(j)’ denotes O(єj). The leading

order approximations to the unknowns are solved in the context

of a prescribed train of monochromatic waves whose perturbed

elevation is given by

z (1) = a cos  y ≡
1
2
aeiy + c : c :, (6)

where c.c. denotes the complex conjugates, y = k � x − wt + q0
denotes the wave phase, a, k, and w are the (real) current-modified

amplitude, wave vector, and angular frequency of monochromatic

waves, respectively. The prescribed linear elevation leads to the

linear velocity and pressure to be solved for in the form as

½u(1),w(1)� = − 1
2 iwa½û (1)(k, z), ŵ (1)(k, z)�eiy

+c : c : and 

p(1) = 1
2 gap̂

(1)(k, z)eiy + c : c :,

(7)

where û (1), ŵ (1), and p̂ (1) are the dimensionless and depth-

dependent horizontal velocity vector, vertical velocity, and pressure,

respectively. These dimensionless quantities are solved for in the

next sub-section.
2.3 Linear waves

Substituting the expression for the linear vertical velocity into

the linearized boundary value problem based on Equations 1–4

gives rise to [see, e.g., Li and Ellingsen (2019)]

(k � U − w)( ∂zz −k
2)ŵ (1) − k � U00ŵ (1)

=  0 for  − h ≤ z ≤ 0

(8)

(w − k � U0)
2 ∂z ŵ

(1) − ½gk2 − (w − k � U00
0)k � U00

0�ŵ (1)

=  0 for z = 0, (9)

ŵ (1) =  0 for z = −h, (10)

whereℜ the prime denotes the derivative with respect to z (e.g.,

U0 = ∂z U and U00 = ∂zz U) and subscript ‘0’ denotes the evaluation

at z = 0. Following Li and Ellingsen (2019), the dispersion relation

and the linearized boundary value problem are solved together for

the unknown dimensionless velocity and angular velocity using the

Direct Integration Method (DIM). Specifically, the dispersion

relation is described by

coth  kh +
Z0

−h

k � U00(z)
k � U(z) − w

sinh k(z + h)
sinh   kh

ŵ (1)dz

0
@

1
A

(w − k � U0)
2 +

k � U 0
0

k
(w − k � U0) − gk = 0:

(11)

Furthermore, the horizontal velocity vector and pressure of

linear wave-induced flow in the presence of an arbitrary depth-
Frontiers in Marine Science 04
dependent background current are given by, respectively

û (1) =  
(k � U0)k − k2U0

k2(w − k � U) iŵ (1) +
ik
k2

(ŵ (1))
0
, (12)

p̂ (1) =  
w − k � U

k2
i ŵ (1)
� �0

+
k � U0

k2
iŵ (1) : (13)

We remark that a current propagating in the orthogonal

direction to the wave propagation, which means k � U = 0, k � U0 =
0, and k � U00 = 0, does not affect the dispersion relation and

dimensionless vertical velocity described together by Equations 8–

11. Nevertheless, the orbital velocity in the span-wise direction

remains altered by the vorticity of the shear current when U
0
y ≠ 0 in

Equation 12. This non-vanishing orbital velocity has far-reaching

effects on the Stokes drift and particle trajectories, as elaborated in

sub-section 3.2.2 and section 4.
2.4 Linear velocity of fluid parcels and
particle trajectories

The particle trajectories of fluid motions due to linear waves can

be directly obtained by noting that the linear particle velocity

V(1)
p = ½u(1) + U(z),w(1)�, (14)

which gives rise to

Dr(1) ≡ ½Dxp(t),Dzp(t)�

= ½U(z)(t − t0), 0� +ℜ û (1), ŵ (1)
h i

aei(y+wt0)
� �

, (15)

where ℜ denotes the real component, Dr(1) = r(1)(t) − r(t0)

denotes the linear displacement related to the position of the

particle at an initial time instant t = t0. For later reference, we

introduce a time-averaging operator ‘ (… )’ defined as

(… ) =
w
2p

Z2p=w

0

(… )dt, (16)

which denotes the time averaging with respect to the period of

the wave phase.
3 Quadratic properties of linear waves

3.1 Stokes drift and net mean trajectories
in an arbitrary shear current

Assuming infinitestimal waves where O(ka) ≪ 1, the particle

velocity in the second order in wave steepness can be obtained by a

Taylor expansion about r(t) = r(1)(t)

V(2)
p = u(2),w(2)

h i
+ (Dr(1) � ∇3)V

(1)
p , (17)

where∇3 = (∇, ∂z ),∇ = ( ∂x , ∂y ), u
(2) and w(2), as noted, denote

the Eulerian velocity vector in the horizontal plane and the vertical
frontiersin.org
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velocity due to second-order waves, respectively. The Stokes driftVS

denotes the net mean transport velocity of particles correct to

second order in wave steepness. It is obtained by averaging the

second term on the right-hand side of Equation 17, and thus

VS ≡ ½Dr(1) � ∇3�V(1)
p

=
wa2

4
i ∂z ŵ

(1) + ŵ (1) ∂z
� �

V̂
(1)

� �
*+c : c : (18)

where V̂
(1)

= ½û (1), ŵ (1)� by definition, the continuity equation

ik � û (1) + ∂z ŵ
(1) = 0 was used, both c : c : and the asterisk denote

the complex conjugates. We note that the vertical velocity of the

mean motion of particles vanishes (as ij ∂z ŵ (1)j2 + c : c : = 0), and

thus

VS =
wa2

4
i ∂z ŵ

(1) + ŵ (1) ∂z
� �

(û (1))* + c : c :, 0

� �
: (19)

Substituting (12) for û (1) into (19) gives rise to

VS k, z; ŵ (1),w
� �

=
kwa2

4k2
½j ∂z (ŵ (1))j2 + ∂zz ŵ (1)

� �
*ŵ (1)�

+
wa2

4
(k � U0)k − k2U0

k2(w − k � U) ∂z jŵ (1)j2

+
wa2

4
jŵ (1)j2 ∂z

(k � U0)k − k2U0

k2(w − k � U)
� �

+ c : c : (20)

In the absence of a shear current, i.e., U(z) = ½0, 0�, and ŵ =

ŵ noC with ŵ noC

ŵ noC =
sinh   k(z + h)

sinh   kh
, (21)

the Stokes drift denoted by Equation 20 becomes

VS(k, z) =
1
2
cosh   2k(z + h)

( sinh   kh)2
w
k
(ka)2ek , (22)

where ek denotes the unit vector in the direction of the wave

vector k. We remark that the dimensionless vertical velocity given by

Equation 21 also corresponds the vertical velocity for linear waves

atop a linearly sheared current, which will be used in §3.2.1. The
Stokes drift velocity given by Equation 22 agrees with the net mean

horizontal displacement driven by a train of linear Stokes waves on a

finite water depth and also on deep water in the limit of kh → +∞

(Kenyon, 1969). For later reference and convenience, we introduce

Vs,0 = Vs(k, 0), (23)

corresponding to the Stokes drift velocity at a still water surface

in the absence of a current.

