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Aerial images are increasingly adopted and widely used in various research areas.

In marine mammal studies, these imagery surveys serve multiple purposes:

determining population size, mapping migration routes, and gaining behavioral

insights. A single aerial scan using a drone yields a wealth of data, but processing

it requires significant human effort. Our research demonstrates that deep

learning models can significantly reduce human effort. They are not only able

to detect marine mammals but also track their behavior using continuous aerial

(video) footage. By distinguishing between different age classes, these algorithms

can inform studies on population biology, ontogeny, and adult-calf relationships.

To detect beluga whales from imagery footage, we trained the YOLOv7model on

a proprietary dataset of aerial footage of beluga whales. The deep learning model

achieved impressive results with the following precision and recall scores: beluga

adult = 92%—92%, beluga calf = 94%—89%. To track the detected beluga whales,

we implemented the deep Simple Online and Realtime Tracking (SORT)

algorithm. Unfortunately, the performance of the deep SORT algorithm was

disappointing, with Multiple Object Tracking Accuracy (MOTA) scores ranging

from 27% to 48%. An analysis revealed that the low tracking accuracy resulted

from identity switching; that is, an identical beluga whale was given two IDs in

two different frames. To overcome the problem of identity switching, a new

post-processing algorithm was implemented, significantly improving MOTA to

approximately 70%. The main contribution of this research is providing a system

that accurately detects and tracks features of beluga whales, both adults and

calves, from aerial footage. Additionally, this system can be customized to

identify and analyze other marine mammal species by fine-tuning the model

with annotated data.
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1 Introduction

Behavioral research on cetaceans is challenging. Such research is

especially challenging on polar species. Their remote location, the

hostile environmental conditions and the financial costs involved

severely limit scientific access to wild populations. Field studies of

behavior (such as social behavior and feeding habits) on Arctic

whales has also been limited by technology and poor visibility. Most

behavioral research to date has relied on photo-identification of

whale dorsal fins and exposed backs taken at oblique angles from

land or boats. This captures a small fraction of the behavior and a

small fraction of the animals, severely limiting scientific insight. All

these challenges pertain particularly to research on beluga whales,

especially populations in the High Arctic where there are few

locations where beluga whales are consistently present in clear

waters in summer. In this study we tackled each of these challenges.

The use of technology for monitoring marine species,

particularly cetaceans, has become an increasingly valuable tool in

conservation and ecological research. For instance, the use of

unmanned systems offers a non-invasive method for observing

animal behavior, movement patterns, and habitat use, thus

providing significant advantages for conservation efforts. Durban

et al. Durban et al. (2015) utilized a compact unmanned hexacopter

(APH-22) to photograph killer whales (Orcinus orca). Over the

course of 60 flights, they captured 18,920 images, which enabled

precise measurement and identification of individual whales based

on unique natural markings. This method demonstrated the

effectiveness of automated imaging for non-intrusive, large-scale

monitoring of whale populations. Similarly, in a study on beluga

whales (Delphinapterus leucas), researchers used automated

imagery to create a photographic identification catalog based on

unique markings (Ryan et al., 2022). Their analysis identified 93

individuals, contributing valuable data for understanding beluga

populations and the threats they face.

The technology of using drones to detect and tracking marine

animals enables detailed studies of animals in their natural

environments with minimal human interference, contributing to

the broader goal of wildlife monitoring and protection, as illustrated

in Table 1. We launched an expedition in summer 2022 to the High

Arctic and set up a field camp close to one of the few locations

where beluga whales concentrate in clear water and conducted

continuous observations over three weeks. Such extended field

camps are rare at such latitudes. Ours was one of the first for

over 20 years. We used new technology, unmanned aerial vehicles

(UAVs) or drones, to capture detailed beluga whale behaviors from

a novel angle. The clear waters combined with the drone data

provided unprecedented views of how these whales interact with

each other and respond to changes in their environment.

Advancements in computer vision and deep learning have

further enhanced the capabilities of remote monitoring

technologies, allowing us to efficiently process huge amount of

data collected by drones. Object detection, a fundamental task of

computer vision, plays a critical role for this task. However, it poses

challenges in beluga whale detection and tracking due to variations

in scale, appearance, occlusion, and cluttered backgrounds.
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Traditionally, object detection methods comprised three main

steps: 1) searching for Regions of Interest (RoI), 2) extracting

discriminative features, and 3) classifying objects, relying heavily

on feature descriptors (Ballard, 1981). Despite significant resource

allocation, improvements in traditional methods became less

pronounced over time, highlighting their limitations. In contrast,

deep learning methods, particularly those employing Convolutional

Neural Networks (CNNs), have made remarkable progress by

enabling models to learn hierarchical feature representations from

raw image data (Girshick et al., 2014). CNNs have significantly

improved the performance of computer vision tasks such as

classification and localization, becoming essential tools in modern

wildlife monitoring and other domains like healthcare (Jan et al.,

2024; Alsaidi et al., 2023; Lin et al., 2017).

