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This study aims to characterize the high frequency radar and numerically

simulated low-frequency filtered currents in the south-eastern Bay of Biscay

(study area) using a K-means classification algorithm based on an improved

Euclidean Distance calculation method that does not take missing values. The

errors between observations and simulations was estimated and predicted based

on this classification method. Results indicate that predominantly eastward

(northward) currents over the Spanish (French) continental shelf/slope in

winter and more variable currents in the west and south-west in summer. The

model classification results for circulation characteristics are in relatively good

agreement with HF radar results, especially for currents on the Spanish (French)

shelf/slope. In addition, the probabilistic relationship between observed and

modeled currents was explored, obtaining the probability of occurrence of

modeled current groups when each group of observed currents occurs.

Finally, predictions of model and observed current errors were made based on

the classification results, and it was found that the predictions based on the

classification of all data had the smallest errors, with a 17% improvement over the

unclassified control experiment. This study provides a foundation for subsequent

model error testing, forecast product improvement and data assimilation.
KEYWORDS

high frequency radar, ocean current, the bay of biscay, K-means, error estimate
1 Introduction

The South-eastern Bay of Biscay (SE-BoB) is distinguished by the presence of canyons

(e.g. Capbreton Canyon), abrupt changes in coastal orientation and narrow shelves and

slopes. The current is barotropic and quite weak throughout the year, and the vertical

gradient of horizontal currents is higher in summer than in winter due to stronger
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stratification of the water column (Rubio et al., 2013a). During the

winter, the surface currents in the SE-BoB are mainly associated

with the Iberian Poleward Current (IPC), which affects the upper

300m of the water column (Cann and Serpette, 2009).The IPC flows

up the slope, moving warm surface water along the Spanish coast to

the east and along the French coast to the north (Cann and Serpette,

2009; Charria et al., 2013). In summer, this flow is reversed and

three times weaker than in winter (Solabarrieta et al., 2014). Wind-

induced flow is the main driver of surface ocean circulation in the

region (Fontán and Cornuelle, 2015; Fontán et al., 2013; Kersalé

et al., 2016; Solabarrieta et al., 2015). In autumn and winter,

southwesterly winds dominate, producing northward and

eastward drift over the shelf. In spring, the winds change to

northeast causing the currents to shift west-southwest along the

Spanish coast. In summer, the situation is similar to that of spring,

but the total drift direction changes more often due to weaker

winds, making the currents more variable (Solabarrieta et al., 2015).

High frequency (HF) radar is a land-based remote sensing

technology that has proven to be a cost-effective tool for

monitoring coastal areas at ranges of up to 200 km. Paduan and

Washburn (2013) provide a detailed description of HF radar

technology. Röhrs et al. (2015) used HF radar measurements of

currents in comparison with in-situ observations of currents to find

that wave-induced Stokes drift was not included in the HF radar

currents. Oceanographic HF radar is mainly used to measure the

ocean surface current field for various applications such as search

and rescue, oil spill monitoring, marine traffic information or

improvement and data assimilation for numerical current models

(Paduan and Rosenfeld, 1996; Gurgel et al., 2001; Roarty et al., 2019,

2019; Rubio et al., 2018; Gurgel et al., 2001).
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The HF radar coastal system in the Basque Country has been

operational since the beginning of 2009. It consists of two radar

stations, one at Cape Higer (1.78°W,43.38°N) and the other at Cape

Matxitxako (2.75°W,43.45°N), as shown in Figure 1A, emitting at a

bandwidth of 40 KHz, a frequency of 4.86 MHz and an average

radiated power of 40W. The system provides long-range hourly,

with running averages of 3 hours, surface current data with a spatial

resolution of 5.12 km (width of the ranging unit) and 2~3 meters

depth. Detailed validation of currents observed by Basque HF radar

has been carried out by Solabarrieta et al. (2016; 2015; 2014) and

Rubio et al. (2018; 2020; 2019; 2011). Arzoo and Rathod (2017) and

Caballero et al. (2020) used radar observations with tidal and near-

inertial oscillations removed in combination with satellite data to

significantly improve the regional mean dynamic topography

(MDT). Solabarrieta et al. (2015) used a linear auto-regressive

model with empirical orthogonal function (EOF) decomposition

of the HF radar historical data series to predict currents with

good results.