It is worth noting that the Stokes drift velocity given by

Equation 20 has a non-vanishing component as long as the

profile shear of the current is non-zero in the spanwise direction,

giving rise to a non-vanishing component of the vorticity of fluid

parcels in the wave propagation direction.
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3.2 Limiting cases of different
current profiles

We proceed to the explicit expression for the profiles of Stokes

drift velocity in three limiting cases which are elaborated below.

3.2.1 A linearly sheared current
A linearly sheared current whose velocity profile U = Sz is firstly

assumed, where S denotes the constant vorticity vector of the shear. For

a train of Stokes wave, the vertical velocity of the particles induced by

linear waves are the same as these in the absence of a shear current, i.e.,

Equation 21 [see, e.g (Peregrine, 1976; Ellingsen, 2014a)]. Substituting

both the linear shear current profile and the dimensionless vertical

velocity ŵ (1) in the form of Equation 21 into Equation 20 gives rise to

VS(k, z; ŵ noC,w) =
1
2
cosh  2k(z + h)

(sinh   kh)2
wa2k

+
1
2
(k � S)k − k2S
k(w − zk � S)

sinh   2k(z + h)

sinh2kh
wa2+

 
½(k � S)k − k2S�(k � S)
2k2(w − zk � S)2

sinh2k(z + h)

sinh2kh
wa2 :

(24)

where the linear dispersion relation of waves atop a linearly

shear current admits an accurate expression (Peregrine, 1976; Li

and Ellingsen, 2016a)

w(k) = k � U0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh  kh +

(k � S)2 tanh2 kh
4k2

r

−
k � S tanh kh

2k
: (25)

We notice that there exists a pole at w/(k·S) = zc for k·S < 0 in

Equation 24, where zc denotes a critical depth which may trigger the

instability of the flow system, as discussed in previous works like Shrira

(1993) and Li and Ellingsen (2019, their §4.3). From a physical point of

view, it is nevertheless typical that either |zc|≫ h on a finite depth or the

current projection in the wave propagation direction cannot reach the

same magnitude as the phase velocity in deep water in practice. As a

result, the critical depth does not bear much physical meaning in the

applicability regime considered in this work.

3.2.2 A shear current propagating orthogonal to
the wave propagation

We proceed to consider the limiting cases of a nonlinear profile of

shear current propagating in the direction orthogonal to the wave

propagation direction, i.e., k · U(z) = 0 is understood, leading to

simplifications for the Stokes drift velocity given by Equation 20. In

particular, such current profiles are unidirectionally oriented at different

depths, and the Stokes drift velocity possesses a reduced form as follows

VS(k, z) =
ka2w
2
½ cosh   2k(z + h)

( sinh   kh)2
k
k
−
sinh   2k(z + h)

sinh2 kh

U 0

w

−
sinh   k(z + h)

sinh   kh

� �2U 00

kw
� (26)

where ŵ is understood to be in the form as Equation 21 (Li and

Ellingsen, 2019) and w =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk  tanh  kh

p
is admitted. Evidently, the
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Stokes drift velocity in the limiting cases where a shear current

orients in the direction which is constant in the vertical direction

and normal to the wave propagation has a non-vanishing

component in the direction normal to wave propagation, in

contrast to the cases in the absence of a shear current where the

Stokes drift induced by a train of monochromatic waves always

follows the direction of wave propagation.

3.2.3 A weakly-sheared current under the near-
potentiality assumption

As has been detailed in Ellingsen and Li (2017) and Shrira

(1993), the near-potentiality (or irrotationality) assumption can be

made when the dimensionless parameter єc is small, i.e., єc≪ 1, with

єc being defined as

єc =
Z0

−h

k � U0(x) sinh   2k(x + h)
w0 sinh   (2kh)

dx, (27)

with w0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk  tanh  kh

p
. The dimensionless small parameter єc

bears the physical meaning of the wave vector weighted, depth-

integrated, and current-modified effect on the dispersion relation as

a leading-order approximation to the wave dispersion relation given

by (see, Ellingsen and Li (2017))

w ≈ w
≈ ,1st with w

≈ ,1st = k � U0 + w0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + є2c

p
− єc

� �
, (28)

where the approximate dispersion relation (Equation 28) is correct

to O(єc). The higher-order approximations to the dispersion relation

of waves than Equation 28 are derived by Kirby and Chen (1989) and

Ellingsen and Li (2017). Under the near-irrotationality assumption,

the normalized vertical velocity ŵ is given by Equation 21, inserting

which into Equation 20 gives rise to a leading-order approximation to

the Stokes drift velocity Vs = Vs,≈ with

Vs, ≈ =
1
2
cosh   2k(z + h)

( sinh   kh)2
w≈a

2k

+
1
2
(k � U0)k − k2U0

k2(w≈ − k � U)
sinh 2k(z + h)

sinh2kh
ka2w≈+

       ∂z
(k � U0)k − k2U0

k2(w≈ − k � U)
� �

sinh2 k(z + h)

2 sinh2kh
ka2w≈,

(29)

where the approximation by Equation 28 to the angular frequency

was used. We remark that Equation 29 is an approximation to the

Stokes drift for any current profiles in the applicability regime while

Equations 24, 26 are second-order accurate expressions of the Stokes

drift velocity due to waves in a linearly sheared current and a depth-

dependent current propagating in the span-wise direction, respectively.

Following Ellingsen and Li (2017), a higher-order

approximation to the Stokes drift velocity can be readily obtained

by inserting a higher-order approximation to the dimensionless

vertical velocity and angular frequencies, respectively,

ŵ ≈ ŵ noC + ŵ≈ and w ≈ w
≈ , 1st + w

≈ , 2nd, (30)

where

ŵ≈(k, z) =  W(k, z) −W(k, 0)ŵ noC(k, z), (31)
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W(k, z) =  
1
k

Zz

−h

k � U00(x)
k � U(x) − w≈,1st

sinh   k(x + h) sinh   k(z − x)
sinh   kh

dx,

(32)

and

w
≈ , 2nd =   −

D(w≈,1st)

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + e2c

p  w0, (33)

D(s ) =   −
2s
w2
0

Z0

−h

k � U00(z) sinh   k(z + h)
k(k � U(z) − s )

½ sinh   kz
sinh   kh

(w0єc

− k � U0) −
Z0

z

2k � U(x) cosh   k(2x + h − z)
− sinh   2kh

kdx�dz : (34)

Here, the second term on the right hand side of Equation 31

corresponds to the solution of the homogeneous Laplace equation.