To overcome the limitations of manual analysis of image data,

researchers have begun to employ automated techniques for detecting

marine fauna in aerial and satellite imagery. Borowicz et al. (2019)

used a CNN to detect whales in high-resolution satellite imagery,

achieving a detection accuracy exceeding 90%. Similarly, another study

applied the YOLOv4 CNN architecture to detect belugas, kayaks, and

motorized boats in oblique imagery (Harasyn et al., 2022). In that

research, DeepSORT was used as a tracking algorithm, yielding

promising results for multiple-object tracking accuracy (MOTA)

and multiple-object tracking precision (MOTP), with scores ranging

from 37% to 88% and 63% to 86%, respectively. The major limitation

encountered was the brief visibility of belugas at the water’s surface,

which restricted the frames available for accurate tracking.

Other deep learning applications for whale detection have shown

promising results as well. For instance, Bogucki et al. (2018) organized

a crowdsourcing competition on Kaggle to automate the detection of

North Atlantic Right whales (Eubalaena glacialis), achieving 87%

precision using CNNs. In another study, deep learning was used to

automatically detect whales in very high-resolution (VHR) satellite

imagery. This research introduced Enhanced Super-Resolution

Generative Adversarial Networks (ESRGAN) to improve image

quality while maintaining texture, resulting in a dataset of 6,000

satellite images containing whales (Kapoor et al., 2023). Guirado et al.

Guirado et al. (2019) also developed a two-step method for whale

counting, using CNNmodels to first detect whales in images and then

quantify the number of whales within each detected image. This

approach improved precision by 36% compared to standalone

detection models.

Our study aims to integrate aerial, non-intrusive video with

autonomous detection and tracking for monitoring beluga whales.

Specifically, our system: a) employs a modular design integrating

advanced object detection and tracking techniques, b) processes

video streams in real-time, and c) offers a scalable, non-invasive

platform for monitoring beluga whales in their natural habitat.

In the remainder of this paper, Section 2 discusses the materials

and methods, including the dataset and the data annotation method

used in this research. This is followed by the presentation of the

beluga whale detection and tracking algorithms, the post-processing

procedure, and issues related to model training and evaluations.

Section 3, Results and Discussions, presents both the beluga whale

detection and tracking results using the aforementioned dataset of
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the proposed method, along with comparisons with some state-of-

the-art detection and related tracking methods in the literature. The

paper concludes with remarks addressing the ecological and

conservation implications of this research, the advantages and

limitations of the proposed approach, and future work.
2 Materials and methods

2.1 Study area

Aerial drone footage was collected of beluga whales in Creswell

Bay in the Qikiqtaaluk Region, Nunavut in Canada’s High Arctic

(Figure 1) in the summer of 2022 as part of a study conducted in

partnership with indigenous communities on the population status

and behavioral responses of whales to a changing Arctic.
2.2 Data acquisition

In this study, we used newly acquired data that had not been

introduced in the research community before. The behavior of beluga

whales in the wild was observed and recorded via videography using

small unmanned aerial vehicles (UAVs). DJI® quadcopters (Phantom

4, and Mavik 2 models) with gimbaled cameras recorded UHD 4K

video of whales performing social behavior though this study is

focused on tracking only. With special permits (OPA-ACC-2022-

NU and AUP) from Fisheries and Oceans Canada, under the Animal

Use Protocol, our UAVs were allowed to fly 20 meters above sea level,

which is significantly lower than the normally permitted 300 meters.

Water visibility typically ranged from 5m to 12m, sometimes

greater, and often reached the seafloor when whales were in shallow

waters. This facilitated the collection of high-resolution videos of

whale behaviors both above and right below the water surface,

allowing for the collection of entire behavior sequences, where

whales were under continuous observation, for periods of up to 25

minutes. It should be noted that viewing beluga whales in the wild for

extended periods in clear water conditions is unusual, as they typically
Frontiers in Marine Science 03
inhabit turbid waters with poor visibility during summer months or

ice-strewn waters at other times of the year (Torres et al., 2018).
2.3 Data annotation

Data annotation is a crucial initial step in the development of

deep learning pipelines. The data utilized for this study was

extracted from the acquired drone footage videos, with frames

extracted at a rate of one frame every three seconds. A total of

400 images were carefully chosen for annotation corresponding to

the variety of scenes captured by the drone. The selection process

aimed to accommodate various factors such as the drone’s altitude,

the color and depth of seawater, and beluga whales’ closeness to the

shore and to each other. The selection of distinctive scenes for

annotation greatly contributes to the model’s ability to accurately

localize beluga whales present under different conditions.