In recent years, artificial intelligence methods have been

increasingly used in marine data processing and ocean

forecasting, and a number of results have been achieved (Cao

et al., 2024; Gao et al., 2024). Clustering is a method of grouping

data on the basis of their attributes, and the attributes of all elements

in each group must be similar (Rehioui et al., 2016). There are

various types of clustering, such as data mining algorithmic

clustering, dimensionality reduction clustering, and parallel

clustering (Zerhari et al., 2015). Among available tools, partition

clustering as a type of data mining algorithmic clustering is

integrated with different algorithms such as K-means, K-modes,

K-medoids, PAM, etc (Sajana et al., 2016). Many authors have
FIGURE 1

The domain and topography of study area (A) and IBI model (B), the blue and black star in (A) show the location of the Matxitxako and Cape Higer
HF radar stations, respectively.
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applied clustering methods to study sea current characteristics,

Solabarrieta et al. (2015) used a non-linear K-means classification

algorithm to obtain a comprehensive description of wind and HF

radar-derived currents in the southeastern Bay of Biscay. The K-

means clustering algorithm (Wu et al., 2019) is one of the widely

used clustering implementations and its use is very common due to

its best performance for large data sets (Jothi et al., 2019; Wu et al.,

2019) and is more appropriate for data space exploration as it

considers data close to the edges of the data space (Camus et al.,

2011). In the standard K-means algorithm, K points are first

selected as the initial prime, where each prime represents a

cluster. All objects in the dataset are then assigned to the prime

with the smallest distance. After all data items have been assigned,

the prime is recalculated until no further objects change their

clusters (Velmurugan and Santhanam, 2011). In calculating the

center of mass, distance calculation is required, and many scholars

have also studied and improved the mathematical measures of

distance calculation (Arzoo and Rathod, 2017), including Euclidean

Distance (Saqib et al., 2021), Manhattan Distance (Bora and Gupta,

2014), Minkowski Distance (Charulatha et al., 2013), etc. Among

them, the Euclidean Distance is a familiar and direct line between

two elements or the minimum distance between two objects

(Saqib et al., 2021), which is a more common method of

distance calculation. Solabarrieta et al. (2015) used the k-means

clustering technique to characterize the main ocean surface

circulation patterns in the study area, at scales from several days

to inter-annual.

There is usually a discrepancy between the ocean currents

observed by HF radar and the simulated ocean currents. This is

firstly due to the inaccuracies of the model, especially in coastal

areas, where the parameters such as water depth, topography, and

bottom friction are often inaccurate, resulting in the inability of the

numerical model to accurately represent the characteristics of ocean

currents (Hirose et al., 2001; Wang et al., 2023). At the same time,

due to the poor signal-to-noise ratio at the long range by HF radar,

there are also errors in the measurement of HF radar at the edge of

the observation area. In addition, during the grid processing,

geometric dilution in the statistical process caused by the

positions of grid cells with regard to the locations of the HF radar

stations may also cause some errors (Cann and Serpette, 2009;

Rubio et al., 2013b). Based on the data assimilation method, it is

possible to better utilize the HF radar observations of ocean currents

to optimize the numerical simulation of ocean current errors

(Shulman and Paduan, 2009). In this paper, the clustering

method and longtime series of surface current data from HF

radar and modeling are used to cluster the errors of observation

and simulation, and to research the errors character and errors

prediction between the simulation and observation. By studying the

background error covariance of the numerical simulation, a

foundation is laid for the assimilation of HF radar surface current

observations. This paper first describes the HF radar data used, the

numerical model data and the cluster analysis method, the third

part presents the results of the cluster analysis of the observed and
Frontiers in Marine Science 03
modeled errors, the fourth part presents the prediction method for