The boundary conditions at the still water surface and seabed for

the dimensionless vertical velocity are well satisfied; i.e., ŵ noC(k, 0)

+ŵ≈(k, 0) = 1 and ŵ noC(k,−h) + ŵ≈(k, −h) = 0

Vs, ≈ , 2nd = Vs(k, z; ŵ noC + ŵ≈,w≈ , 1st + w
≈ , 2nd), (35)

being an approximation to Vs which is correct to O(є2єc) and

with an accuracy at one higher order of magnitude in єc than the

approximation given by Equation 29.
3.3 Particle trajectories

The particle trajectories in the first and second order in wave

steepness are given by definition according to, respectively,

r(1)(t) =  r0 +
Zt

0

V(1)
p (t)dt   →  r(1)(t)

= r0 +
1
2
½û (1), ŵ (1)�aeiy + c : c :, (36)

r(2)(t) =  
Zt

0

V(2)
p (r(1)(t))dt , (37)

which denote the time integration of the respective particle

velocities. The initial time instant t0 is set 0 without any loss of

generality. A leading-order approximation to the total particle

transport can thus be given by

rp(t) = r(1) + r(2) and Drp = Vst, (38)

where the definition Drp = r(t) is introduced to denote the net

mean displacement offlow parcels due to waves or wave and current

interaction. This means that the mean displacement due to the

current alone is not included in Drp as it is not the focus of this

work. We note that the trajectories predicted by Equations 36, 37
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are leading-order approximations in contrast to the approach from

a known velocity field via systems of ordinary differential equations,

the latter of which has been used by a number of authors in different

settings (Borluk and Kalisch, 2012; Chen et al., 2021).
4 Results

In this section, the analytical and semi-analytical solutions

derived in § 3 are numerically implemented for the analysis. The

setup for the numerical implementations is explained in subsection

4.1, where a few current profiles are assumed. The novel features

related to the Stokes drift are demonstrated in subsection 4.2 due to

a background current and the approximations to Stokes drift

presented in 3.2 are validated. The trajectories and the net mean

displacement of fluid parcels are presented in subsection 4.3 using

the expressions derived in subsection 3.3.
4.1 Setup for numerical implementations

Three different vertically sheared current profiles are chosen for

numerical implementations, including a linearly sheared,

exponential, and realistic profile measured at a river mouth

implemented in Li and Ellingsen (2019). The linearly and

exponential profiles admit analytical expressions as follows,

respectively,

UL(z) =  ½Frxax , Fryay�
ffiffiffiffi
ɡ
k

r
(kz), (39)

Uexp(z) =  ½Frx(eaxkz − 1), Fry(e
aykz − 1)�

ffiffiffiffi
ɡ
k

r
, (40)

where Frx and Fry are non-dimensional parameters which

measure the magnitude of a profile velocity component of the

background current in the x and y direction, respectively, relative to

the phase velocity of deepwater waves; and the dimensionless

parameters ax and ay are a measure of the shear strength of the

current velocity at a still water surface in the x and y direction,

respectively, compared with the decay of the magnitude of the

wave-induced orbital velocity. When ax,y > 1, it denotes that the

decay rate of the magnitude of the current velocity component with

depth is larger than that of the wave-induced orbital velocity.

Specific values in various cases are chosen for the four

dimensionless parameters, Frx, Fry, ax, and ay. We remark that,

as a result of the profile variation with depth being the focus of this

work, the profile velocity of both the linear and exponential current

is set zero; i.e., UL(0) = 0 m/s and Uexp(0) = 0 m/s. Doing so permits

the profile variation to be better assessed as the physics origin differs

from the effects from a uniform current which has been extensively

investigated (see, e.g., Peregrine (1976)). The neglect of current

velocity on a still water surface can be physically represented as that

the wave frequency considered here is intrinsic, i.e., w – k·U0,

corresponding to the difference between the absolute wave
Frontiers in Marine Science 07
frequency and the effect of a background uniform current on the

linear dispersion of waves.

The exponential profiles and velocity profile measured at a river

mouth against the dimensionless water depth are shown in Figure 1,

the latter of which are referred to as the river profile for later

references. Moreover, the dimensionless parameter єc based on

Equation 27 has been given for a specific current profile shown in

Figure 1, where a larger value of єc indicates a stronger profile shear

of current ‘felt’ by the chosen wave. Any current oriented in the

direction orthogonal to the wave propagation admits єc = 0 as the

identity of k·U′ = 0 holds.
4.2 Stokes drift

4.2.1 Novel features
The Stokes drift profiles against depth in various currents are

shown in Figure 2. Three novel features are demonstrated as a result

of wave and shear current interaction, compared with the classic

conclusion for Stokes drift. Firstly, the Stokes drift has a non-

vanishing component in the direction orthogonal to the wave

propagation as a result of a non-vanishing depth-dependent

component of the current in the span-wise direction, as is

observed in panels (d, e, f) of Figure 2. This feature is regardless

of the specific dependence of the current component Uy(z), as long

as the inequality U
0
y(z) ≠ 0 holds, being consistent with the physical

interpretation of the Stokes drift expression given by Equation 20.

This feature can only be demonstrated without the assumption of

two-dimensional cases which have been extensively examined, see,

e.g., Akselsen and Ellingsen (2019); Ellingsen (2014a). Hence, it can

be expected in many realistic situations due to the three-

dimensional nature of physical processes in the open ocean,

although it is, for the first time, physically elucidated here. A few

relevant examples of currents can be found in previous works that

are expected to result in such a novel feature reported here, should it

be physically resolved in the models. For example, depth-dependent

wind drifts being misaligned with waves propagation as highlighted

in Van Roekel et al. (2012). The Ekman currents are also typical of

possessing a non-uniform directionality (McWilliams et al., 1997).

The second feature is demonstrated in panels (b, e) in Figure 2

which correspond to an exponentially sheared current, that the

magnitude of the Stokes drift does not decrease exponentially with

water depth but experiences firstly an increase in magnitude and

thereafter a decrease as depth increases from the surface to a

sufficiently large depth. The non-monotonically varying

magnitude of the Stokes drift with depth is due to Equation 20

which consists of both the wave following and opposing terms, the

latter of which relies on a non-vanishing shear and curvature of the

current profile. In other words, such a non-monotonic nature

mainly arises from the contribution of the shear production of

current opposing to the wave propagation while noting that the

cases of waves alone produce a Stokes drift which decreases

exponentially with depth in the wave-propagation direction. The

second feature is examined more in detail in Figure 3 where the
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Stokes drift is depicted against an exponential current with an

increase in the shear strength from panel (a) to (c) indicated by an

increasing value of єc. It is seen from panel (a) that the behavior of

the Stokes drift is monotonic with depth when the shear strength of

the current is small, which becomes non-monotonic as the shear

strength is sufficiently large in panel (b) and remains so in panel (c).