Annotating data for the localization task requires enclosing

beluga whales present in the image with bounding boxes and

assigning appropriate labels to each individual whale. This

diligent process can be tedious and prone to error. To aid with

the annotation process, we utilized Roboflow (Roboflow, 2024), a

comprehensive data annotation solution. Figure 2 shows a sample

of an original image and the annotated image with bounding boxes.

Roboflow further assists in the generation and splitting of the

dataset. Additionally, augmentation techniques were applied to

the data to further diversify our dataset. Multiple augmentation

techniques were used, such as random translations and image

scaling with factors of up to 0.2 and 0.9, respectively. We also

applied random rotations up to 90 degrees, horizontal flipping with

a probability of 0.5, mosaic augmentation (Bochkovskiy et al.,

2020), mixup augmentation (Zhang et al., 2017) with a

probability of 0.15, and HSV augmentation with 0.015, 0.7, and

0.4 maximum variations for hue, saturation, and value, respectively.

To reduce the computational cost associated with data

annotation and model training, image resolution was adjusted

from the original 4K resolution to a downsized resolution of

1080x1080. Images with a resolution lower than 1080x1080
FIGURE 1

Location of drone footage capture.
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presented difficulties in accurate annotation as the defining features

of the beluga whale became less prominent. This was especially true

with beluga calves that were increasingly difficult to identify in

videos with low resolutions.

For the task of tracking beluga whales in the drone footage, a

different approach was adopted utilizing nutsh.ai (Xu and Yu,

2023), an advanced tool specifically designed for video annotation

for tracking tasks, as well as other vision tasks. This platform

specializes in temporal data annotation, a key aspect for

effectively tracking objects across video frames. In this phase,

nutsh.ai was employed to annotate sequences rather than

individual frames, enabling the identification and continuous

tracking of individual beluga whales over time.

The process involved annotating the trajectory of each beluga

whale across consecutive frames, ensuring a consistent

identification of each individual throughout the sequence. This

was particularly challenging given the dynamic nature of the

underwater environment and the movement of the whales. The

nutsh.ai platform’s features like interpolation of bounding boxes

and automatic tracking algorithms greatly facilitated this task.
Frontiers in Marine Science 04
These features significantly reduced the workload and aided in

improving the consistency of the annotations.

The tracking data generated from nutsh.ai provided invaluable

insights for the development of the deep learning model. This

model not only needed to accurately detect the presence of beluga

whales in a single frame (as handled by Roboflow) but also required

the capability to track their movement time by assigning each

annotated object with an ID. The combination of these two

annotation approaches – spatial localization with Roboflow and

temporal tracking with nutsh.ai – offered a comprehensive dataset,

crucial for the development of an effective and robust deep learning

pipeline for monitoring and studying beluga whale behavior using

drone footage.

Figure 3 shows a screen view of our tracking annotation setup

using nutsh.ai. This is one of the videos that was annotated and it

contains four unique objects that were tracked through the

sequence. The highlighted boxes on the right margin contain the

annotation information added and tracked. It is important to

highlight the preservation of the Object ID value across different

frames which is essential for tracking tasks.
FIGURE 3

nutsh.ai annotation platform: tracking annotation showing four object IDs with respective information.
FIGURE 2

An example of data annotation: original image (left) and annotated image with bounding boxes (right).
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2.4 Beluga whale detection and
tracking algorithms

This section presents the model employed in our study for

beluga whale detection and tracking. Our primary objective was to

develop a comprehensive system for localizing and tracking beluga

whales in UAV footage. Our solution needed real-time performance

and the ability to process high-resolution footage with minimal

latency while posing no negative effect on the accuracy of the model.

Additionally, this should be done with a small overhead in

computation and with the adaptability of retraining and

expanding the model’s knowledge. To that extent, we set our eyes

on YOLO models coupled with the SORT algorithm for tracking.

YOLO, which stands for You Only Look Once, is a well-

developed and highly efficient object detection framework. Over

the years, many researchers and practitioners have participated in

the development and enhancement of YOLO. Unlike prior work,

YOLO frames object detection as a regression problem to spatially

separated bounding boxes and class probabilities in one evaluation.

This unified architecture enables real-time performance which is

crucial for our UAV-based system. In this study, we employed
Frontiers in Marine Science 05
YOLOv7 (Wang et al., 2023), a version that was released in July

2022, the most recent version at the time of this study.

For tracking, we integrated the SORT algorithm (Bewley et al.,

2016) with YOLO. The SORT algorithm is a popular tracking

algorithm that extends our system’s abilities to track objects in

real time with little overhead in computation. SORT operates on

bounding boxes provided by the object detection model. It operates

by assigning unique IDs to individual objects to track them over

consecutive frames and estimates their positions and velocities

using a Kalman filter (Kalman, 1960).

