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Change, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China, 2Southern Marine
Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China, 3Fujian Engineering
Research Center for Ocean Remote Sensing Big Data, Xiamen, China
How a pair of pollutant parcels deviates from each other with an initial separation

distance r0, known as relative dispersion or Richardson dispersion, is relevant in

many circumstances. This study examines the spatiotemporal similarity of the

Richardson relative dispersion in the Gulf of Mexico by reanalyzing the

Lagrangian trajectory of the surface drifter provided by two famous field

experiments, that is, the Grand Lagrangian Deployment and the Lagrangian

Submesoscale Experiment. The experimental dispersion curve indicates a

critical separation time. When above this critical time, the dispersion shows an

asymptotic power law growth independent of the initial separation distance r0.

Below it, the dispersion curve shows a strong spatiotemporal dependence with

two spatiotemporal similarity regimes that can be identified for both experiments

by looking at the isoline of the normalized dispersion curve. A new similarity

variable is introduced to successfully collapse measured dispersion curves.

However, the observed spatiotemporal similarity cannot be reproduced by the

submesoscale preserved model. Thus, our results suggest that small-scale

fluctuations play a crucial role in the relative dispersion of oceanic flows.
KEYWORDS

Lagrangian, dispersion, submesoscale, spatiotemporal similarity, Gulf of Mexico
1 Introduction

The dispersion in the ocean and atmosphere is primarily controlled by the presence of

various scales of motion, including small-scale turbulence (ranging from a few millimeters

to hundreds of meters), submesoscale eddies (ranging from a few hundred meters to a few

kilometers), mesoscale eddies (from a few to several dozen kilometers), and large-scale

circulations (ranging from a few hundred to thousands of kilometers), among others

(Thorpe, 2005; Vallis, 2017). To characterize the dispersion of fluid parcels or other scalars,

such as temperature, salinity, nutrients, and biological and pollutant concentrations, to

name a few, the single-particle dispersion (also known as absolute dispersion or Taylor

dispersion) or the pair dispersion (also known as relative dispersion or Richardson
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dispersion) in the Lagrangian framework is often taken into account

(Taylor, 1922; Richardson, 1926; Batchelor, 1950). In practice,

relative dispersion is typically quantified using the mean squared

displacement (MSD) DR(r0, t) between two particles as a function

of separation time t and initial separation distance r0 to see how

they separate from each other; see the definition in Section 2.2.

Theoretical consideration of three-dimensional homogeneous and

isotropic turbulence suggests an asymptotic cubic growth of the

MSD for a large separation time scale t, known as Richardson’s law

of dispersion (Richardson, 1926; Batchelor, 1950). However,

observing Richardson’s dispersion law in laboratory or field

experiments is challenging due to the need for a significant

separation of scales between the dissipative length, the initial

separation distances of the tracers, the maximum observation

range and the integral scale of the flow (Sawford, 2001; Salazar

and Collins, 2009), and the influence of small-scale intermittency

(Tan and Ni, 2022). Alternatively, other methods have been

deployed to study the dispersion, for example, the finite-size

Lyapunov exponent (FSLE) (Berti et al., 2011; Zavala Sansón,

2015; Berti and dos Santos, 2016; Sansón et al., 2017; Essink et al.,

2019; Meyerjürgens et al., 2020; Balwada et al., 2021; Berti and

Lapeyre, 2021; Meunier et al., 2021), pair separation probability

density function (PDF) (Sansón et al., 2017; Essink et al., 2019;

Balwada et al., 2021; Meunier et al., 2021), and structure functions

(Poje et al., 2014; Callies et al., 2019; Essink et al., 2019; Balwada

et al., 2021; Spydell et al., 2021), to name a few. These methods can

characterize spatial and temporal variations in particle motion and

can also provide information on the collective behavior of groups of

particles and additional information on the chaotic nature of

geophysical flows and associated turbulence. Despite the

limitation mentioned above in direct calculation of the MSD of

the relative dispersion, it is still widely used; for example,

experimental evidence of both the ballistic and cubic regimes of

the MSD predicted by dispersion theory has been reported

(Bourgoin et al., 2006; Ni and Xia, 2013; Thalabard et al., 2014;

Bourgoin, 2015; Sansón et al., 2017; Essink et al., 2019; Xia et al.,

2019; Meyerjürgens et al., 2020; Balwada et al., 2021; Berti and

Lapeyre, 2021; Spydell et al., 2021; Tan and Ni, 2022; Shnapp et al.,

2023, 2024). However, Richardson’s dispersion law has not yet been

fully validated, due to several limitations. For example, the time

scale range t or initial separation distance r0 of the cubic growth of

DR(r0, t) is shorter than expected by theory; as a consequence of the

finite size of the system or observation area or intermittency

correction, the scaling exponent of the MSD has also shown an r0
dependence (Xia et al., 2019; Tan and Ni, 2022; Shnapp et al., 2023).

