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As a special type of seep carbonate, the many details concerning the formation

mode and mechanism of tubular seep carbonates are rarely reported. Here, new

geochemical and mineralogical data regarding tubular seep carbonate (SQW-65)

are reported. Sample SQW-65 had anomalously negative d13C values and positive

d18O values, which suggested the dissociation of gas hydrate. Additionally, almost

all the sub-samples showed no Ce anomaly (Ce/Ce*average = 0.93), with obvious

U enrichment (21.3< UEF <240.3), which indicates that the studied tubular seep

carbonate was formed in an anoxic environment. Subsequently, the formation

process of the studied tubular seep carbonate is further discussed according to

the variability of mineralogical and geochemical characteristics from the rim to

the core of the tubular formation. In the early stage of the studied tubular seep

carbonate (periphery), owing to the influence of terrigenous components, the

quartz and Ti content and Y/Ho ratio were high. However, with the formation of

the periphery, the influence of terrigenous components was gradually weakened.

In addition, from the rim to the core, the carbon and oxygen isotope values

showed a “covariation” coupling relationship, an enrichment of U, and a

reduction in total rare earth element content. This is because as the outer wall

thickens and the internal fluid channel narrows, the intensity of the sulphate-

driven anaerobic oxidation of methane and the associated precipitation rate of

carbonate also increase.
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1 Introduction

Seep carbonate is a special authigenic carbonate that is common

in methane-rich fluid seep areas of active and passive continental

margins (Peckmann et al., 2001; Han et al., 2008; Ge et al., 2010;

Feng and Chen, 2015; Feng et al., 2016, 2018; Bayon et al., 2013;

Tong et al., 2013; Hu et al., 2014; Smrzka et al., 2020, 2021; Wei

et al., 2020, 2022, 2023; Liang et al., 2022). Research revealed that

ascending methane and infiltrating sulphate meet near the sulphate

methane transition zone (SMTZ), where approximately 80 to 90%

of the methane is consumed by microorganisms through the

sulphate-driven anaerobic oxidation of methane (SD-AOM,

Boetius et al., 2000; Saunois et al., 2016). In the course of SD-

AOM, HCO3
- is generated and can further react with the dissolved

Ca2+ and Mg2+ to form authigenic carbonate minerals (Hill et al.,

2004; Joseph et al., 2013). Therefore, authigenic carbonates formed

in SMTZ are regarded as an excellent archive of methane seep

activity in geological history and play a significant role in the study

of the properties and evolution of continental margin seep fluids

(Hu et al., 2014; Feng and Chen, 2015; Wang et al., 2015; Zwicker

et al., 2015; Smrzka et al., 2020, 2021). Additionally, large-scale gas

hydrate dissociation can easily cause regional and even global

environmental and ecological disasters, such as ocean hypoxia,

biological extinction, and global warming (Dickens et al., 1997;

Hesselbo et al., 2000; Kennett James et al., 2000; Ruppel and Kessler,

2017; Chen et al., 2019; Deng et al., 2021; Wei et al., 2020, 2022; Liu

et al., 2024). Therefore, research on cold seeps can help us better

understand the relationship between global climate and

environmental change and methane seep activities (Deng et al.,

2021; Wei et al., 2020, 2022), and provide a reference for solving

global problems such as climate warming.

So far, seep carbonates around the world have complex

morphological characteristics. They are often formed in shallow

surface sediments with different forms, such as crusts, nodules,

chimneys, chemical reefs, mounds, and veins (Bayon et al., 2013;

Bian et al., 2013; Wang et al., 2015; Argentino et al., 2019), and they

even protrude from the seafloor extending into the bottom seawater

to form huge carbonate buildup (Han et al., 2008). Moreover, it has

been shown that the different morphologies of carbonates record

the evolution of seep intensity, depositional environment,

precipitation rate, and chemical composition of seep fluids

(Bayon et al., 2013; Feng et al., 2018; Smrzka et al., 2020, 2021;