The third feature is demonstrated in panel (c) of both

Figures 2 and 3 that the Stokes drift profile experiences a change

of sign in the magnitude over the water column from the surface

to a deeper depth. From the perspective of mass transport over an

entire water column, the change of the sign indicates a

cancellation in the depth integrated manner, thereby likely

leading to an underestimated role of shear current on mass

transport in depth-integrated models such as Yang and Liu
Frontiers in Marine Science 08
(2022). Furthermore, different from the general understanding,

the Stokes drift holds a sign opposing the wave propagation near

the water surface, which again arises from the terms having a

negative sign in Equation 20 being more dominant, i.e., the terms

proportional to − U
0
x where U

0
x holds a positive sign in all

examples in panels (b, c) of Figures 2 and 3.

We stress that the aforementioned three features are strikingly

different from the cases in the absence of the currents (or in the

presence of uniform currents) which are also depicted in Figure 2,

where the Stokes drifts have a magnitude that decreases exponentially

with depth as ∼ cosh[2k(z + h)]/cosh(2kh), as well as a direction only

aligned with the propagation direction of the ‘parent’ wave (i.e., the

positive x direction). With real-life example profiles of tidal currents

shown in Figure 4 where the current profiles were measured at the
FIGURE 1

Current profiles used for numerical demonstrations. Panel (A) exponential profiles and (B) current profile measured at a river mouth [see, e.g., Li and
Ellingsen (2019)].
FIGURE 2

Stokes drift velocity profiles at various depths; two main aspects to highlight; (1) Novel physics illustrated (e.g., 2D cases and 2D versus 3D; linear
versus profiles with non-vanishing curvature); (2) general and approximate results: clearly state the overlapping blue and red lines); panels (A, D)
linearly sheared current and kh = p; panels (B, E) exponential currents and kh = p, where profile 2 in Figure 1A was used but Uy(z) = 0 m/s was set
instead for the two dimensional case; (C, F) kh = 1 and the river profile with [Ux(z),0] and [0,Uy(z)] was chosen for the 2D and 3D case, respectively,
where Ux,y is according to Figure 1B.
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mouth of Columbia river by Zippel and Thomson (2017) and used in

Zheng et al. (2024), the novel features of the Stokes drift in 2D cases

are confirmed. The non-monotonic behavior of the Stokes drift with

depth is clearly demonstrated again in Figure 4B, owing to the change

of the sign of the profile shear of the opposing current and the

respective moderate value measured by єc.
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4.2.2 Approximate Stokes drift
We proceed to examine the Stokes drift profiles derived in

subsection 3.2 in limiting cases through the comparisons with the

expression (Equation 20) for general cases shown in both Figures 2

and 3. Figure 2 shows three example current profiles for both two

and three-dimensional waves, including a linearly and exponentially
FIGURE 3

Comparison of the approximations to the Stokes drift and the general Stokes drift given by Equation 20, where Uy = 0 m/s was used for all cases. The first-
and second-order approximations are based on Equations 29, 35, respectively. Panel (A–C) used exponential profile (1,2,3) in Figure 1B) with єc = 0.085,
єc = 0.13, and єc = 0.15, respectively. Panel (D) used the river profile.
FIGURE 4

Stokes drift velocity profiles against the depth (panels (A, B, D, E) atop a following (panels (A, D) and opposing (panels (B, E) tidal current measured at
the mouth of Columbia river (Zippel and Thomson, 2017; Zheng et al., 2024), where the water depth of 25 m was used and the dimensionless
parameter єc was estimated based on Equation 27. The scaled velocity profiles of the following (with negative surface shear) and opposing (with
positive surface shear) tidal currents are shown in both panel (C, F) due to two different monochromatic waves chosen in panels (A, B) and panels
(D, E), where kh = 1 and kh = 2 were set for the top and lower rows, respectively.
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sheared current and a current representing the profile measured at

the mouth of a river. The Stokes drift profile (Equation 24) is

analytic for the cases in the presence of a linearly sheared current

and a spanwise oriented current profile, which is demonstrated by

panels (a, d) and panel (f), respectively as expected. Specifically, the

results from either Equations 24 or 26 and 20 are not distinguishable

to the numerical extent of the thickness of the lines. When the

currents propagate along the spanwise direction or are not linearly

sheared, the differences between the approximate Stokes drift

(Equation 29) and the general expression given by Equation 20

are noticeable. The differences are considerable in the case of an

exponential current in both the two- (panel (b)) and three-

dimensional (panel (e)) cases, where the non-monotonic depth-

dependent structure is not well predicted by the first-order

approximation using Equation 29. A similar observation is

reported in panel (c) of Figure 2 where the first-order

approximation represents more similar profile features as the

Stokes drift in the absence of a current but far off the accurate

prediction. It is worth noting that the component of the approximate

Stokes drifts in the y direction which is orthogonal to the wave

propagation, shows a good agreement with Equation 20 in panel (e),

which corresponds to when the shear strength of the current profile

is considered to be large. This good agreement may be explained by

that the Stokes drift component in the span-wise direction is more

shear-production dominated and less affected by shear-current

modified wave dispersion properties and єc = 0 is admitted.
4.3 Particle trajectories

The wave-induced particle trajectories are shown in Figures 5 and 6

for two- and three-dimensional waves in a current modeled by 3

different depth-dependent profiles, respectively, together with the net

mean displacement due to the Stokes drift given by Equation 20.

Similar to the classic conclusion, it is seen from Figures 5 and 6 that the

particle trajectories are not closed arising from a net mean horizontal

displacement accumulated per period. In contrast, a striking difference

is demonstrated in Figure 6 for three-dimensional cases in which

rotational particle trajectories are observed, owing to the non-vanishing
Frontiers in Marine Science 10
transverse y particle motions and the respective net mean

displacements. Interestingly, the net mean displacement of particles

at various depths shown in panels (a, b, c) behaves in a spiral manner as

the depth increases in the presence of an exponentially sheared current.

The largest net mean displacement in the wave-propagation direction

over a fixed time interval does not appear for the particles at the surface

but these below a certain depth. For the special case examined in panels

(a, b, c) of Figure 6, it appears for particles at kzp,0 ≈−0.3, where zp,0 is

the vertical position of a particle at rest as noted. Generally, the net

displacement of particle motions in Figures 5 and 6 show consistent

results with the predictions using the Stokes drift velocity as they

should, which well validate the expression of Stokes drift given by

Equation 20, in addition to these shown in Appendix 1.
5 Concluding remarks
and perspectives

This paper has derived explicit formulae for the Stokes drift

velocity and particle trajectories by monochromatic waves in an

arbitrarily depth-dependent flow, following the Direct Integration

Method (DIM) proposed by Li and Ellingsen (2019) for the linear

dispersion relation and orbital velocity of fluid parcels. Numerical

implementation has been carried out based on the analytical results

derived by this work using a few cases which involve different

current profiles. Three novel features related to the Stokes drift, and

thereby the particle trajectories, have been demonstrated for the

first time, as a result of rotational motions of fluid parcels due to the

coupling between a shear current and surface waves.
i. When the depth-dependent flow poses a non-vanishing

shear in the span-wise direction, the Stokes drift velocity is

no longer aligned with the direction of the wave propagation.