Our system is the fusion of these algorithms together. First,

YOLO provides detections at a frame level which serves as an input to

the SORT algorithm for multi-object tracking. SORT matches

detections to existing tracks based on intersection-over-union

(IOU) between bounding boxes. New tracks are initialized for

unmatched detections, while tracks that cannot be matched for a

certain number of consecutive frames are terminated. Our system

thereby achieves simultaneous object detection and tracking for

beluga whales. Figure 4 shows the operation of our system at a

high level. The input is sent to YOLOv7 for detection and the detected

bounding boxes are passed into the SORT algorithm for tracking.
FIGURE 4

The process of object detection and tracking from beluga video sequences.
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Kalman filter predicts the trajectory of each target. The outputs of the

Kalman filter and YOLO’s bounding boxes are evaluated by the

Hungarian algorithm which optimizes the assignment of detected

objects to predicted trajectories. This step is crucial for maintaining

consistent tracking across frames.

By combining YOLO’s efficient object detection with the robust

tracking capabilities of SORT, our system achieves real-time and

accurate localization and tracking of beluga whales in UAV footage.

The integration of these algorithms allows for efficient computation

with low overhead, enabling the system to handle large-scale

datasets and adapt to varying tracking scenarios. Moreover, the

modular nature of the system enables easy retraining and expansion

of the model’s knowledge, making it a flexible solution for future

improvements and applications in object detection and tracking.
2.5 Post-processing algorithm

As effective as SORT is, we recognized an opportunity to

improve the tracking performance using a simple yet effective

post-processing technique. Object identity switch is an important

factor that negatively contributes to the accuracy of multi-object

tracking, which is the metric under which a tracking algorithm is

judged. Upon evaluating our system performance we noticed a large

discrepancy of the object id between our ground truth data and the

system output. Due to the nature of our dataset, a whale diving into

the water or re-entering a frame was given a new object id, leading

to an increase in the id switch counter. This was significantly

affecting our evaluation metric. A countermeasure for handling

this issue is to implement a post-processing technique. The idea

behind the algorithm is that if a new object is detected in a new

frame, which is very close to a disappeared object in the previous

frame, the two objects are most likely identical. The algorithm based

on this idea is provided below (Algorithm 1).
Fron
1 Input: framet, framet+1

2 Output: framet, frame∗
t+1

1. for each frame in detected_objects:

a. Initialize a list of tuples ½(OBJi,t ,  OBJi,t+1)…(OBJn,t

,  OBJn,t+1)� where
OBJi,t  =  (OBJID,i,t,  BBOXi,t+1) :

b. for each tuple (OBJi,t ,  OBJi,t+1) in the list:

(1) if OBJID,i,t   ==  OBJID,i,t+1 :

skip update
tiers in Marine Science 06
(2) else:

(1) Compute IoU(BBOXi,t ,  BBOXi,t+1)

(2) if IoU > Threshold,

update OBJ∗
ID,i,t+1 = OBJID,i,t :
Algorithm 1. Post-processing technique for object identity
switch reduction.

Note that there is a parameter called ‘Threshold’ in Algorithm 1.

Its value defines a neighborhood within which a newly detected

object will be considered the same as the object that appeared

before. The value of Threshold needs to be adjusted through

experiments. Due to a high sampling rate of the videos, an

identical object would overlap across consecutive frames. The

introduced post-processing algorithm evaluates the closeness of

an old object to the detected object by computing the intersection

over union (IoU) between two objects across consecutive frames. If

the computed IoU is higher than a set Threshold, then the detected

object is considered to have the same object id with the old one.
2.6 Model training for beluga
whale detection

To effectively create a system to detect Beluga whales from the given

drone footage, a suitable dataset for this task must be created. To that

extent, we leverage the Roboflow framework, which provides a user-

friendly interface for data annotation and dataset generation (see section

2.3). The dataset generated using Roboflow was annotated with two

classes that are (Adult BelugaWhale, Beluga Calf). After augmenting the

annotated images, the dataset had a total of 600 images. Furthermore,

the dataset was split into training, validation, and testing data using an

80/10/10 data split, resulting in 480 images for training, 60 images for

validating, and 60 images for testing for a fair evaluation.

We utilized transfer learning to finetune the YOLOv7 model on

our dataset using the readily available model on GitHub (Wong

et al., 2022) and YOLOv7 pre-trained weights. Fine-tuning our

model allows us to leverage the knowledge YOLO has acquired

from being trained on a large benchmark dataset COCO (Lin et al.,

2014b). Furthermore, it reduces our computation cost as the model

does not require to be trained for hundreds of epochs.