Jin et al., 2021). Tubular carbonates, which form around methane

seep fluid channels in the sediment, are common in modern and

ancient cold-seep environments around the world, such as the

northern South China Sea (Han et al., 2013; Yang et al., 2018; Jin

et al., 2021), Mediterranean Sea (Bayon et al., 2013), Campos Basin

(offshore Brazil) (Wirsig et al., 2012), Krishna-Godavari Basin

(offshore India) (Mazumdar et al., 2009; Joshi et al., 2014), Enza

River field in the Northern Apennines in Italy (Oppo et al., 2015),

and Hikurangi Margin in New Zealand (Campbell et al., 2008). It is

believed that tubular carbonates are formed when the fluid seep flux

is vigorous or at least highly focused (Liang et al., 2022). Oppo et al.
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(2015), and that they act as a focused SMTZ in methane-rich pore

fluids in sediments. In addition, although some tubular carbonates

reflect episodic oxidation environments (Liang et al., 2022), most

are formed in anoxic environments (Yang et al., 2018; Jin

et al., 2021).

It is obvious that many studies have regarded tubular

carbonates as a whole, and have not fully considered the specific

effects of different stages of cold seep activity on their mineralogy

and geochemical characteristics (Han et al., 2008, 2013, 2014). This

not only greatly restricts our understanding of the formation

mechanism and model of tubular carbonates (Wirsig et al., 2012;

Bayon et al., 2013; Yang et al., 2018) but also may provide

misleading information when we use tubular carbonates to

reconstruct ancient marine environments (Jin et al., 2021; Huang

et al., 2022). However, the mineralogy and geochemistry of cold

seep carbonates usually contain abundant information about cold

seep activities (Feng et al., 2018; Smrzka et al., 2020, 2021).

Therefore, we believe that the evolution of the mineralogical and

geochemical characteristics of tubular seep carbonates may have a

unique regularity during their formation. This study aimed to

reconstruct the formation mechanism and model of tubular seep

carbonates through the systematic sampling of carbonate samples

from the rim to the core of the tubular formation (the Dongsha area

in the South China Sea, Figure 1) for geochemical and

mineralogical analyses.
2 Geological setting

As one of the largest marginal seas in the Western Pacific, the

South China Sea is controlled by the complex interaction of the

Eurasian plate, Pacific Plate, and Indo-Australian plate (Taylor and

Hayes, 1980; Suess, 2005). Tectonically, the northern South China Sea

is a passive continental margin formed during the Middle Oligocene

and Early Miocene (32–17 Ma). The region contains a succession of

sedimentary basins (such as the Qiongdongnan Basin and Pearl River

Mouth Basin) with thick sedimentary sequences and fast deposition

rates (Taylor and Hayes, 1980; Xie et al., 2006; Liu et al., 2016).

Moreover, the extensive development of faults and mud diapirs the

northern South China Sea is conducive to the flow of methane-rich

fluids (Suess, 2005). In 2004, different types of seep carbonates were

discovered during the Chinese-German RV SONNE Cruise 177 in

the northeastern part of the Dongsha area (Han et al., 2008).

Therefore, the Dongsha area of the South China Sea has become

an excellent target area for the study of cold seep activities.
3 Materials and methods

In 2018, a joint scientific expedition was conducted using the

Institute of Deep Sea Science and Engineering’s manned submersible

“Shenhaiyongshi” and R/V “Tansuoyihao” (Wei et al., 2023). The

tubular seep carbonates (SQW-65) were recovered from the seafloor
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at a depth of 500 m in the Dongsha area, using the manned

submersible “Shenhaiyongshi” (Figures 1, 2). The bottom water

temperature was 8.2°C. The carbonate samples were described,

photographed, and sampled for further analysis at room

temperature in the laboratory.

An XRDwith an in situmicrozone analysis function was used to

identify mineral components. The experiment was completed in the

Guangdong Provincial Key Laboratory of Marine Resources and

Coastal Engineering, following the procedure described by Wei

et al. (2023). The measurements were obtained using a Rigaku

Rapid II X-ray diffraction system (Mo Ka radiation). The working

voltage was 50 kV, the current was 30 mA, the incident beam spot

diameter was 0.1 mm, and the exposure time was 5 min. Moreover,

mineral phases were identified and quantitatively calculated using
Frontiers in Marine Science 03
PDXL2 software according to the method described by

Rietveld (1967).