the errors between simulation and observation and finally

the summary.
2 Data and methods

2.1 Modeling data

The modeling data, based on NEMOv3.6 and covering the

northeast Atlantic waters as shown in Figure 1B, was obtained from

the Copernicus Marine Service (CMEMS). The IBI product (Sotillo

et al., 2015) is defined on a regular grid of 1/36° (~2~3km) with

latitudes ranging from 26°N to 56°N and longitudes ranging from

19°W to 5°E, with a mean step size of 0.027788°, resulting in a

horizontal grid extending to 1081 × 865 grid points. Atmospheric

forcing is provided by hourly ECMWF fields, including the 10-m

wind, surface pressure, 2-m air temperature, 2-m specific humidity,

precipitation rate, short-wave and long-wave radiation fluxes. Open

boundary marine environmental information is sourced from a

global model (Lellouche et al., 2018) with1/12° resolution. Tidal

forcing is supplied by the 11 tidal harmonics (M2, S2, N2, K1, O1,

Q1, M4, K2, P1, Mf and Mm) from the FES2014 solution (Lyard

et al., 2021). The reduced-order Kalman filter assimilation scheme

(Tranchant et al., 2019) was used to assimilate altimeter data, in-situ

temperature and salinity vertical profiles and satellite sea surface

temperature. The data from the IBI operational system (hind-cast

only) of the Bay of Biscay surface currents (U and V components)

cover the period 2017-2021. The model outputs have been duly

validated, including an assessment of high frequency variability of

surface fields, with the results available in a product quality

document (Levier et al., 2023).
2.2 HF radar data

Data from Euskoos, encompassing reprocessed and near real-

time data, spans the period of 2009-2021 and is available from

CMEMS. This delayed mode product, designed for reanalysis

purposes, integrates the best available version of in situ data for

ocean surface currents. It includes the TODAL delay time dataset

and is specifically designed for near-surface current measurements

from HF radars. The observational coverage in this study aligns

with the numerical model, spanning a total of 5 years from 2017 to

2021. Initially, we extract the good observed data points identified

by a flag of 1 in the CMEMS dataset.

The seasonal averages of the surface current from the HF radar

observation are presented in Figure 2, with winter representing

December to February, spring representing March to May, summer

representing June to August and autumn representing September to

November. The HF radar data from 2017 to 2021 were further

processed using a 24-Hour (24H) low-pass filter, which separates

the HF radar observations into low-frequency current components
frontiersin.org
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and high-frequency current components. Figure 3 shows the

percentage contribution of these two components to the total

ocean currents. On average, the >24H low-frequency current

components account for 57.6% throughout the year, reaching

~70% in the Spanish shelf/slope region, with a maximum of

72.0% in winter and a minimum of 45.8% in summer. A
Frontiers in Marine Science 04
Butterworth low-pass filter with a cut-off period of 24 hours is

applied to the hourly surface currents to filter out the <24H high-

frequency currents and >24H low-frequency currents, mirroring

the process applied to the hourly modeling data. Through above

analysis, the possibility of the >24H currents is relatively high. In

addition, the low-frequency currents are less variable and more
FIGURE 3

Percentage of >24H (A) and <24H (B) radar surface current to the total current. (C) Temporal of HF radar surface mean current, the blue bar is total
current and the orange bar is <24H-lowpass filter current.
FIGURE 2

Seasonal HF radar observed surface currents (arrow) and the RMSD of HF radar currents and IBI modeling currents (colors). (A) Winter, (B) Spring, (C)
Summer and (D) Autumn.
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stable, with environmental factors such as wind and pressure being

the main influencing factors. Therefore, the subsequent analysis is

based on the >24H low-frequency currents.
2.3 K-means clustering algorithm

The primary objective of this study is to classify HF radar

observations and predict the errors between observations and

simulations, so it is important to cover all of the data space. The

KMA clustering algorithm partitions the high-dimensional data

space into clusters or groups, each defined by a prototype and

comprising data for which the prototype is the most similar.

However, a significant limitation of this technique is the inability

to accommodate missing values in the time series analyses. To

address this issue of missing values, a new distance calculation

function is used in KMA, which computes the average distance

between each grid point in the data after remove missing value and

the corresponding grid point in the prototype. The points with

missing values are automatically excluded when calculating the

distance classification in this function, ensuring the maximal

utilization of information from all observations.