This feature naturally introduces a misalignment to the wave

propagation, being a likely cause to the misaligned Langmuir

rolls which have been widely observed in nature, see, e.g.,

Van Roekel et al. (2012).

ii. When the depth-dependent structure of the flow velocity

affects the features of surface waves in a nonweak
FIGURE 5

Wave-induced trajectories for two-dimensional waves from the initial time instant of t = 0 s to t = 10Tp, where Tp denotes the period of waves and
the net mean displacement due to current alone was not included. The net horizontal displacement is computed due to Stokes drift velocity (white
dashed) based on Equation 20.
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Fron
manner, which corresponds to the wavenumber and

depth weighted dimensionless parameter defined in

expression (Equation 27) in the regime of єc≳ 0.1, the

magnitude of the Stokes drift does not decrease with

depth in a monotonic manner. We show that this leads to

that the maximum of the net mean displacement of fluid

parcels by waves after a fixed duration is no longer at the

surface but at a depth below a still water surface. The

physical implications of this feature in other physical

processes in the air-sea interaction remain to be

demonstrated in future works.

iii. When the surface shear is strong, i.e., єc≳ 0.1, a change of

the direction (or sign) of Stokes drift velocity has been

observed, and thereby a cancellation in the mass transport

over a water column can develop, given that the mass

transport by monochromatic waves can be estimated

through integratingthe Stokes drift over the entire water

column. This indicates that a depth-integrated model such

as Yang and Liu (2022) can likely lead to underestimated

effects of a current on the local mass transport.
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Reduced forms of the approximate Stokes drift velocity have been

derived under the assumption of weak irrotationality of wave-induced

flow motions as explained in Shrira (1993); Ellingsen and Li (2017).

The first and second-order approximations are compared with the

more general formulae derived by this work. The former provides a

good approximation when єc ≲ 0.05 but the second-order

approximation is necessary for demonstrating the key features of the

Stokes drift for єc≳ 0.1. It shall be noted that the numerical

implementation of the second-order approximation demands a

much larger computational cost than the direct implementation of

the Stokes drift given by Equation 20 based on the DIM and thus is not

recommended from a practical point of view. Nevertheless, good

agreement between the second-order approximation and the

predictions by Equation 20 has been consistently observed.

Although based on an asymptotic approximate model, the

aforementioned three novel features enable unconventional insights

into Stokes drift induced by surface waves, producing far-reaching

impact on physical processes in the open oceans as well as suggesting

potential directions for future studies. The results obtained from here

can be directly used for a more accurate parameterization of the Stokes
FIGURE 6

Wave-induced trajectories for 3D cases: The top, middle, and bottom rows show the particle trajectories in the xoz, yoz, and xoy planes, respectively.
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drift as a driving force due to surface waves in regional circulation

models, see such as Breivik et al. (2014); Suzuki and Fox-Kemper (2016)

for an example. This work can also be used to shed light on the question:

how the misalignment between the Stokes drift velocity and waves in an

obliquely oriented depth-dependent current affect the formation of

Langmuir rolls to an oblique angle to the wave propagation.
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Ardhuin, F., Marié, L., Rascle, N., Forget, P., and Roland, A. (2009). Observation and
estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at
the sea surface. J. Phys. Oceanography 39, 2820–2838. doi: 10.1175/2009JPO4169.1

Babanin, A. V. (2006). On a wave-induced turbulence and a wave-mixed upper ocean
layer. Geophys. Res. Lett. 33, L20605. doi: 10.1029/2006GL027308

Babanin, A. V., and Chalikov, D. (2012). Numerical investigation of turbulence
generation in non-breaking potential waves. J. Geophys. Res.: Oceans 117, C06010.
doi: 10.1029/2012JC007929

Bjørnestad, M., Buckley, M., Streßer, M., Horstmann, J., Cysewski, M., and Carrasco-
Alvarez, R. (2021). Lagrangian measurements of orbital velocities in the surf zone.
Geophys.Res. Lett. 48, e2021GL095722. doi: 10.1029/2021GL095722

Borluk, H., and Kalisch, H. (2012). Particle dynamics in the KdV approximation.
Wave Motion 49, 691–709. doi: 10.1016/j.wavemoti.2012.04.007

Breivik, Ø., and Christensen, K. H. (2020). A combined Stokes drift profile under
swell and wind sea. J. Phys. Oceanogr. 50, 2819–2833. doi: 10.1175/JPO-D-20-0087.1

Breivik, Ø., Janssen, P. A., and Bidlot, J.-R. (2014). Approximate Stokes drift profiles
in deep water. J. Phys. Oceanogr. 44, 2433–2445. doi: 10.1175/JPO-D-14-0020.1

Calvert, R., McAllister, M., Whittaker, C., Raby, A., Borthwick, A., and Van Den
Bremer, T. (2021). A mechanism for the increased wave-induced drift of floating
marine litter. J. Fluid Mech. 915, A73. doi: 10.1017/jfm.2021.72

Chamecki, M., Chor, T., Yang, D., and Meneveau, C. (2019). Material transport in
the ocean mixed layer: recent developments enabled by large eddy simulations. Rev.
Geophys. 57, 1338–1371. doi: 10.1029/2019RG000655

Chen, L., Basu, B., and Martin, C.-I. (2021). On rotational flows with discontinuous
vorticity beneath steady water waves near stagnation. J. Fluid Mech. 912, A44.
doi: 10.1017/jfm.2020.1057
Chen, Y.-Y., Hsu, H.-C., and Chen, G.-Y. (2010). Lagrangian experiment and
solution for irrotational finite-amplitude progressive gravity waves at uniform depth.
Fluid Dyn. Res. 42, 045511. doi: 10.1088/0169-5983/42/4/045511

Constantin, A., and Monismith, S. (2017). Gerstner waves in the presence of mean
currents and rotation. J. Fluid Mech. 820, 511–528. doi: 10.1017/jfm.2017.223

Craik, A. D. (1970). A wave-interaction model for the generation of windrows.
J. Fluid Mech. 41, 801–821. doi: 10.1017/S0022112070000939

Craik, A., and Leibovich, S. (1976). A rational model for Langmuir circulations.
J. Fluid Mech. 73, 401–426. doi: 10.1017/S0022112076001420

Curtis, C., Carter, J., and Kalisch, H. (2018). Particle paths in nonlinear Schrodinger¨
models in the presence of linear shear currents. J. Fluid Mech. 855, 322–350.
doi: 10.1017/jfm.2018.623