For our input, we used the annotated dataset generated, and

images were kept at 1080x1080 resolution. Model hyperparameters

were fine-tuned, and we achieved the best performance with (batch

size = 16, learning rate = 0.01). Furthermore, we employed the SGD

optimizer with a 0.9 momentum.
2.7 Object detection and tracking
evaluation metrics

The effectiveness of the trained object detection model was

evaluated using the precision, recall, F1-score, and mAP (mean

Average Precision) metrics.
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Fron
• Precision: Measures the percentage of detections that

were correct.

• Recall: Measures the percentage of objects that were

correctly detected.

• F1-Score: The harmonic mean of precision and recall,

providing a balanced evaluation of the model’s performance.

• mAP@0.5: it is the average over all classes of the area under

the Precision-Recall curve for an IOU threshold of 0.5

(Everingham et al., 2010; Lin et al., 2014a)
The formulas for calculating the metrics are as follows:

Precision =
TP

TP + FP
1

Recall =
TP

TP + FN
2

F1 − Score  =
2 �  Precision �  Recall

Precision  +  Recall
3

where TP is the number of true positives (correctly identified

objects), FP is the number of false positives (misclassified objects),

and FN is the number of false negatives (objects that were

not detected).

To evaluate the tracking performance of the model, we utilized

standard metrics that are commonly reported in multi-object

tracking literature. The primary metric we focused on was MOTA
tiers in Marine Science 07
(Multiple Object Tracking Accuracy), which indicates the tracking

model’s ability to maintain accurate object trajectories. The metric,

MOTA, combines identity switches, false positives, and missed

detection into a single comprehensive tracking accuracy measure.

The formula for calculating MOTA is as follows:

MOTA  =  1 −ot(FNt   +  FPt   +  IDSWt)

otGTt
4

where t is the frame index, GT is the number of ground truth

objects in the respective frame, and IDSW is the changing of ID

value assigned to an object.
3 Results and discussion

3.1 Training and validation results

The YOLOv7 model was trained for a total of 50 epochs on our

hand-annotated dataset. Figure 5 presents the loss curves from our

model training, providing a comprehensive overview of the training

and validation performance.

A detailed explanation of Figure 5 is given below:
• The Box plot demonstrates a consistent and significant

reduction in the loss associated with bounding box

coordinates throughout 50 training epochs, decreasing
FIGURE 5

YOLOv7 training loss curves.
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Fron
from an initial value of 0.08 to a final value of 0.03.

Similarly, the validation counterpart, val Box, exhibits a

notable drop from 0.12 to 0.06, indicating improved

localization accuracy on unseen data.

• The Objectness plot displays a consistent decrease in the loss

associated with objectness score prediction throughout training,

gradually declining from 0.05 to 0.012. Correspondingly, the

validation plot, val Objectness, showcases a similar trend,

lowering the loss from 0.045 to 0.025.

• The Classification plot exhibits a steady decline in the loss

value from 0.0175 to 0.0025, indicating an improved ability

of the model to classify objects correctly. The validation

counterpart, val Classification, also demonstrates a decrease

from 0.018 to 0.0065, confirming the model’s generalization

capabilities on unseen data.
A factor we noticed having an influence on the training results

was the image input size, which we kept at 1080x1080 resolution.
tiers in Marine Science 08
Lower-resolution images negatively impacted model performance

due to pixel distortion caused by down-scaling.
3.2 Beluga whale detection testing

The beluga whale detection testing involved comparing the

results of the trained beluga whale detection model with the ground

truth data. Ground truth data is the data the authors of this paper

annotated using Roboflow. The test dataset comprised 60 images

that were selected accordingly to represent the diverse scenes in

which beluga adult whales appeared. Additionally, test images also

include scenes with Beluga calves swimming close to adult beluga

whales. Figure 6 shows only 4 unique images that encapsulate

diverse scenes. The top row with images annotated 1-4 represents

the ground truth images that were hand-labeled using the

RoboFlow platform and the bottom row shows the same images

as output from our trained detection model YOLOv7.
FIGURE 6

Comparative analysis between expert-annotated data (top) and system detection (bottom).
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Figure 6 shows one miss-classification but almost no failed

detection among the test dataset. In Figure 6, the first image shows a

miss-classification of a beluga whale that was classified as a beluga

calf. Overall our detection model produced near-perfect

performance in localizing beluga adult whales and beluga calves.

Note that some of the images included calves, including newborn

neonate individuals.

Figure 7 shows the F1-curve that we obtained by running our

trained YOLOv7 model on the testing data. The curve shows a 0.92

F1-score at 0.437 confidence for all classes. This visualization

encapsulates the model’s performance comprehensively. At a

confidence threshold of 0.437, the F1 curve showcases an

impressive F1-score of 0.92 across all classes. A more granular

representation of the results is presented in Table 2, over our 60

images test set. Some limitations arise due to natural reasons such as

occlusion caused by the depth of the whale underwater in

some scenes.