The carbon and oxygen stable isotope compositions of the

tubular seep carbonates were analyzed at the Guangdong Provincial

Key Laboratory of Marine Resources and Coastal Engineering using a

Thermo MAT-253 isotope ratio mass spectrometer. Each sample

produces 10 peaks of the mass spectrum, and the average value is the

isotopic value of the sample. The results are given in the standard d-
notation in per mil (‰) relative to the Vienna Peedee Belemnite

Standard (V-PDB).

Element analysis of the tubular seep carbonates used an Agilent

7700e ICP-MS at the Wuhan SampleSolution Analytical Technology

Co., Ltd., Wuhan, China. Powdered samples were treated with 5%

acetic acid solutions for element analyses of tubular seep carbonates.
FIGURE 1

(A) Map of the world. The rectangle (red) represents the study area (B). (B) Core locations on the northern slope of the South China Sea. The green
star represents the research core and the red circles represent the reference cores. SQW-65 (this study), Jiulong methane reef (TVG, Han et al.,
2008; Ge et al., 2020), S03A and S04F (Yang et al., 2018), GMGS2-08 (Deng et al., 2021), Site F (Feng and Chen, 2015), Haima (ROV1and ROV2, Liang
et al., 2017), Shenhu (HS4DG, Tong et al., 2013, Ge et al., 2020; R1-R5, Liang et al., 2022). (C), Seafloor observations at SQW-65 (a–d).
FIGURE 2

Photographs of the tubular seep carbonate SQW-65. The dashed blue line represents the dividing line between zones B and C. The dashed yellow
line represents the dividing line between zones B and A. The sampling locations are indicated by circles (red), triangles (green), and diamonds (blue).
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Strontium isotope compositions of the tubular seep carbonates

were analyzed at the Wuhan Sample Solution Analytical

Technology Co., Ltd, using a Neptune Plus MC-ICP-MS (Thermo

Fisher Scientific, Dreieich, Germany). While analyzing the samples,

the international NIST 987 was used to monitor the status of the

instrument every seven samples. All Sr isotope ratios were obtained

using “Iso-Compass” software (Zhang et al., 2020). In addition, the

USGS reference materials BCR-2 (basalt) and RGM-2 (rhyolite)

yielded results of 0.705012 ± 22 (2SD, n=63) and 0.704173 ± 20

(2SD, n=20) for 87Sr/86Sr, respectively, which is identical, within

error, to their published values (Li et al., 2012; Zhang and

Hu, 2020).
4 Results

4.1 Mineralogical and
petrographic description

Using the manned submersible “Shenhaiyongshi”, the existence

of extensive and massive carbonate deposits was confirmed

(Figure 1C). These carbonates were distributed sporadically in

different shapes and sizes, with a gray and dark brown color

(Figure 1C). The maximum diameter of the obtained tubular

seep-carbonates (SQW-65) measured approximately 10 cm, and

the channel exhibited a diameter of approximately 2 cm

(Figure 1C). The tubular seep carbonate was cleaned with

deionized water and air-dried and cut in half along its maximum

diameter. From its cross-section, we could see three distinct colors.

The color was lightest near the channel, and darkest on the

periphery. Furthermore, based on the color variation, the cross-

section of the tubular seep carbonate was categorized into three

distinct regions from the inner to the outer periphery, designated as

Areas A, B, and C (Figure 2).

The XRD results revealed that carbonate and quartz were the main

mineral components of the carbonate samples of SQW-65 (Figure 3;

Supplementary Table S1), the contents of which were 49.4% to 91.1%

(average of 71.9%) and 8.9% to 50.6% (average of 28.1%), respectively.
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The samples showed a trend of decreasing carbonate content from the

periphery to the inner portion of the tubular seep carbonate, whereas

the quartz content increases (Figure 3).
4.2 Carbon and oxygen isotopes

The carbon and oxygen stable isotopic composition of the tubular

seep carbonate (SQW-65) is reported in Supplementary Table S2. The

d13C values of SQW-65 varied from −42.6‰ to −33.2‰ (average of

−38.3‰, n=14, Figure 4), with a small variation. The d18O values of

SQW-65 varied from 0.30 to 2.3‰ (average of 1.3‰, n=14, Figure 4).
4.3 Strontium isotope

The strontium isotope composition of the tubular seep

carbonate (SQW-65) is reported in Supplementary Table S2. The
87Sr/86Sr ratio values of SQW-65 varied from 0.709139 to 0.709297

(average 0.709246, n=13, Figure 5). These values are similar to those

of modern seawater (0.709175, Paytan et al., 1993).
4.4 Major, trace, and rare earth elements

The major and trace elements composition of the tubular seep

carbonate (SQW-65) is reported in Supplementary Tables S3, S4.