Davey, A., and Stewartson, K. (1974). On three-dimensional packets of surface
waves. Proc. R. Soc London Ser. A. Math. Phys. Sci. 338, 101–110. doi: 10.1098/
rspa.1974.0076

Dysthe, K. B. (1979). Note on a modification to the nonlinear Schrodinger¨ equation
for application to deep water waves. Proc. R. Soc London Ser. A. Math. Phys. Sci. 369,
105–114. doi: 10.1098/rspa.1979.0154

Ellingsen, S.Å. (2014a). Initial surface disturbance on a shear current: The Cauchy-
Poisson problem with a twist. Phys. Fluids 26, 082104. doi: 10.1063/1.4891640

Ellingsen, S.Å. (2014b). Ship waves in the presence of uniform vorticity. J. Fluid
Mech. 742, R2. doi: 10.1017/jfm.2014.28

Ellingsen, S.Å., Abid, M., Kharif, C., and Li, Y. (2024). Dispersive wave focusing on a
shear current: Part 1 — Linear approximations. Water waves 6, 367-411. doi: 10.1007/
s42286-024-00085-3

Ellingsen, S., and Li, Y. (2017). Approximate dispersion relations for waves on
arbitrary shear flows. J. Geophys. Res.: Oceans 122, 9889–9905. doi: 10.1002/
2017JC012994

Flamarion, M. V., Castro, E. M., and Ribeiro-Jr, R. (2023). Pressure anomalies
beneath solitary waves with constant vorticity. Eng 4, 1306–1319. doi: 10.3390/
eng4020076
frontiersin.org

https://doi.org/10.1017/jfm.2018.960
https://doi.org/10.1016/j.euromechflu.2012.09.009
https://doi.org/10.1175/2009JPO4169.1
https://doi.org/10.1029/2006GL027308
https://doi.org/10.1029/2012JC007929
https://doi.org/10.1029/2021GL095722
https://doi.org/10.1016/j.wavemoti.2012.04.007
https://doi.org/10.1175/JPO-D-20-0087.1
https://doi.org/10.1175/JPO-D-14-0020.1
https://doi.org/10.1017/jfm.2021.72
https://doi.org/10.1029/2019RG000655
https://doi.org/10.1017/jfm.2020.1057
https://doi.org/10.1088/0169-5983/42/4/045511
https://doi.org/10.1017/jfm.2017.223
https://doi.org/10.1017/S0022112070000939
https://doi.org/10.1017/S0022112076001420
https://doi.org/10.1017/jfm.2018.623
https://doi.org/10.1098/rspa.1974.0076
https://doi.org/10.1098/rspa.1974.0076
https://doi.org/10.1098/rspa.1979.0154
https://doi.org/10.1063/1.4891640
https://doi.org/10.1017/jfm.2014.28
https://doi.org/10.1007/s42286-024-00085-3
https://doi.org/10.1007/s42286-024-00085-3
https://doi.org/10.1002/2017JC012994
https://doi.org/10.1002/2017JC012994
https://doi.org/10.3390/eng4020076
https://doi.org/10.3390/eng4020076
https://doi.org/10.3389/fmars.2024.1445116
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1445116
Ghantous, M., and Babanin, A. V. (2014). Ocean mixing by wave orbital motion.
Acta Phys. Slovaca 64, 1–57. doi: 10.2478/apsrt-2014-0001

Higgins, C., van Den Bremer, T., and Vanneste, J. (2020). Lagrangian transport by
deep-water surface gravity wavepackets: effects of directional spreading and
stratification. J. Fluid Mech. 883, A42. doi: 10.1017/jfm.2019.877

Hsu, H.-C. (2013). Particle trajectories for waves on a linear shear current. Nonl.
Analy. Real World App. 14, 2013-2021. doi: 10.1016/j.nonrwa.2013.02.005

Kenyon, K. E. (1969). Stokes drift for random gravity waves. J. Geophys. Res. 74,
6991–6994. doi: 10.1029/JC074i028p06991

Kharif, C., and Pelinovsky, E. (2003). Physical mechanisms of the rogue wave
phenomenon. Europ. J. Mech.-B/Fluids 22, 603–634. doi: 10.1016/j.euromechflu.2003.09.002

Kirby, J., and Chen, T. (1989). Surface waves on vertically sheared flows: approximate
dispersion relations. J. Geophys. Res.: Oceans 94, 1013–1027. doi: 10.1029/JC094iC01p01013

Lane, E. M., Restrepo, J., and McWilliams, J. C. (2007). Wave–current interaction: A
comparison of radiation-stress and vortex-force representations. J. Phys. Oceanogr. 37,
1122–1141. doi: 10.1175/JPO3043.1

Larsen, B. E., Al-Obaidi, M. A. A., Guler, H. G., Carstensen, S., Goral, K. D.,
Christensen, E. D., et al. (2023). Experimental investigation on the nearshore transport
of buoyant microplastic particles. Mar. pollut. Bull. 187, 114610. doi: 10.1016/
j.marpolbul.2023.114610

Li, Y. (2018). Wave-interference effects on far-field ship waves in the presence of a
shear current. J. Ship Res. 62, 37–47. doi: 10.5957/JOSR.170017

Li, Y., and Ellingsen, S. (2019). A framework for modeling linear surface waves on
shear currents in slowly varying waters. J. Geophys. Res.: Oceans 124, 2527–2545.
doi: 10.1029/2018JC014390

Li, Y. (2021). Three-dimensional surface gravity waves of a broad bandwidth on deep
water. J. Fluid Mech. 926, 1–43. doi: 10.1017/jfm.2020.1076

Li, Y., and Chabchoub, A. (2024). How currents trigger extreme sea waves. The roles
of Stokes drift, Eulerian return flow, and a background flow in the open ocean. Geophys.
Res. Lett. 51, e2023GL107381. doi: 10.1029/2023GL107381

Li, Y., and Ellingsen, S. (2016a). Multiple resonances of a moving oscillating
surface disturbance on a shear current. J. Fluid Mech. 808, 668–689. doi: 10.1017/
jfm.2016.637

Li, Y., and Ellingsen, S. (2016b). Ship waves on uniform shear current at finite depth:
wave resistance and critical velocity. J. Fluid Mech. 791, 539–567. doi: 10.1017/
jfm.2016.20

Li, Y., and Li, X. (2021). Weakly nonlinear broadband and multi-directional surface
waves on an arbitrary depth: A framework, Stokes drift, and particle trajectories. Phys.
Fluids 33, 076609. doi: 10.1063/5.0057215

Li, Y., Smeltzer, B. K., and Ellingsen, S. A. (2019). Transient wave resistance upon a
real shear current. Europ. J. Mech.-B/Fluids 73, 180–192. doi: 10.1016/
j.euromechflu.2017.08.012