Instead of verifying the ballistic and cubic regimes of the MSD,

in this work, a spatiotemporal similarity implicated by dispersion

theory is pursued using data from two surface drifter datasets in the

Gulf of Mexico (GoM). With the observed similarity parameters, we

introduce a new variable to successfully collapse the normalized

dispersion curve. The new normalized dispersion curve shows the

generalized exponential growth and is then followed by power law

growth with scaling exponents coincidentally agreeing with the

ballistic or cubic law. The remainder of this work is structured as

follows. Section 2.1 provides a description of the datasets used in the

study. Section 2.2 briefly discusses the theoretical consideration.
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Moreover, OceanParcels is introduced in Section 2.3. The

experimental results are presented in Section 3. Finally, we

provide a discussion and a summary of this study in Section 4.
2 Data and method

2.1 Field experiments in Gulf of Mexico

After the Deepwater Horizon oil spill disaster in April 2010,

extensive field observations were conducted to gain a deeper

understanding of the region dynamics in the GoM. The Grand

Lagrangian Deployment (GLAD) in 2012 and the Lagrangian

Submesoscale Experiment (LASER) in 2016, conducted by the

Consort ium for Advanced Research on Transport of

Hydrocarbon in the Environment (CARTHE), are the two largest

field experiments, deploying more than 300 and 1,000 drifters,

respectively. These experiments were carried out in the northern

GoM near the Deepwater Horizon site, the Louisiana coast, and the

DeSoto Canyon, as shown in Supplementary Figure S1. The GLAD

experiment, conducted from July 2012 to January 2013, utilized

Global Positioning System (GPS) technology for a detailed time

series analysis of drifter positions, revealing complex and non-

Gaussian statistical parameters of the velocity field (Mariano et al.,

2016). The LASER experiment, which ran from January to April

2016, provided high-resolution observations of the surface velocity

field, significantly improving our understanding of submesoscale

velocity fields and geostrophic circulation (Gonçalves et al., 2019).

The lifetimes of each drifter are depicted in Supplementary Text S1

and Supplementary Figure S2.

In the GLAD experiment, drifters were deployed following the

design principles of the Coastal Ocean Dynamics Experiment

(CODE) (Davis, 1985). These drifters, which are depicted in

Supplementary Figure S3A, had drogues set at a depth of 1 m.

The Globalstar satellite network was used to track their positions,

updating every 5 min with an estimated accuracy of 7 m. Challenges

such as intermittent satellite signals, data losses, and issues with

drifter recovery were addressed (Yaremchuk and Coelho, 2015).

The final dataset comprised 297 drifters, with tracking periods

ranging from 4 to 94 days. The average tracking duration was 56

days, with a standard deviation of 28 days. Analyses were performed

on this dataset to assess relative dispersion, highlighting

submesoscale eddy effects (Poje et al., 2014), and to evaluate

Lagrangian intermittency (Lin et al., 2017).

In the LASER experiment, CARTHE designed biodegradable

drifters, illustrated in Supplementary Figure S3B, with drogues

positioned 0.4 m below the surface to track near-surface currents.

These drifters utilized Spot GPS technology to report their positions

every 5 min, achieving location accuracy within 10 m (Novelli et al.,

2017). However, challenges such as adverse weather conditions or

interactions with marine life sometimes caused drogue loss,

reducing the number of GPS records and increasing wind

sensitivity, thus impacting tracking precision (Haza et al., 2018).