The HF radar observations and the IBI simulation results

consist of N-dimensional vectors X = (x1, x2,…, xN), where N

represents the total amount of data. After data pre-processing, the

analysis covers a span of 5 years, encompassing N=36400 hours. To

optimize the utilization of available data for training, the data from

2019, which notably has a relatively small amount of data at only

5915 hours of observations, was designated as the evaluation data

for predictions. Meanwhile, the data from other years (2017, 2018,

2020, 2021) were utilized as the training data. Each vector xk= (x1k,

x2k,…, xnk) of sea current speed, derived from the HF radar data

and the model data, consists of n=410 nodes. Guanche et al. (2013)

have previously discussed the criteria for selecting the

appropriate number of groups. The number of groups chosen for

the spatial classification, obtained using KMA in our experiments,

was determined by calculating the variation of the distance of

each group from the centroids with the number of groups. We

found an elbow-like inflection point with a significant decrease in

distance from6 groups and more (not shown) for the change in this

distance at M = 6. Based on the above approach, KMA was applied

to the classify the 24H-lowpass-filteredradar-observed current

dataset, resulting in the defined values of the centroids vk = (v1k,

v2k,…, vnk) from the same n-dimensional M = 6 groups in the

original data.
3 Classification results

The traditional classification methods (such as classification by

month or season, as shown in Figure 2) have limitations when

dealing with complex and varied datasets. These methods often rely

on preset rules or experience, lacking the flexibility and objectivity

driven by data, and thus struggle to fully capture and utilize the
Frontiers in Marine Science 05
intrinsic characteristics and detailed information within the data.

For complex and volatile datasets like ocean currents, these

limitations are particularly evident. In contrast, cluster analysis, as

a modern data analysis method, possesses greater objectivity,

flexibility, depth, and adaptability, making it better suited to meet

the needs of data analysis. The approach in this paper involves using

KMA analysis to classify the currents in both the observed and

simulated datasets. This allows for examining the morphological

characteristics and variability of the currents, as well as the

relationship between the observed and simulated datasets.

Subsequently, the root mean square deviation (RMSD) between

observations and simulations is computed for each group, based on

the classification of the observed datasets.
3.1 HF radar currents character

The results of the KMA analysis of hourly HF radar currents are

depicted in the 3x2 lattice of Figure 4. The six groups identified

represent most of the known surface circulation features in the

study area. OG (Observation Group) -01 and OG-03 are groups

characterized by weak westward flowing currents, with mean

velocities of 6.9cm/s and 10.1cm/s respectively. These groups have

the highest probability of occurrence, which is calculated by

dividing the number of times each groups by the total number, at

41.2% and 20.3% respectively. OG-02 and OG-04 consist of

currents predominantly flowing northward, constituting 10.5%

and 14.8% of the surface mean currents in the area. They exhibit

strong northward currents, with mean velocities of 15.9 cm/s and

11.4 cm/s, respectively. OG-02 specifically represents northeastward

currents on the Spanish shelf/slope. OG-05 and OG-06 are

dominated by the east-northward flow, with mean velocities of

20.6cm/s and 15.9cm/s respectively, on the Spanish (French) shelf/

slope. Their structures are notably similar, particularly on the

Spanish and French continental shelves/slopes, where the currents

are mainly eastward and northward. OG-06 is slightly weaker than

OG-05, and a cyclonic vortex is observed offshore north of the

Spanish shelf.
3.2 Simulation currents character

Figure 5 shows a 3x2 lattice of the results of the KMA analysis of

the simulated currents. The MG (Modeling Group) -01 current

group exhibits a northwestward (northeastward) current on the

French (Spanish) shelf/slope, with a probability of occurrence of

9.3%. Its circulation structure somewhat similar to that of OG02,

both has a northward mean flow direction. The MG-02 current

group shows a westward mean flow direction, similar to that of OG-

01. The MG-03 current group has a very strong eastward

(northward) current on the Spanish (French) outer shelf/slope,

with a probability of occurrence of 8.1%.Meanwhile, the MG-04

current group has a northwesterly mean current direction, with a

probability of occurrence and a more similar circulation structure to
frontiersin.org
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OG-03. The MG-05 current group has a very strong eastward