Longuet-Higgins, M. S. (1953). Mass transport in water waves. Philos. Trans. R. Soc A
245, 535–581. doi: 10.1098/rsta.1953.0006

McIntyre, M. (1981). On the’wave momentum’ myth. J. Fluid Mech. 106, 331–347.
doi: 10.1017/S0022112081001626

McWilliams, J. C. (2016). Submesoscale currents in the ocean. P. R. Soc London. A.
472, 20160117. doi: 10.1098/rspa.2016.0117

McWilliams, J. C., Sullivan, P. P., and Moeng, C. (1997). Langmuir turbulence in the
ocean. J. Fluid Mech. 334, 1–30. doi: 10.1017/S0022112096004375

Mellor, G. (2015). A combined derivation of the integrated and vertically resolved,
coupled wave–current equations. J. Phys. Oceanogr. 45, 1453–1463. doi: 10.1175/JPO-
D-14-0112.1

Monismith, S., Cowen, E., Nepf, H., Magnaudet, J., and Thais, L. (2007). Laboratory
observations of mean flows under surface gravity waves. J. Fluid Mech. 573, 131–147.
doi: 10.1017/S0022112006003594

Myrhaug, D. (2015). Stokes drift estimation based on long-term variation of wave
conditions. Proc. Institution Mechanical Engineers Part M: J. Eng. Maritime Environ.
229, 141–146. doi: 10.1177/1475090213506699

Myrhaug, D., Wang, H., and Holmedal, L. E. (2014). Stokes drift estimation for deep
water waves based on short-term variation of wave conditions. Coast. Eng. 88, 27–32.
doi: 10.1016/j.coastaleng.2014.01.014

Onorato, M., Proment, D., and Toffoli, A. (2011). Triggering rogue waves in
opposing currents. Phys. Rev. Lett. 107, 184502. doi: 10.1103/PhysRevLett.107.184502

Peregrine, D. H. (1976). Interaction of water waves and currents. Adv. Appl. Mech.
16, 9–117. doi: 10.1016/S0065-2156(08)70087-5

Pizzo, N., Lenain, L., Rømcke, O., Ellingsen, S.Å., and Smeltzer, B. K. (2023). The role
of Lagrangian drift in the geometry, kinematics and dynamics of surface waves. J. Fluid
Mech. 954, R4. doi: 10.1017/jfm.2022.1036

Qiao, F., Yuan, Y., Ezer, T., Xia, C., Yang, Y., Lü, X., et al. (2010). A three-
dimensional surface wave–ocean circulation coupled model and its initial testing.
Ocean Dynamics 60, 1339–1355. doi: 10.1007/s10236-010-0326-y
Frontiers in Marine Science 13
Quinn, B., Toledo, Y., and Shrira, V. (2017). Explicit wave action conservation for
water waves on vertically sheared flows. Ocean Model. 112, 33–47. doi: 10.1016/
j.ocemod.2017.03.003

Shrira, V. I. (1993). Surface waves on shear currents: solution of the boundary-value
problem. J. Fluid Mech. 252, 565–584. doi: 10.1017/S002211209300388X

Shrira, V., and Slunyaev, A. (2014). Nonlinear dynamics of trapped waves on jet
currents and rogue waves. Phys. Rev. E 89, 041002. doi: 10.1103/PhysRevE.89.041002

Skop, R. A. (1987). Approximate dispersion relation for wave-current interactions. J.
Waterway Port Coastal Ocean Eng. 113, 187–195. doi: 10.1061/(ASCE)0733-950X
(1987)113:2(187)

Smith, J. A. (2006). Observed variability of ocean wave Stokes drift, and the Eulerian
response to passing groups. J. Phys. Oceanogr. 36, 1381–1402. doi: 10.1175/JPO2910.1

Steer, J. N., Borthwick, A. G., Stagonas, D., Buldakov, E., and van den Bremer, T. S.
(2020). Experimental study of dispersion and modulational instability of surface gravity
waves on constant vorticity currents. J. Fluid Mech. 884, A40. doi: 10.1017/jfm.2019.951

Stewart, R. H., and Joy, J. W. (1974). HF radio measurements of surface currents.
Deep Sea Res. Oceanogr. Abstracts 21, 1039–1049. doi: 10.1016/0011-7471(74)90066-7

Stokes, G. G. (1847). On the theory of oscillatory waves.Math. Phys. Pap. 1, 197-229.

Sullivan, P. P., and McWilliams, J. C. (2010). Dynamics of winds and currents
coupled to surface waves. Ann. Rev. Fluid Mech. 42, 19–42. doi: 10.1146/annurev-fluid-
121108-145541

Sutherland, B. R., DiBenedetto, M., Kaminski, A., and Van Den Bremer, T. (2023).
Fluid dynamics challenges in predicting plastic pollution transport in the ocean: A
perspective. Phys. Rev. Fluids 8, 070701. doi: 10.1103/PhysRevFluids.8.070701

Suzuki, N., and Fox-Kemper, B. (2016). Understanding Stokes forces in the wave-
averaged equations. J. Geophys. Res. C: Oceans 121, 3579–3596. doi: 10.1002/
2015JC011566

Thomas, R., Kharif, C., and Manna, M. (2012). A nonlinear Schrödinger equation for
water waves on finite depth with constant vorticity. Phys. Fluids 24, 127102.
doi: 10.1063/1.4768530

Touboul, J., Charland, J., Rey, V., and Belibassakis, K. (2016). Extended mild-slope
equation for surface waves interacting with a vertically sheared current. Coast. Eng. 116,
77–88. doi: 10.1016/j.coastaleng.2016.06.003

Ursell, F. (1953). The long-wave paradox in the theory of gravity waves. Math. Proc.
Cambridge Philos. Soc. 49, 685–694. doi: 10.1017/S0305004100028887

van den Bremer, T. S., and Breivik, Ø. (2018). Stokes drift. Philos. Trans. R. Soc A 376,
20170104. doi: 10.1098/rsta.2017.0104

van den Bremer, T., Whittaker, c., Calvert, R., Raby, A., and Taylor, P. (2019).
Experimental study of particle trajectories below deep-water surface gravity wave
groups. J. Fluid Mech. 879, 168-186. doi: 10.1017/jfm.2019.584

Van Dyke, M. (1982). An album of fluid motion Vol. 176 (California: The Parabolic
Press).