The concentrations of Al and Ti in the sample (n=13, Figure 6)

ranged from 1,018 to 1,764 ppm and from 3.6 to 10.0 ppm,

respectively. The redox-sensitive element U ranged from 0.9 to
FIGURE 3

Partial X-ray diffraction images of SQW-65.
FIGURE 4

Carbon and oxygen isotopic compositions of seep carbonates:
SQW-65 (this study), the South China Sea (TVG, Han et al., 2008;
Ge et al., 2020; S03A and S04F, Yang et al., 2018; GMGS2-08,
Deng et al., 2021; Site F, Feng and Chen, 2015; ROV1and ROV2,
Liang et al., 2017; HS4DG, Tong et al., 2013, Ge et al., 2020; R1-R5,
Liang et al., 2022), Gulf of Cadiz (Wang et al., 2015).
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10.3 ppm in the sample (n=13, Figure 6). The enrichment factor of

U is calculated as XEF = [(X/Al)sample/(X/Al)PAAS], which is

normalized using the Post-Archean Australian Shale (PAAS,

Taylor and McLennan, 1985). A trend of increasing UEF occurred

from the periphery inward in the samples.

The rare earth element (REE) composition of the tubular seep

carbonate (SQW-65) is reported in Supplementary Table S2. The

REE contents were normalized against the PAAS (Taylor and

McLennan, 1985). The shale-normalized REE patterns of samples

did not exhibit Ce anomalies (Ce/Ce*average = 0.93) and middle REE

(MREE) enrichment (n=13, Figure 6). In this study, Ce/Ce* = 3CeN/

(2LaN + NdN) and Pr/Pr* = 2PrN/(CeN + NdN), where N refers to

the normalization of the concentration against the PAAS (Taylor

and McLennan, 1985).
Frontiers in Marine Science 05
5 Discussion

5.1 Fluid sources and
environmental conditions

The stable isotopic composition of carbon and oxygen in seep

carbonates is important in revealing the composition and source of

seeping fluids (Kim and O'Neil, 1997; Peckmann et al., 2001; Kim

et al., 2007; Bayon et al., 2013; Feng et al., 2018; Wei et al., 2020,

2022). The formation of methane has been demonstrated to exhibit

a preferential utilization of 12C, leading to a significantly reduced

d13C value in general (−110 to −30‰, Sackett, 1978; Whiticar,

1999). Therefore, when sulfate-driven anaerobic oxidation of

methane occurs, the carbon sources of 13C-poor will eventually be

transferred to cold seep carbonates, resulting in obvious carbon

isotope differences between cold seep carbonates and normal

marine carbonates (Peckmann et al., 2001; Peckmann and Thiel,

2004). As shown in Figure 3, the carbon isotope values of the

tubular seep carbonate (SQW-65) in this study ranged from −43.6

to −33.2‰, which is very similar to the carbon isotope composition

of seep carbonates in other parts of the world, such as the Gulf of

Cadiz, Qiongsoutheast Sea, and Shenhu Sea (Han et al., 2008; Tong

et al., 2013; Feng and Chen, 2015; Wang et al., 2015; Liang et al.,

2017; Deng et al., 2021; Wei et al., 2020, 2022). Moreover, these

results also reflect that methane has proven to be thermogenic in

origin, or a mixture of thermogenic and biogenic methane, which is

consistent with previous studies (Deng et al., 2021; Huang

et al., 2022).

The d18O values of seep carbonates are primarily influenced by

the oxygen isotopic composition of the precipitating fluid and the

temperature conditions at the time of formation (Kim and O'Neil,

1997; Kim et al., 2007; Feng and Chen, 2015; Liang et al., 2017).