Undrogued drifters exhibited significantly higher mobility

compared to their drogued counterparts, leading to data

discrepancies. To align with data from the GLAD experiment and
frontiersin.org

https://doi.org/10.3389/fmars.2024.1446297
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2024.1446297
to minimize data from undrogued units, only drogued drifters were

analyzed in the LASER dataset, which underwent rigorous quality

checks including 15-min interpolation and verification of drogue

status (D’Asaro et al., 2017). The dataset included 959 drifters, with

trajectory durations varying from 5 h to 89 days. The average

duration was 25 days, with a standard deviation of 20 days.
2.2 Relative dispersion of two particles

Two-particle dispersion, also known as relative dispersion or

Richardson dispersion, is a crucial phenomenon in turbulent flows,

with relevance in a wide range of applications, including ocean

pollution, passive scalar advection, and rescue missions (Falkovich

et al., 2001; Sawford, 2001; Salazar and Collins, 2009; Corrado et al.,

2017). The prediction of superdiffusivity in pair dispersion dates back

to 1926 when Richardson (1926) suggested that for a large time

separation t, the MSD should be independent of the initial separation

distance r0 and should increase with time as t3 when r0 is in the

inertial range (Salazar and Collins, 2009), which is written as follows:

DR(r0, t) = hrij(r0, t + t)2it = get3 (1)

in which rij(r0, t + t)  =   ~xi(t + t)  −~xj(t + t)
�
�

�
� is the great circle

distance between the chance pair of the ith and jth drifters at time

t + t and r0 = rij(r0, t + t) jt = 0 is the initial separation distance

when they were paired; t is the separation time after they were

paired (LaCasce and Bower, 2000; LaCasce and Ohlmann, 2003;

LaCasce, 2008); e is the mean energy dissipation rate of the flow,

and g is the Richardson constant (Sawford, 2001; Salazar and

Collins, 2009) (see the diagram of relative dispersion in

Supplementary Figure S4); and ·h it means average over time t.

Later, Batchelor (1950) refined Richardson’s dispersion relation

within Kolmogorov’s theory of three-dimensional hydrodynamic

turbulence (Kolmogorov, 1941; Obukhov, 1941). When the

separation time t ≪ tB, a so-called Batchelor regime is written as

DB(r0, t) = h(rij(r0, t) − r0)
2it =

11
3
CB(r0e)

2=3t2, t ≪ tB (2)

where tB = r2=30 e−1=3 is the so-called Batchelor time scale

(Sawford, 2001; Bourgoin et al., 2006; Salazar and Collins, 2009);

CB is the Kolmogorov constant for the longitudinal second-order

velocity structure function (Sawford, 2001). For a long separation

time t, that is, t ≫ tB,DB(r0, t) is expected to have an asymptotic

approach to the Richardson dispersion law above.

Now, we consider normalized MSDs by their initial separation

distance r0, i.e., MR(r0, t) = DR(r0, t)=r20 and MB(r0, t) = DB(r0, t)
=r20 . Both Equations 1 and 2 can be rewritten as functions of a

dimensionless time variable t=tB = tr−2=30 e1=3. This implies a

spatiotemporal similarity for the case of three-dimensional

hydrodynamic turbulence. In real oceanic flows, owing to the

presence of other motions, such as mesoscale eddies, waves, and

tides, to name a few, both ballistic and cubic regimes may not be

well defined, and the energy dissipation rate e is difficult to retrieve

or varies greatly with space and time due to the non-stationarity of

the flow. Therefore, the spatiotemporal similarity may not follow
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the one indicated by the Batchelor time scale. Thus, we introduce a

new variable T = tr−g0 to characterize spatiotemporal similarity in

the normalized relative dispersion MR(r0, t). The experimental

scaling exponent of g was then extracted from the field

experiment data. Note that the spatiotemporal similarity by

Batchelor’s theory is recovered when g = 2/3.
2.3 OceanParcels virtual drifters tracking

In this work, we also compared our results with the output from

the MITgcm LLC4320 model. We use OceanParcels, a cutting-edge

tool for simulating particle movement in marine environments due

to its flexibility and efficiency (Delandmeter and Van Sebille, 2019;

Kehl et al., 2023). This package excels at modeling the transport of

various particles, such as biogeochemical elements, plastics, and

marine life, through the ocean by simulating their paths in three-

dimensional water currents, based on modeled and observed data.

Its ability to perform large-scale simulations involving millions of

particles is supported by advanced computational methods, making

it invaluable for detailed studies on particle dispersion under

various oceanic conditions. Here, we use the surface velocity field

data from the first layer (e.g., 0.5 m below the surface) of the

MITgcm LLC4320 model (Marshall et al., 1997; Forget et al., 2015;

Arbic et al., 2018), which has a vertical resolution of 90 levels and a

spatial resolution 1/48 degree, ≃ 2 km, with a simulation time step

of 25 s. The instantaneous results are stored at 1-h intervals. Tidal

processes are incorporated to effectively model the interactions

between continental shelves and slopes, as well as the alteration of

water masses, which influence the overall global ocean circulation

(Flexas et al., 2015). The surface conditions are based on

atmospheric data from the European Centre for Medium-Range

Weather Forecasts (ECMWF) operational model at a 0.14°

resolution, starting from the year 2011. The simulation period is

divided into Autumn–Winter and Spring–Summer, corresponding

to the months of the GLAD and LASER experiments, respectively.