Van Roekel, L., Fox-Kemper, B., Sullivan, P., Hamlington, P., and Haney, S. (2012).
The form and orientation of langmuir cells for misaligned winds and waves. J. Geophys.
Res.: Oceans 117, C05001. doi: 10.1029/2011JC007516

Webb, A., and Fox-Kemper, B. (2011). Wave spectral moments and Stokes drift
estimation. Ocean Model. 40, 273–288. doi: 10.1016/j.ocemod.2011.08.007

Webb, A., and Fox-Kemper, B. (2015). Impacts of wave spreading and
multidirectional waves on estimating Stokes drift. Ocean Modell. 96, 49–64.
doi: 10.1016/j.ocemod.2014.12.007

White, B. S., and Fornberg, B. (1998). On the chance of freak waves at sea. J. Fluid
Mech. 355, 113–138. doi: 10.1017/S0022112097007751

Xin, Z., Li, X., and Li, Y. (2023). Coupled effects of wave and depth-dependent
current interaction on loads on a bottom-fixed vertical slender cylinder. Coast. Eng.
183, 104304. doi: 10.1016/j.coastaleng.2023.104304

Yang, Y., Li, Y., Li, J., Liu, J., Gao, Z., Guo, K., et al. (2021). The influence of Stokes
drift on oil spills: Sanchi oil spill case. Acta Oceanologica Sin. 40, 30–37. doi: 10.1007/
s13131-021-1889-9

Yang, Z., and Liu, P. L.-F. (2022). Depth-integrated wave–current models. part
2. current with an arbitrary profile. J. Fluid Mech. 936, A31. doi: 10.1017/
jfm.2022.42

Zheng, Z., Li, Y., and Ellingsen, S.Å. (2023). Statistics of weakly nonlinear waves on
currents with strong vertical shear. Phys. Rev.Fluids 8, 014801. doi: 10.1103/
PhysRevFluids.8.014801

Zheng, Z., Li, Y., and Ellingsen, S.Å. (2024). Dispersive wave focusing on a shear current.
part 2: nonlinear effects. Water Waves. 6, 413-449. doi: 10.1007/s42286-024-00097-z

Zippel, S. F., Farrar, J. T., Zappa, C. J., and Plueddemann, A. J. (2022). Parsing the
kinetic energy budget of the ocean surface mixed layer. Geophys. Res. Lett. 49,
e2021GL095920. doi: 10.1029/2021GL095920

Zippel, S., and Thomson, J. (2017). Surface wave breaking over sheared currents:
Observations from the Mouth of the Columbia River. J. Geophys. Res.: Oceans 122,
3311–3328. doi: 10.1002/2016JC012498
frontiersin.org

https://doi.org/10.2478/apsrt-2014-0001
https://doi.org/10.1017/jfm.2019.877
https://doi.org/10.1016/j.nonrwa.2013.02.005
https://doi.org/10.1029/JC074i028p06991
https://doi.org/10.1016/j.euromechflu.2003.09.002
https://doi.org/10.1029/JC094iC01p01013
https://doi.org/10.1175/JPO3043.1
https://doi.org/10.1016/j.marpolbul.2023.114610
https://doi.org/10.1016/j.marpolbul.2023.114610
https://doi.org/10.5957/JOSR.170017
https://doi.org/10.1029/2018JC014390
https://doi.org/10.1017/jfm.2020.1076
https://doi.org/10.1029/2023GL107381
https://doi.org/10.1017/jfm.2016.637
https://doi.org/10.1017/jfm.2016.637
https://doi.org/10.1017/jfm.2016.20
https://doi.org/10.1017/jfm.2016.20
https://doi.org/10.1063/5.0057215
https://doi.org/10.1016/j.euromechflu.2017.08.012
https://doi.org/10.1016/j.euromechflu.2017.08.012
https://doi.org/10.1098/rsta.1953.0006
https://doi.org/10.1017/S0022112081001626
https://doi.org/10.1098/rspa.2016.0117
https://doi.org/10.1017/S0022112096004375
https://doi.org/10.1175/JPO-D-14-0112.1
https://doi.org/10.1175/JPO-D-14-0112.1
https://doi.org/10.1017/S0022112006003594
https://doi.org/10.1177/1475090213506699
https://doi.org/10.1016/j.coastaleng.2014.01.014
https://doi.org/10.1103/PhysRevLett.107.184502
https://doi.org/10.1016/S0065-2156(08)70087-5
https://doi.org/10.1017/jfm.2022.1036
https://doi.org/10.1007/s10236-010-0326-y
https://doi.org/10.1016/j.ocemod.2017.03.003
https://doi.org/10.1016/j.ocemod.2017.03.003
https://doi.org/10.1017/S002211209300388X
https://doi.org/10.1103/PhysRevE.89.041002
https://doi.org/10.1061/(ASCE)0733-950X(1987)113:2(187)
https://doi.org/10.1061/(ASCE)0733-950X(1987)113:2(187)
https://doi.org/10.1175/JPO2910.1
https://doi.org/10.1017/jfm.2019.951
https://doi.org/10.1016/0011-7471(74)90066-7
https://doi.org/10.1146/annurev-fluid-121108-145541
https://doi.org/10.1146/annurev-fluid-121108-145541
https://doi.org/10.1103/PhysRevFluids.8.070701
https://doi.org/10.1002/2015JC011566
https://doi.org/10.1002/2015JC011566
https://doi.org/10.1063/1.4768530
https://doi.org/10.1016/j.coastaleng.2016.06.003
https://doi.org/10.1017/S0305004100028887
https://doi.org/10.1098/rsta.2017.0104
https://doi.org/10.1017/jfm.2019.584
https://doi.org/10.1029/2011JC007516
https://doi.org/10.1016/j.ocemod.2011.08.007
https://doi.org/10.1016/j.ocemod.2014.12.007
https://doi.org/10.1017/S0022112097007751
https://doi.org/10.1016/j.coastaleng.2023.104304
https://doi.org/10.1007/s13131-021-1889-9
https://doi.org/10.1007/s13131-021-1889-9
https://doi.org/10.1017/jfm.2022.42
https://doi.org/10.1017/jfm.2022.42
https://doi.org/10.1103/PhysRevFluids.8.014801
https://doi.org/10.1103/PhysRevFluids.8.014801
https://doi.org/10.1007/s42286-024-00097-z
https://doi.org/10.1029/2021GL095920
https://doi.org/10.1002/2016JC012498
https://doi.org/10.3389/fmars.2024.1445116
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1445116
Appendix

In this section, we validate the derivations used for the results

presented in section 4. Appendix 1 shows the good agreement

between the Stokes drift velocity evaluated using (20) and the

analytical approach for the cases without a current and with a

linearly sheared current. Appendix 2 depicts that the particle

trajectories predicted by (38) agree well with the net mean

displacement obtained from the predictions using the Stokes drift

velocity given by (20) in both the x and y direction.
APPENDIX 2

Wave-induced particle trajectories in the xoz (panels (A, D) and yoz (panels (B, E) planes and the current velocity components varying with the
dimensionless depth kz where k denotes the wavenumber of a monochromatic wave propagating in the positive x direction.
APPENDIX 1

Stokes drift velocity in the x and y direction for waves alone and in the presence of a linearly sheared current, where the analytical results for the
case in the former and latter are based on (22) and (24), respectively.
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