(northward) current on the Spanish (French) shelf/slope, with a

circulation structure very similar to OG-05 and a probability of

occurrence of 3.6%. The MG-06 current group on the Spanish

(French) shelf/slope has a strong eastward (northward) current and

a cyclonic eddy structure in the middle of the observed area, which

is the same as the OG-06 current structure. The various subgroups

of the simulated currents can be found to correspond to their

respective subgroups in the observed currents.
3.3 Relationship between OGs and MGs

Figure 6 shows the monthly probability of occurrence and

number of occurrences for each group, with a significant decrease

in the number of observations occurring in July-August 2020 and

June 2021. As shown in Figure 6, OG-01 has a very high probability

and number of occurrences around the summer of 2017-2018, with
Frontiers in Marine Science 06
a significant decrease in the number of occurrences into 2020. The

frequency of OG-03 had a significant increase in 2020. OG-04

occurs mainly in the winter of 2017, 2020 and 2021. The total

number of occurrences of OG-05 is relatively low, with a total of

only 1209 occurrences (Table 1), and mainly occurring in 2020.

Table 1 provides the probability of occurrence of each group in

different years and seasons. There is a clear seasonal variation in

OG-02-04-05, with an occurrence rate of over 40% in winter, while

the rest of the groups are less seasonal, with OG01 occurring less

than 10% in winter and over 30% in all other seasons. In terms of

year of occurrence, OG-05 has a 46% probability of occurring in

2020, while OG-02 and OG-05 have less than 15% probability of

occurring in 2017 and 2021, respectively. The probability of

occurrence for the other groups is more evenly distributed across

the years, largely ranging from 15% to 35%.

The probabilistic linkage between the 6 OGs and 6 MGs is given

in Figure 7. For each OGi, Pij denotes the is the probability of

occurrence for each MGj, which is computed by dividing the
FIGURE 4

3x2 lattice of the K-means analysis applied to the HF radar surface current data, wherein The color represents the average absolute velocity, and the
arrow represents the average flow direction calculated from the average meridional flow and average latitudinal flow. (A) OG01, (B) OG02, (C)
OG03, (D) OG04, (E) OG05, (F) OG06.
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number of occurrences of each MGj during the OGi period by the

total number of OGi, yielding a multigrid as shown in Figure 7.

Each sub-grid indicates the probability of each MG occurrence at

each OG (e.g. if OG-01 occurs, there is a P = 56.6% probability that

MG-02 will occur).

The probability of MG-02 occurring in OG-01 is 56.6%, with

low flow velocities. There is a cyclonic vortex over the French

continental shelf, and a westward current in the northern waters of

Spain. The probability of MG-04 occurring is high in the OG-04

group, characterized by mainly northward current, with

northwestward offshore current on the French continental shelf

leading to net transport away from the coast. In OG-06, dominated

by stronger coastal current, a 59.7% probability of MG-06

occurrence is observed, indicating good simulation of the robust

east (north) oriented currents on the Spanish (French) shelf/slope.

The joint occurrence probability of MG-01 andMG-06 exceeds 50%

for both OG-02 and OG-03. The currents in these groups are

marked by prevailing west-northwest currents in the central part of

the studied region, aligning with the observed patterns. OG-05 has a

53% probability of strong currents occurrence on the Spanish
Frontiers in Marine Science 07
(French) shelf/slope, with a combined probability exceeding 85%

with MG-03, showcasing strong northward currents in the central

section of the study area.
3.4 RMSD distribution of OGs

Based on the analysis provided, there is a significant

resemblance between the classification of observed currents and

simulated currents. This indicates the model effectively captures the

low-frequency components of the current simulation results. On

the basis of clustering analysis of HF radar observation, the RMSD

was utilized to assess the current error between the observations and

simulations. Figure 8 shows the 3x2 lattice of the surface current

RMSD centroids, where the arrows are the mean error of U-

component and V-component.

For OG-01, the RMSD is low at the center of the observation

area but high along the edges, showing southward current

deviations on both sides and eastward deviations in the north.