Two sets of numerical experiments were performed to track virtual

particles released in the same position as those of the actual field

experiments (see Supplementary Figure S1). To ensure the accuracy

and stability of the simulation, the fourth-order Runge–Kutta time

advance is used with a time step of 20 min. Previous studies have

demonstrated that this model is capable of preserving submesoscale

features (Lin et al., 2020; Yang et al., 2021), thereby providing a

reliable framework for our particle tracking experiments.
3 Results

In the calculation of MSD DR(r0, t), different initial separation
scales r0 are considered on a logarithmic scale from 10 m to 10 km

where 2/3 power law of the second-order structure function roughly

holds with a width of 20% for each value (see Supplementary Text S2,

Supplementary Figure S5 for detailed reason for selecting initial

separation scales). These spatial scales r0 are in the three-

dimensional and submesoscale range (Poje et al., 2014, 2017).
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Figures 1A, C present the experimental relative dispersion DR(r0, t)
of the GLAD and LASER drifters, in which the increase in r0 is

indicated by the vertical arrow. The number of drifter pairs is plotted

in Supplementary Figure S6, and the statistical MSD data for sample

sizes less than 1,000 are excluded. At first glance, they show a strong

dependence on r0. For the GLAD case, different from the prediction

of the Richardson dispersion theory, the dispersion curve of the

smallest r0 = 10 m shows three different regimes of DR(r0, t) ∝ ta

with scaling exponents roughly from 2 to ≃3.5 and to ≃1.6 when t ≥
16 days. Note that the first two regimes are separated by a time scale

of approximately 1 day, which could be the effect of the strong diurnal

tide (Lin et al., 2017). With increasing r0, the scaling exponent a,
evaluated over the interval 2 ≤ t ≤ 16 days, appears to remain

constant at approximately 3.5 in the range 10 ≤ r0 ≤ 200 m and then

declines linearly to 2 for r0 ≥ 200 m. Refer to the inset in Figure 1A,

which shows that the 95% confidence interval provided by the least

squares fittingmethod is too narrow to be visible. The Richardson law

holds true at approximately r0 = 1,100 m. It is notable that in

homogeneous and isotropic turbulence, a value of approximately

r0/h ≃ 3 has been observed, where h is known as the Kolmogorov

scale (Tan and Ni, 2022). Moreover, an asymptotic behavior is

evident when the separation time above a critical time scale tc ≃ 16

days: all dispersion curves collapse with each other with a slope a ≃
Frontiers in Marine Science 04
1.58. It appears to be an effect of the finite size of the flow system, e.g.,

O (1,000) km, since for a long-time evolution, the MSD should reach

the same destination. In other words, for a smaller r0, it moves faster

than a larger r0 to reach the same endpoint at the same time, resulting

in a decrease of a for a median separation time t, as observed in other
literature (Tan and Ni, 2022; Shnapp et al., 2023).

In the LASER case, a similar evolution pattern is observed; see

also the scaling exponent a estimated on the range 10 ≤ t ≤ 30 days

in the inset of Figure 1C. For example, for the case r0 = 10 m, three

scaling regimes of MSDs are also observed, and the separation time

scale of first two regimes is 1 day. However, the asymptotic behavior

observed here is different from that of the GLAD case due to the

seasonal variation of the flow pattern. For example, beyond the

critical time scale tc ≃ 30 days, the experimental dispersion curves

tend to reach the same distance. It could be expected that if we have

a long enough observation, the dispersion curve might reach the

same asymptotic behavior as observed for the GLAD experiment.