In our comprehensive evaluation, detailed metrics underscore

the efficacy of our object detection model, as depicted in Table 2.

Across all categories, the model exhibited a commendable precision

of 93.4% and recall of 91.2%, demonstrating robust and accurate

detection and localization of adult beluga whales and beluga calves.

Specifically, the detection of ‘Beluga Adult’ whales was highly

accurate, with precision and recall rates closely aligned at 92.2%

and 92.9%, respectively. This indicates a consistent performance of

the model in identifying adult belugas. Performance metrics for

‘Beluga Calf’ detection also proved to be highly accurate, with

precision reaching 94.6%, and with a slightly reduced recall of

89.6%, hinting at the nuanced challenges involved in calf detection.

The model also achieved approximately 93.4% mAP at a confidence

level of 0.5 and approximately 44.2% mAP within the range of 0.5 to

0.95, which we believe represents a state-of-the-art performance.

Finally, we present the classification results of the detected

objects in the test dataset, as summarized in the confusion matrix

(Figure 8). The model demonstrates robust performance, with high

precision in distinguishing between ‘Beluga Adult ’ and

‘Background’, as evidenced by the high true positive rates of 95%

and 92% respectively. The ‘Beluga Calf’ class is also well-identified
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with a true positive rate of 90%. However, some confusion between

the ‘Beluga Calf’ and ‘Background’ classes is observed. Upon

investigating the misclassified cases we noticed that due to the

water glare over the surface, some glare is detected and classified as

a beluga calf. The overall high accuracy across classes indicates that

the model is effective for its intended purpose, with specific

opportunities for refinement.
3.3 Beluga whale tracking performance

The comparative analysis between ground truth labels

generated by expert annotation and system detections of beluga

adult whales is shown in Figure 9. The figure illustrates data across

six frames sampled every 15th frame from the input video,

highlighting the detection accuracy over time. The green

bounding boxes with solid and dashed lines represent beluga

calves, ground truth annotation, and system detection

respectively. While the blue bounding boxes represent the beluga

adult whale class with ground truth represented by solid lines and

system detection represented by dashed lines.

Each bounding box is associated with a label “GT_Class_ObjectID”

for expert annotation bounding boxes and “System_Class_ObjectID”

for system bounding boxes. Furthermore, we notice a high intersection

over union (iou) between ground truth and system bounding boxes

which signifies coherence between our YOLOv7 detector and SORT

tracker of our system. Additionally, we noticed mismatches in the

ObjectId value between our system and ground truth annotations due

to frequent Object ID switches of our tracking algorithm.

Table 3 presents a summary of our object tracking efforts,

characterized by the tracking of beluga adults and calves across

three videos of different durations.

the rates of FP and FN are pivotal in evaluating the tracking

precision and the algorithm’s ability to correctly identify objects. A

noteworthy aspect of our findings is the lower frequency of false

negatives relative to false positives, underscoring our model’s

robustness in consistently identifying the presence of belugas

within the visual field.
FIGURE 7

F1-curve for beluga whale detection.
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A noticeable trend in the table is the inverse relationship

between the MOTA scores and the quantity of tracked belugas

and calves. The MOTA metric gauges the aggregate accuracy of the

tracking process, factoring in false positives, false negatives, and

identity switches. Notably, in Video 3, which features the highest

number of both adult belugas and calves, we observe a marked

decline in MOTA. This is primarily due to occlusions — as belugas

dive, the tracking algorithm temporarily loses sight of them, leading

to a higher likelihood of assigning a new object ID to the whale as

they re-appear on the surface. This issue is even more pronounced

with beluga calves, where higher occlusion rates lead to more

frequent loss of track, resulting in a greater number of identity

switches. Beluga calves are often seen swimming close to adult

beluga whales leading to more occlusion and higher identity

switching rates. This poses a negative impact on MOTA and

leads to a noticeable negative decline in tracking accuracy.

In an attempt to alleviate the effects of frequent object identity

switches, the post-processing algorithm, Algorithm 1 showing in

Section 2.6, was implemented. This simple yet effective algorithm

evaluates the closeness of the objects across two consecutive frames

and updates the object ID based on the IoU threshold. Upon testing,

we found that for our case an IoU of 0.2 was a suitable value to

differentiate whether the detected whale was the same whale with a

different assigned ID or it was a different whale altogether. Table 4

shows the beluga whale tracking results after applying the post-

processing algorithm.
FIGURE 8

A confusion matrix for beluga whale detection.
TABLE 1 Summary of whale tracking and monitoring methods in
recent studies.