Therefore, the oxygen isotope composition of seep carbonates can

reflect the information of the fluid source and temperature during
FIGURE 5
87Sr/86Sr ratios of authigenic carbonates from site SQW-65. The
dashed line corresponds to the 87Sr/86Sr ratio of modern seawater
(0.709175, Paytan et al., 1993). Dongsha (Ge et al., 2020), Shenhu
(Ge et al., 2020), SQW-65 (this study).
FIGURE 6

(A) Shale-normalized REE distribution patterns of the carbonate. PAAS, Post-Archean Australian Shale (Taylor and McLennan, 1985). (B) Ce/Ce* vs.
Pr/Pr* diagram [after Bau and Dulski (1996)] of authigenic carbonate samples. Field I - no anomaly; field IIa - positive La anomaly produces an
apparent negative Ce anomaly; field IIb - a negative La anomaly causes an apparent positive Ce anomaly; field IIIa - real positive Ce anomaly; field
IIIb - real negative Ce anomaly; field IV - positive La anomaly disguises a positive Ce anomaly.
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the precipitation of authigenic carbonates. In seep environments,

abnormally positive d18O values of seep carbonates have been

widely found. This is because when gas hydrate dissociation

occurs, the 18O-enriched fluids released by the hydrate

participates in the precipitation process of the carbonates, and

ultimately changes the oxygen isotope composition of the seep

carbonates (Han et al., 2008; Hu et al., 2014; Feng et al., 2018; Chen

et al., 2019; Deng et al., 2021; Wei et al., 2020, 2022, 2023).

Assuming that the seep carbonates were precipitated in bottom

water with a temperature of 8.2°C and the d18Oseawter value of

bottom water is 0‰ SMOW, the theoretical d18O values for

carbonates can be calculated as 1.73‰ using the method

provided by Kim and O'Neil (1997). Additionally, the 18O value

of carbonates is enriched by +0.06‰ for each 1mol% of magnesium

carbonate (Tarutani et al., 1969). Therefore, according to the

content of MgCO3 in SQW-65 (average 5.77 mol%), the

theoretical d18O value for carbonates was corrected (1.38‰). In

contrast, oxygen isotope values of the studied tubular seep

carbonate were mostly higher than this value, showing the

characteristics of 18O enrichment (Figure 3). This suggests that

the tubular seep carbonate (SWQ-65) was influenced by fluids

enriched with 18O during its precipitation. Most studies indicate

that the primary origins of 18O-enriched fluids are associated with

gas hydrate dissociation and clay dehydration (particularly

smectite-illite transformation) (Hesse and Harrison, 1981; Hesse,

2003). However, considering the existence of gas hydrate at shallow

a sub-bottom depth in the study area (Feng and Chen, 2015; Feng

et al., 2018; Ge et al., 2020), we believe that the 18O-enriched fluids

generated by gas hydrate dissociation are the main reason for the
18O enrichment of seep carbonates at the SQW-65 station.

In addition, cold seep carbonates are generally thought to have

formed in a reducing environment on the seafloor. This is because

during the precipitation of seep carbonates, the SD-AOM can

produce large amount of hydrogen sulfide, which eventually leads

to the anoxic-sulfide state in seep environments (Hu et al., 2014; Lin

et al., 2021; Smrzka et al., 2020, 2021; Miao et al., 2021b, 2022a,

2022b, 2024a, 2024b). Moreover, under this circumstance, the

behavior of redox-sensitive and REE will be obviously abnormal,

which can help us reconstruct the redox state during the

precipitation of seep carbonates (Bayon et al., 2011; Bian et al.,

2013; Hu et al., 2014; Wang et al., 2015; Yang et al., 2018; Smrzka

et al., 2020, 2021; Wei et al., 2020, 2022). First, the shale-normalized

REE patterns (Taylor and McLennan, 1985) of the studied tubular

seep carbonate shows moderate intensity MREE enrichment

(Figure 6A), which is similar to the characteristics of pore water

in typical iron reduction zones (Smrzka et al., 2020). In addition, in

the diagram of Ce/Ce*-Pr/Pr* (Figure 6A), no obvious Ce anomaly

was found (mainly scattered in Field I), indicating that the

carbonates were precipitated in an anoxic environment. This is

similar to seep carbonates in Gattis Bay (Wang et al., 2018), the Gulf

of Mexico (Hu et al., 2014) and the Qiongdongnan area (Wei et al.,

2020, 2022). Moreover, there was obvious U enrichment

(21.3<UEF<240.3) in the studied tubular seep carbonate,

indicating an anoxic environment, and this phenomenon also

usually occurs in the iron reduction zone (Algeo and Tribovillard,

2009; Smrzka et al., 2020; Miao et al., 2021a). Therefore, it can be
Frontiers in Marine Science 06
considered that the studied tubular seep carbonate was formed in

the iron reduction zone of the reducing environment.
5.2 Formation process of the tubular
seep carbonate