Figures 1B, D show the isoline levels of the corresponding

normalized MSDs MR(r0, t) in a log–log view, in which the

spatiotemporal 2/3 scaling indicated by Batchelor theory is

illustrated as a dashed line. For the GLAD case, when t ≤ 16

days, the dual power law behavior of smallMR(r0, t) is evident, with
scaling exponents below and above the 2/3 value, respectively. As r0
FIGURE 1

(A, C) show the relative dispersion curve DR(r0, t ) for the GLAD and LASER experiments, respectively. Each curve represents a different initial
separation distance r0, increasing on a logarithmic scale from 10 m to 10 km. Dashed lines with labeled slopes represent power law relationships for
reference. (B, D) feature contour plots of normalized MSD MR(r0, t ) for the GLAD and LASER experiments, respectively. The red circles indicate
inflection points on each isoline, and the red straight lines are power law fits of these points. The thick black lines in (A, C) depict the measured DR(
r0, t ) at the experimental inflection points. The insets in (A, C) show the measured scaling exponent a(r0), respectively, on the range 2 ≤ t ≤ 16 days
and 10 ≤ t ≤ 30 days for GLAD and LASER experiments, where the blue band indicates a 95% fitting confidence level.
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and t increase, this dual power law behavior gradually transitions to

a single power law. The inflection point is then identified using a

search algorithm; see details in Supplementary Text S3. These

inflection points follow a power law trend that decays t ∝ r−b0
with b ≃ 0.46 ± 0.06. Beyond t = 16 days, the isoline follows a power

law behavior with a scaling exponent 1.28 ± 0.04, where the

uncertainty corresponds to the standard deviation of the

calculated scaling exponents for the isolines. The observed triple

power law behavior implies a different spatiotemporal similarity for

different initial separation distance r0 and separation time t.
For the LASER case, we observe a similar pattern as in the

GLAD case. Similarly with the GLAD case, when t ≤ 30 days, a dual

power law behavior with the inflection point satisfies the power law

relation t ∝ r−0:64±0:070 . It is interesting to note that if the MSD DR

(r0, t) at the inflection point is shown against the separation time t,
the LASER one seems to parallel the GLAD one, showing a

similarity between these two experiments; see Figures 1A, C; see

also the reproduced plot in Supplementary Figure S7. When t ≥ 30

days, the third power law regime is clearly evident with a scaling

exponent 1.21 ± 0.04; see Figure 1D. Inspired by these observations,

we introduce a new variable T = tr−g0 as mentioned above, in which
Frontiers in Marine Science 05
g is a spatiotemporal similarity parameter experimentally

determined. Note that except for the case g = 2/3, T cannot be

normalized by e as a dimensionless variable.

The experimental scaling exponent g was calculated as the mean

value of the scaling exponent for each regime’s isoline for values 0.6

≤ log10(MR) ≤ 6.5 in steps of 0.3, and the standard deviation

indicates the uncertainty. For the GLAD experiment, the values

are g = 0.90 ± 0.09, 0.50 ± 0.04, and 1.28 ± 0.04, while for the LASER

experiment, they are g = 0.91 ± 0.10, 0.37 ± 0.04, and 1.21 ± 0.04,

respectively. It is noteworthy that, with the exception of the second

regime, the experimental g values are quite similar between the

GLAD and LASER experiments. Figure 2 shows the scatter points of

the normalized MSDMR(T ) using experimental g to emphasize the

spatiotemporal similarity. Visually, they collapse well with each

other for all three regimes. In the following, we provide the details of

each regime.

i) The first spatiotemporal similarity regime: For the initial stage

of the first regime, the rescaled dispersion curve can be fitted using a

generalized exponential function, that is MR(T ) ∝ eaT z , with z =

0.88 ± 0.03 and 0.73 ± 0.02, respectively, in the range 9×10−7 ≤ T ≤

0.002 and 3×10−6 ≤ T ≤ 0.005 for the cases GLAD and LASER, for
FIGURE 2

The normalized dispersion curve MR(T ) for the (A) GLAD and (B) LASER experiments using the new similarity variable T . The gray scatter dots
illustrate the curve, mostly obscured by the data points. Colored symbols denote mean values of MR(T ), aggregated by 10 points per order of
magnitude. Colored dashed lines represent generalized exponential and power law fits of these means. Insets show the compensated curves with fit
ranges highlighted by vertical colored lines for clarity.
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more than three orders of T ; see Figure 2. To emphasize the

observed generalized exponential law, the compensated curves are

shown in the inset. Above the initial stage, the dispersion curve

transits to the power law behavior, that is,MR(T ) ∝ T x , with more

than one order of T . For the GLAD case, a Batchelor-like ballistic

regime is found in the range 0.004 ≤ T ≤ 0.04 with a scaling

exponent 1.96 ± 0.03. Then, it is followed by a Richardson-like cubic

regime in the range 0.05 ≤ T ≤ 0.4 with a scaling exponent 2.85 ±

0.02. However, for the LASER case, three distinct power law regimes

are observed: the first within 0.004 ≤ T ≤ 0.07 with a scaling

exponent of 1.72 ± 0.02, which is lower than that typically

associated with the Batchelor regime; the second within 0.07 ≤ T
≤ 0.3 with a scaling exponent of 2.16 ± 0.02, slightly above the