Study
& Authors

Methods
& Technology

Findings

Durban
et al. (2015)

Utilization of a compact,
unmanned hexacopter (APH-
22) to capture images

77 killer whales identified
with length variations
between 2.6 and 5.8 meters

Ryan
et al. (2022)

Drone images analyzed to
identify unique markings
on whales

93 individuals identified,
43.4% of the adult beluga
population identified
through unique markings

Borowicz
et al. (2019)

Applied convolutional neural
networks (CNN) to high-
resolution satellite imagery for
whale detection

Achieved detection rates
over 90%

Harasyn
et al. (2022)

The study employed deep
learning algorithms to train
the YOLOv4 CNN
architecture to identify
belugas, kayaks, and motorized
boats in drone imagery

Promising results with
scores for multiple-object
tracking accuracy (MOTA)
and multiple-object tracking
precision (MOTP) between
37% and 88% and 63% and
86% respectively

Bogucki
et al. (2018)

CNN’s used to identify
individual whales

Detected individual whales
with an 87% precision rate

Kapoor
et al. (2023)

Used deep learning techniques
and Enhanced Super-
Resolution Generative
Adversarial Networks
(ESRGAN) for automatic
whale detection from very
high-resolution (VHR)
satellite imagery

Developed a comprehensive
dataset of 6000 satellite
images of whales

Guirado
et al. (2019)

Two-step methodology for
whale counting using two
Convolutional Neural
Networks (CNN’s)

Performance level of 81% in
detecting whales and 94% in
accurately counting them

Chambault
et al. (2020);
Bridge Bridge
et al. (2019);
Hauser et al.
(2014);
Manabe
(2017)

Utilized GPS microchips,
radio- frequency identifier
(RFID) telemetry, and acoustic
telemetry for wildlife tracking

Researches not focused
detection and tracking of
whales but on studying
their habitats

Hodgson
et al. (2013)

Video tracking technology for
wildlife monitoring

Can track large animal
populations without
disrupting the species or
habitat, provides valuable
insights into environmental
variables and
potential interference
TABLE 2 Beluga whale detection results.

Class Images Labels Precision Recall mAP@.5 mAP@.5:.95

all 26 175 0.934 0.912 0.934 0.442

Beluga Adult 26 127 0.922 0.929 0.933 0.464

Beluga Calf 26 48 0.946 0.896 0.935 0.420
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In summary, the experimental study revealed that the deep

learning algorithm effectively detected both adult belugas and

calves. However, its performance was significantly hindered by

occlusions, particularly when tracking the smaller and more agile

calves. These findings emphasize the critical need for new deep

learning models that can adeptly handle the challenges posed by

occlusion in the marine environment.
3.4 Comparison to related studies

In this section, we compare YOLOv7, the model we used for

object detection, to the state-of-the-art object detection model Co-

DETR (Zong et al., 2023). Then, we will compare our approach to

the one used in Harasyn et al. (2022), which also addresses beluga

whale tracking in drone aerial images.
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3.4.1 YOLOv7 vs Co-DETR
Co-DETR is an object detectionmodel built on DETR (DEtection

TRansformer) (Zhu et al., 2021), an end-to-end transformer-based

neural network for object detection. It employs a collaborative hybrid

assignment training strategy which aims to develop more efficient

and effective DETR-based detectors through diverse label assignment

methods. We applied transfer learning to train the Co-Deformable-

DETR variant of the model, starting with weights that were trained

on the COCO dataset for 36 epochs, which incorporates the Small

version of Swin (Liu et al., 2021) as the backbone. The training was

conducted over 50 epochs using the AdamW optimizer with a

learning rate of 0.2, step scheduling, and a weight decay of 0.05.

Default augmentation settings were maintained. It achieved a mAP@

.5 of 0.851 and a mAP@.5:.95 of 0.369. YOLOv7 achieves 19.78% and

9.75% for mAP@.5 and mAP@.5:.95, respectively, compared to Co-

DETR. Even though Co-DETR is the state-of-the-art object detection
TABLE 3 Beluga whale tracking results without post-processing.

Video ID Video
length (s)

Beluga
Adult Whales

Beluga Calves FP FN MOTA

1 11 69 0 0 12 0.34

2 30 109 37 27 9 0.48

3 60 280 47 29 11 0.27

4 60 132 49 0 30 0.27
FIGURE 9

Comparative analysis between expert annotation and system tracking.
TABLE 4 Beluga whale tracking results with post-processing.

Video ID Video length (s) Beluga Adult Whales Beluga Calves FP FN MOTA

1 11 69 0 0 12 0.74

2 30 109 37 27 9 0.69

3 60 280 47 29 11 0.70

4 60 132 49 0 30 0.71
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method on the COCO dataset, YOLOv7 exhibits better performances

for our dataset. It may be due to the dataset size, which is small

compared to benchmark object detection datasets such as COCO or

PASCAL VOC (Everingham et al., 2010).