Based on the analysis conducted, the tubular seep carbonate

under study was precipitated in an anoxic environment and was

influenced by the gas hydrate evolution process. However, it has been

shown that the precipitation environment of tubular seep carbonates

is not invariable due to the influence of seep flux and other factors in

the process of methane seep activities (Jin et al., 2021; Liang et al.,

2022), which may influence the mineral facies and geochemical

characteristics of tubular seep carbonates during their precipitation.

Additionally, recent dating of tubular carbonates from the

Mediterranean, Campos Basin, and South China Sea has shown

that the inner parts of tubular carbonates are generally younger but

vertically are the same age (Wirsig et al., 2012; Bayon et al., 2013;

Yang et al., 2018). Therefore, we can assume that tubular carbonates

are usually formed from the rim to the core. Previously, according to

the color difference, we divided the cross-section of the tubular seep

carbonate into three zones from the rim to the core: A, B and C,

which may represent the three stages of carbonate formation (early,

middle, and late) (Figure 2). As carbonate precipitation progresses

(from the early to late period), the carbonate content increases

gradually, and the content of terrigenous detritus, such as quartz,

decreases gradually (Figure 3). In addition, with the increase in the

carbonate component in the tubular seep carbonate, its geochemical

characteristics also show regular changes: the contents of Ti and total

REE (SREE) decrease significantly, whereas the Y/Ho ratio and UEF

increase significantly (Figure 7). This indicates that precipitation

environments are variable for the formation of tubular

seep carbonate.

First, in the early stage of carbonate precipitation (C), although

large number of bicarbonates are produced by SD-AOM, the

bicarbonates do not easily accumulate due to strong diffusion,

which may lead to a low rate of carbonate precipitation and the

slow formation of carbonates. However, with the formation of the

periphery of the tubular seep carbonate, the internal channels also

become smaller and the diagenetic environment becomes more

closed, which can effectively hinder the diffusion of HCO3
-.

Therefore, when methane flux is constant, HCO3
- concentration

will be more concentrated in the internal channels of the tubular

seep carbonate under this scenario, thus accelerating the

precipitation of carbonates. Here, we found that with the

evolution of the carbonate precipitation process (from the rim to

the core), the carbonate content increased significantly,

accompanied by a decrease in ∑REE content (Figure 7). This is

because the faster the precipitation rate of carbonates, the more

unfavorable the incorporation of REE, eventually leading to lower

∑REE content (Wright et al., 1987; Ge et al., 2010). On the other

hand, with the evolution of the carbonate precipitation process, the

diffusion of H2S is also weakened. Additionally, a higher H2S

concentration in the late channel will also aggravate the degree of

reducing environment (Smrzka et al., 2020; Wei et al., 2020, 2022),
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which leads to an increasing trend in the UEF value in the cross-

section of SQW-65 from the rim to the core (Figure 7).

In the early stage of carbonate precipitation (C), carbonate was

in direct contact with sediments, and their precipitation process is

greatly influenced by terrigenous detritus. Therefore, the tubular

seep carbonate formed at this stage contains more terrigenous

materials, resulting in a higher content of quartz and Ti

(Figures 2, 7). In addition, the low Y/Ho ratio (average 30.8) in

the tubular seep carbonate also indicates the influence of
Frontiers in Marine Science 07
terrigenous detritus (25 to 30, Nozaki et al., 1997). Furthermore,

the early carbonates of the tubular seep carbonate have a higher

ratio of 87Sr/86Sr and a lower Sr content (Figures 5, 8), which agrees

well with the typical continental component in the sediments in the

study area (Wei et al., 2012). However, with the continuous

precipitation of the tubular seep carbonate, a carbonate outer wall

separated from the sediment was formed, which reduced the

influence of terrigenous detritus on the formation of the

carbonates. Therefore, in the middle and late stages of carbonate
FIGURE 7

Trends of carbonate contents and Ti, ∑REE, Y/Ho, and UEF of the tubular carbonate from the periphery to inner portions.
FIGURE 8