Batchelor range; and the third within 0.3 ≤ T ≤ 1, followed by a

scaling exponent of 3.11 ± 0.02, approaching the cubic growth

described by the Richardson law.

ii) The second spatiotemporal similarity regime: The scatter

plot of the second spatiotemporal similarity regime is also shown in

Figure 2. Visually, they first obey a generalized exponential growth

with a scaling exponent z = 0.68 ± 0.06 for the GLAD and 0.87 ±

0.10 for the LASER, within the range 0.0015 ≤ T ≤ 0.1 for GLAD

and 0.004 ≤ T ≤ 0.1 for LASER. Subsequently, a transition to power

law behavior is observed. For the GLAD, a single power law

behavior is used to fit the data in the range 0.2 ≤ T ≤ 5 with a

scaling exponent x = 3.91 ± 0.03. It is more complex for the LASER

case; for instance, three different power laws may be identified for at

least half the order of T , e.g., five points on a logarithmic scale. The

corresponding scaling exponents are x = 3.80 ± 0.11 and 4.84 ± 0.07,

respectively, in the range 1 ≤ T ≤ 4 and 4 ≤ T ≤ 10. Note that these

scaling exponents are significantly different from the theoretical

prediction of the ballistic or cubic laws.

iii) The third spatiotemporal similarity regime: For large time

evolution, e.g., t ≥ 16 days and t ≥ 30 days for the GLAD and

LASER experiments, the experimental dispersion curves DR(r0, t)
tend to be independent of the initial separation distance r0 with a
Frontiers in Marine Science 06
scaling exponent a = 1.50 ± 0.01 for the GLAD, while it is not

obvious for the LASER experiment. A scaling relation between DR

(r0, t) and MR(T ) in this regime indicates a scaling relation ab = 2

and x = a (Supplementary Text S4 contains the derivation of the

formulas), which is validated by the experimental values a ≃ 1.50, b
≃ 1.28, and x ≃ 1.58 for the GLAD experiment for more than four

orders of T , that is, in the range 0.00015 ≤ T ≤ 2; see Figures 1A, B,

2A. For the LASER experiment, the third spatiotemporal similarity

regime is short; see Figures 1C, D. However, the power law behavior

ofMR(T ) is observed for more than three orders of T , that is, in the

range 0.0008 ≤ T ≤ 2 with a scaling exponent 1.47 ± 0.01; see

Figure 2B. This provides an opportunity to extract the scaling

exponent a in a more accurate way with a significant extended

power law behavior.

Supplementary Tables S1, S2 summarize the symbols as well as

the previously mentioned scaling exponents and their respective

scale ranges.
4 Discussion and conclusions

Note that for the field experiment, the drifter can feel all size of

oceanic motions, e.g., small-scale three-dimensional turbulence,

waves, tides, submesoscale and mesoscale eddies, and loop

current, to list a few. If we consider the finite-size effect of the

drifter, some of the small-scale motions will be filtered out (Bec

et al., 2010). On the other hand, the relative dispersion is believed to

be the result of the accumulation effect of small-scale fluctuations

(Thalabard et al., 2014; Bourgoin, 2015). Despite the very high

Reynolds number, the Richardson law, that is, the cubic growth of

the dispersion curve, is not expected in the real oceanic experiment

for a range of the initial separation distance r0. As we show above,

the spatiotemporal similarity still holds. To see the capability of the

ocean model, two numerical experiments are performed using the

hourly data from the MITgcm LLC4320 with a spatial resolution Dx
FIGURE 3

The normalized MSD MR(r0, t ) from MITgcm LLC4320 experiments: (A, B) correspond to the seasons of the GLAD and LASER experiments; (C) the
direct numerical simulation of 3D hydrodynamic turbulence. The 2/3 scaling, implied by the dispersion theory, is depicted as a red dashed line. The
dashed line in (C) denotes the inertial range 5 ≤ t/th ≤ 100 and 10 ≤ r0/h ≤ 500.
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≃ 2 km. Note that the submesoscale feature is expected to be

preserved in this model (Lin et al., 2020). The virtual drifter was

released at the same location as the GLAD and LASER experiments

(see Supplementary Figure S1). Dispersion curves of these two

virtual experiments are shown in Supplementary Figures S8A, S8B.