3.4.2 Comparison to Harasyn’s work
Harasyn et al. (2022) is a closely related study involving Beluga

whales tracking on aerial videos. It explores the use of deep learning

to improve marine mammal research workflows by automating the

analysis of aerial imagery, which typically involves manually

identifying individual animals and objects and converting these

observations into biological statistics. The YOLOv4 model was

trained on drone imagery to detect belugas, kayaks, and motorized

boats, achieving both an average precision and recall of 89.12% and

88.53%, respectively. Additionally, the DeepSORT algorithm was

used to track these objects, achieving an average MOTA of 63.6%.

Their dataset consists of aerial video footage capturing beluga

whales, boats, and kayaks, with the goal of quantifying the impact of

watercraft on beluga behavior in the Churchill River estuary.

Notably, the videos feature oblique imagery of the scene, where

whales only appear briefly. In contrast, our dataset includes videos

of adult belugas and calves, captured from as orthogonal an angle as

possible (bird’s-eye view) to allow for clear, long-term tracking of

belugas. Specifically, we aim to address the challenges of studying

beluga whale behavior, which is particularly difficult for polar

species due to their remote habitats and harsh environmental

conditions. In this study, we set up a rare, three-week field camp

in the High Arctic and employed drones to obtain detailed aerial

views of beluga whale behaviors. Although this research focuses on

tracking belugas rather than studying their behavior directly, this

tracking forms a critical first step toward future behavioral studies.

Recognizing the broader potential of this data, we plan to make it

publicly available following publication to support further research.

In terms of method, both Harasyn et al. (2022) and this study

employ YOLO for object detection and DeepSORT for tracking.

While the former uses YOLOv4 and we use YOLOv7, the main

difference lies in the post-processing step we applied. Our post-

processing method, designed to reduce identity switches (a

common issue in tracking), significantly improved the MOTA

from 34% to 71% by using a simple strategy based on the

Intersection over Union (IoU). This step is crucial in addressing

identity switches caused by belugas diving underwater.

The aforementioned aspects of the data and the method

highlight the uniqueness of our research.

4 Conclusion

This research holds significant ecological and conservation

implications as the Arctic, warming at an accelerated rate

Rantanen et al. (2022), poses threats to both beluga whales and

Indigenous communities. The rise in anthropogenic activities, such

as oil exploration and shipping, exacerbates these risks. To

effectively understand and mitigate these impacts, there is a

pressing need for innovative methods to analyze extensive remote

sensing data collected from drones, thus allowing the processing of

large datasets and deriving meaningful insights.
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Deep learning has emerged as a transformative tool in various

areas of research ranging from detecting driver behavior (Jan et al.,

2022) to marine mammal research. By leveraging deep learning

algorithms, researchers can automate the processing of large

datasets, enabling efficient analysis of marine mammal data. Our

research specifically targeted the localization and tracking of adult

beluga whales and beluga calves using custom proprietary aerial

footage captured via drones.

The deep learning model, YOLOv7, trained on our annotated

dataset, produced notable results for detecting and differentiating

between beluga adults and calves. The experimental results

demonstrated that the model yielded Precision—Recall of 93%—

93% and 95%—89% for adults and calves, respectively. The model

also achieved an overall 93.4% mAP at the confidence level of 0.5.

Upon examining our system, we noticed misclassifications were

more likely to occur in occluded scenes, such as when a whale was

submerged underwater or two whales overlapped each other.

However, these misclassifications did not persist for consecutive

frames of the video footage and were often self-corrected. Like most

deep learning-based models, this model could be improved with the

addition of expert-annotated data, allowing for fine-tuning or

retraining on a larger dataset.

Furthermore, the application of the deep SORT algorithm for

tracking extended our system’s capabilities, allowing for continuous

tracking of detected whales. Our use of deep SORT provided

valuable insights into the limitations of tracking beluga whales in

water. We observed that high identity switching occurred among

the same whales in different frames, primarily due to occlusion—

such as when beluga whales dive underwater or overlap in the

footage, especially with beluga calves. To address this issue, we

implemented a post-processing procedure—a simple yet effective

algorithm that reduces the number of identity-switching incidents.

As a result, the MOTA score improved from approximately 30% to

70%. These add up to existing literature and contribute to

establishing a foundation for advancing marine mammal science,

emphasizing conservation and a comprehensive understanding of

population behavior.

Moving forward, our research will focus on developing more

effective methods to address the identity-switching challenge and

analyzing larger video datasets. This aims to create more robust

models that enhance tracking performance in beluga whale studies.

Additionally, we will investigate various aspects of beluga whale

behavior, including social interactions and feeding habits.
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