d87Sr-1/Sr*1,000 and d87Sr-carbonate content diagram of the carbonate samples. Dongsha (Ge et al., 2020), Shenhu (Ge et al., 2020), SQW-65
(this study).
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precipitation (B and A), the content of quartz and Ti began to

decrease, and the Y/Ho ratio began to increase (Figures 2, 7),

which indicated that the influence of terrigenous detritus on

carbonate precipitation was weakened. Until the late stage of

carbonate formation (A), with the continuous thickening of the

carbonate outer walls, they are almost no longer affected by

terrigenous detritus. Moreover, in the diagram of d87Sr-1/Sr, the
core of the tubular seep carbonate has a high Sr concentration with

a low 87Sr/86Sr ratio, which is plotted near the two bivalves

(Figure 8). Additionally, the Sr isotopic compositions of bivalves

were thought to faithfully replicate the signature of the seawater

from which they had precipitated (Hess et al., 1986; Ge et al., 2020).

Therefore, this further indicates that the impact of terrigenous

detritus on the formation of tubular seep carbonate is diminished.

In addition, the carbon and oxygen isotopic compositions of the

studied tubular seep carbonate are also consistent with the above

discussion. The results show that d18O and d13C also present a

“covariation” coupling relationship along the cross-section: from

the rim to the core, the d13C value generally alters from high to low,

and the d18O value generally alters from low to high with the

increase in the carbonate component (Figure 8). Moreover, this

regularity has also been found in previous studies of tubular seep

carbonate in the northern South China Sea and is thought to be

caused by alterations in fluid properties during carbonate

precipitation (Jin et al., 2021). With the process of carbonate

precipitation, the mixing between the external fluid (18O-poor

and 13C-rich) and internal methane seep fluid weakens, resulting

in the increase in the d18O value and the decrease in the d13C value.

In conclusion, we have reconstructed the formation process of

tubular seep carbonate based on the mineralogical and geochemical

characteristics observed from the outer rim to the core. During

the early stages of tubular seep carbonate formation, both seawater

and sediment exerted a considerable influence, leading to

increased clastic content (Figure 9). However, as the outer wall of

the tubular seep carbonate developed, the sedimentary influence
Frontiers in Marine Science 08
became isolated, and the recorded information mainly represented

seawater conditions (Figure 9). This finding increases our

comprehension of the formation mechanisms and patterns of

tubular seep carbonate, highlighting the significance of taking into

account the sampling sites when using tubular seep carbonate to

reconstruct past marine environments.
5 Conclusion

In this study, we examined tubular seep carbonate samples from

the cold seep area in Dongsha, located in the northern South China

Sea. These special cold seep carbonates play a significant role in

understanding ancient seep activities. Through laboratory

experiments, we made significant discoveries regarding the

formation and characteristics of these tubular seep carbonates.

First, the d13C values of the studied tubular seep carbonates were

very low. This indicates that the methane present in these

carbonates is likely to be of thermogenic origin or a combination

of thermogenic and biogenic methane. Additionally, the abnormally

positive d18O values suggest that the precipitation process of these

tubular seep carbonates is influenced by the hydrate dissociation.

This highlights the role of hydrate evolution in the formation of

these carbonates. Additionally, the shale-normalized REE patterns

all displayed no obvious Ce anomalies, accompanied by an obvious

enrichment of U, revealing that the carbonates precipitated under

anoxic conditions. Subsequently, based on the mineralogical and

geochemical characteristics, we identified three distinct stages in the

precipitation process of tubular seep carbonates: early, middle, and

late stages. As these carbonates precipitate, the influence of

terrigenous detritus gradually diminishes, resulting in a more

reductive precipitation environment. Overall, our study offers

valuable insights into the formation and characteristics of

tubular seep carbonates, increasing our understanding of past

seepage activities.
FIGURE 9

Schematic diagram of tubular seep-carbonate formation. (A) Early stage. (B) Late stage.
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