The average RMSD for OG-01 is the smallest among the 6 groups at
frontiersin.or
FIGURE 5

3x2 lattice of the k-means analysis applied to the modeling surface current data. (A) MG01, (B) MG02, (C) MG03, (D) MG04, (E) MG05, (F) MG06.
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11.5 cm/s. The RMSD for OG-02 exhibits relatively high, averaging

14.3 cm/s, with larger errors in the domain’s middle and near the

French shelf/slope. OG-03 demonstrates elevated RMSD,

particularly in the western section of the observation area,

averaging 13.4 cm/s, with westward current deviations. The

RMSD for OG-04 is notably higher in the central-northern

region, showing northwestward current deviation but lower errors

near the French shelf/slope. The RMSD for OG-05 is the highest,
Frontiers in Marine Science 08
averaging at 16.6 cm/s, particularly on the western and southeastern

sides, with eastward current deviation.OG-06’s RMSD is higher on

the Spanish shelf and lower in the central region, with an average

RMSD of 14.7 cm/s. The most significant errors are found in the

southern and eastern parts of the area, where the current is strong

along the Spanish and French coasts. Directional errors are detected

near the stations and in the northernmost region, far from

both stations.
FIGURE 6

Temporal distribution of each RMSD groups during 2017-2021. (A) the proportion of the different groups, (B) the number of observation hours for
the different groups.
TABLE 1 These values represent the variability of each total current RMSD group, during the study period.

Groups Total
Proportion

2017 2018 2020 2021 Winter Spring Summer Autumn

OG1 12570 0.30 0.31 0.15 0.24 0.05 0.30 0.33 0.32

OG2 3201 0.14 0.37 0.32 0.16 0.66 0.17 0.06 0.10

OG3 6194 0.21 0.17 0.36 0.27 0.20 0.25 0.19 0.36

OG4 4502 0.39 0.15 0.24 0.22 0.42 0.38 0.06 0.13

OG5 1209 0.23 0.22 0.46 0.10 0.56 0.11 0.08 0.25

OG6 2809 0.25 0.38 0.21 0.16 0.31 0.24 0.13 0.32
The values are the % of occurrence of each group during each year, winter, spring, summer or autumn periods, considering winter months, December to February, spring months, March to May,
summer months, June to August, and autumn months, September to November.
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4 Error estimate

The preceding analysis indicates that the distribution of RMSD

between observations and simulations exhibits a significant

correlation with the locations of the observation sites and the

magnitude of the observed flow velocity. Since the HF radar sites

are roughly located at the same latitude, the location of the

observation sites can be simplified to latitude. The distribution of

RMSD along latitude and longitude was converted to a scatter plot

along latitude and speed, and then mapped onto a latitude × speed

grid. While increasing with the increasing flow velocity, the RMSD

decreases and then increases with latitude, due to the fact that at low

latitudes, the angles between the radials collected by the two HF

radar stations decreases as well leading to a higher error in the

vector sum of the radials. It is noteworthy that the maximum RMSD

value of OG-05-06 was observed at around 43.5°N and for speeds

between 30 and 40 cm/s.
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With the above processing, the distribution of RMSD (Lat, Speed)

for each group is obtained. Next, the error between observation and

simulation is predicted based on the classification and current

observations of HF radar in 2019. Using the latitude and speed

information from each observation point, the RMSD between

observations and simulations is predicted by interpolation in the

RMSD (Lat, Speed) distributions. This allows prediction of the RMSD

using only HF radar observations, without the need for simulations.

The predictions are then compared to the actual model minus

observed RMSD for verification. The average error prediction

results for winter and summer are shown in Figures 9A, B. In

addition, the actual error results are shown in Figures 9C, D. In

winter, the true errors (Figure 9C) exhibit a pronounced west-east

pattern, with higher values in the west and lower values in the east.

The predicted values (Figure 9A) also display a similar east-west

dipole, albeit with under estimated high values in the west and

overestimated low values in the east. In the summer, the
FIGURE 7

Occurrence probabilities of the 6MG projected into the HF radar current lattice.
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discrepancy between the simulation and observation (Figure 9D) is

minimal in the south-central region and more pronounced at the

periphery of the area. The prediction (Figure 9B) effectively captures

the large-scale characteristics of the error.