Figures 3A, B show the contour plot of the normalized dispersion

curveMR(r0, t). For comparison, the normalized relative dispersion

curve MR(r0, t) of the three-dimensional hydrodynamic turbulence

was calculated using Lagrangian data from the direct numerical

simulation with a Reynolds number Rel =  400 (Bec et al., 2010).

Figure 3C shows the experimental MR(r0, t) with the initial

separation distance in the range 11 ≤ r0/h ≤ 500, where h is the

so-called Kolmogorov scale. It confirms in the inertial range the

existence of the spatiotemporal similarity t ∝ r2=30 presented in

Section 2.2. However, visually, this spatiotemporal similarity is not

evident in the simulations, likely due to the model’s inability to

capture small-scale fluctuations. As noted by Poje et al. (2014),

owing to the absence of submesoscale fluctuation, the long-time

evolution of the dispersion from the geostrophic velocity produced

by the AVISO altimeter data is significantly underestimated. Their

results suggested that the submesoscale dynamics is critical for the

model. Moreover, Supplementary Figure S8C shows that dispersion

in real experiments is a little bit faster than in virtual experiments.

Our results here suggest that small-scale fluctuation is also

relevant when the relative dispersion is considered. Note that the

scale separation in the real oceanic flow and the models is very

different. For example, it is safe to estimate the Kolmogorov scale as h
≃ 1 mm (Thorpe, 2005). In the MITgcm LLC4320 model, the scale

ratio between spatial resolution Dx and the Kolmogorov scale h is

roughly of the order O(106). Therefore, at least six orders of the

spatial scale of motion are missed. It seems that an additional

parameter should be introduced in the dispersion model to

represent the effect of the missed three-dimensional small-scale

fluctuation (van Sebille et al., 2018). A systematic test might be

performed in the near future using the high-resolution Surface Quasi-

Geostrophic (SQG) model (Berti and Lapeyre, 2021) or the direct

numerical simulation of the two-dimensional Kolmogorov flow

(Fylladitakis et al., 2018) to see the filter effect of the spatial resolution.

Additionally, we observe that the relative dispersion processes

of GLAD and LASER drifters have notable differences. Seasonal

velocities and vorticity differences are evident; that is, the GLAD

experiment was conducted in Winter and Spring, while the LASER

experiment was conducted in Summer and Autumn. Such seasonal

variations in circulation and eddy kinetic energy are known to

significantly influence the relative dispersion of drifters in

oceanographic studies. See more details of seasonal velocity and

vorticity in GoM during GLAD and LASER experiments in

Supplementary Figures S9–S13; for the description, see

Supplementary Text S5.

In summary, here we consider the relative dispersion with a

different initial separation distance from two field experiments in

GoM. Instead of checking Richardson’s law, we study the

spatiotemporal similarity implied by the dispersion theory. The

raw dispersion curve DR(r0, t) shows an asymptotic trend when
Frontiers in Marine Science 07
the separation time is larger than a critical time tc, e.g., 16 days and

30 days, respectively, for GLAD and LASER experiments. When the

separation time t is smaller than tc, a dual power law behavior can

be identified for the isoline of the normalized relative dispersion

curveMR(r0, t). The corresponding inflection point follows a power

law decaying in spatiotemporal space. Moreover, the isolines ofMR

(r0, t) seem to be in parallel with each other, confirming the

existence of spatiotemporal similarity. Then, a new similarity

variable T   = tr−g0 is introduced to take into account the

spatiotemporal similarity. When MR(r0, t) is rewritten using T ,

that is, MR(T ), they collapse well with each other and show

generalized exponential growths or power law growths. When the

separation time is larger than tc, the power law scaling exponent of

MR(T ) can be analytically related to their raw asymptotic scaling

trend. Thus, it provides an alternative way to estimate the

asymptotic scaling exponent with more precision. We also show

that the experimental spatiotemporal similarity is not reproduced

by the high-resolution model. Our results suggest that small-scale

fluctuations play a crucial role in the relative dispersion, which

poses a challenge to the existence dispersion model.
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