Building on the error prediction based on the classification of all

data (2017, 2018, 2020, 2021), this study also attempts to manually

categorize the data by seasons and months before conducting error

prediction using the KMA classification. Figure 9E shows the

temporal distribution of mean RMSD. The variation of the error

for each group of experiments is basically consistent with the true

value, with the exception of the experiment result based on monthly

data classification, which exhibits the largest error with an RMSE of

2.46 cm/s (Table 2). This discrepancy may be attributed to the

smaller amount of data available for classification each month after

the data is divided by month. As shown in Table 2, the experiment

with the smallest prediction error based on a full year of data, with

an RMSE of 1.98 cm/s, was not significantly different from the

error result of classifying data by season (2.01 cm/s). This represents

a 16.8% improvement compared to the control experiment that

utilized all observation and simulation errors for statistical analysis

without classification.
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5 Conclusions

The data obtained from the HF radar system of the SE-BOB and

the modeling system of IBI provide a large amount of invaluable

information for the study of the regional surface water circulation

and the controlling physical processes. K-means cluster analysis

methods, as unsupervised learning artificial intelligence techniques,

have developed rapidly in recent years. The aim of this study is to

classify known circulation features based on the cluster analysis

method and use the classification results to predict the errors

between observations and simulations at different time scales.

First, the HF radar observed and model simulated U and V were

processed using a 24H-lowpassfilter, to extract >24H currents.

Then, the KMA method was used for the classification training of

ocean current speed by 4-year observation data, and the similarity

between observation and simulation was analyzed. Finally, based on

the RMSD results from the observation classification, the RMSD

was predicted for2019 to obtain the simulation error, which can

provide a foundation for data assimilation. In the study area, the

surface currents show significant temporal and spatial variability,

the model simulations of low-frequency currents are in good
FIGURE 8

3x2 lattice of the surface current RMSD between observation and simulation, wherein the arrows stand for the direction of the surface current bias.
(A) Group 01, (B) Group 02, (C) Group 03, (D) Group 04, (E) Group 05 and (F) Group 06.
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agreement with the observations, and the classification-based

experiments can also give good error predictions. This study will

provide a basis for subsequent model error testing, forecast product

improvement and data assimilation.

Some known features of surface currents in the region (Cann

and Serpette, 2009; Rubio et al., 2013a; Solabarrieta et al., 2014) are

described by 6 current groups separated by KMA analysis. The

main current is eastward (northward) on the Spanish (French)
Frontiers in Marine Science 11
shelf/slope in winter, and more variable currents to the west and

southwest in summer. The circulation characteristics of the model’s

classification results are in good agreement with the HF radar

results, especially for currents on the Spanish (French) shelf/slope.

Clusters of westward currents have lower mean velocities but

occur more than 60% frequently. About 25.3% of the average

surface currents in the region are dominated by northward

currents, especially in the central part of the region, with mean

velocities ~15 cm/s. The east-northward current on the Spanish

(French) shelf/slope is very strong, with mean velocities exceeding

20 cm/s, and a cyclonic vortex exists offshore north of the Spanish

continental shelf.

Prediction errors in the experiments based on classification of

all data reached ~2.0 cm/s, with an improvement of ~17% over

the control experiments without the classification process.

However, the error prediction in the classification experiments

based on monthly data was not satisfactory and may improve as
FIGURE 9

Horizontal distribution of predicted (A, B) and observed (C, D) RMSD values in winter (A, C) and summer (B, D), wherein the arrows are HF radar
surface currents, and (E) temporal distribution of mean RMSD of predict and true: blue line is the RMSD for unclassified control experiments; orange
line is the RMSD for experiments with year-round data; green is the RMSD for experiments with quarterly data; red is the RMSD for experiments with
monthly data; purple line is for real RMSD between observation and simulation.
TABLE 2 Error statistics for each group of experiments (in cm).

ME AE RMSD

Year -0.46 1.43 1.98

Season -0.43 1.49 2.01

Month -0.58 1.74 2.46

CTRL -0.69 1.77 2.38
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the amount of data increases. This study will provide the basis for

subsequent model error testing, forecast product improvement

and data assimilation.
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