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Center of Ningbo, Ministry of Natural Resources, Ningbo, China, 3Yuzhi Environmental Technology
(Zhejiang) Co., Ltd., Ningbo, China
The ecological effects of eutrophication on estuaries and coastal ecosystems are

significant worldwide. Based on data collected in 2019 from Hangzhou Bay and

adjacent waters, this study employed biological traits analysis and RLQ/fourth-

corner analysis methods to investigate the distribution patterns of macrobenthic

assemblages along a eutrophication gradient and reveal the response patterns of

their biological traits to eutrophication stress. The results showed that

eutrophication had a significant structuring effect on the spatial distribution of

macrobenthic community structure. As the level of eutrophication increased, the

community abundance and number of macrobenthic biological traits decreased.

The composition of macrobenthic community biological traits changed in

response to eutrophication. In areas with high levels of eutrophication, larger

body sizes became more dominant, reflecting a shift in dominant traits similar to

the eutrophication gradient. Furthermore, the predominant species in this region

were burrowers and tube dwellers, which preferred muddy sand and sandy mud

substrates. The AMBI ecological group accurately reflects the degree of

eutrophication disturbance, with tolerant species and second-order

opportunistic species being common in eutrophic areas.
KEYWORDS

biological traits analysis, macrobenthic community, Hangzhou Bay, variance
partitioning analysis, eutrophication
1 Introduction

Eutrophication is a water pollution phenomenon caused by excessive levels of nutrients

such as nitrogen and phosphorus in the water (Akinnawo, 2023; Kratzer et al., 2019). The

causes of eutrophication are imbalances in the functioning of aquatic ecosystems, triggered by

changes in the quantity, relative proportion, or chemical forms of nitrogen and phosphorus
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entering these ecosystems. The nature and intensity of the response

are influenced by the rate of water flow, temperature, and the

intensity of light (Le Moal et al., 2019). There are two types of

eutrophication in water bodies: one is natural eutrophication formed

through long-term accumulation, and the other is cultural

eutrophication, which forms rapidly in a short period of time

(Akinnawo, 2023). The extent of natural eutrophication is

determined by soil movement in the surrounding watershed and

the speed of surface and groundwater flow. Along the land–sea

continuum, phosphorus is primarily retained in the soil, and when

soil is eroded and transported by water flow, phosphorus can enter

the ocean in solid or liquid form (Jarvie et al., 2013). Nitrogen mainly

dissolves into surface water and groundwater in the form of nitrates

and is then carried back into the ocean through river runoffs (Kolbe

et al., 2016). In comparison, the sources of anthropogenic

eutrophication are wider and more rapid, mainly due to frequent

human activities such as the direct discharge of untreated domestic

sewage, mining of phosphorus, and chemical manufacture of mineral

nitrogen, which overload nitrogen and phosphorus concentrations on

land and ultimately leads to severe eutrophication of the oceans

(Asmal et al., 2022; Smith and Schindler, 2009).

Coastal eutrophication has become a pressing global issue,

severely damaging the health of coastal ecosystems (Liu et al.,

2021). Although the natural conditions of different sea areas vary,

their responses to eutrophication still follow general patterns. In the

early stages of eutrophication, there is a substantial increase in algal

primary productivity (Ding et al., 2023). As a result, macrobenthic

amphipods, shrimp, filter-feeding bivalves, and phytophagous

fishes show increased abundance, growth rate, and fecundity

(Erdoğan et al., 2021; Martinetto et al., 2010). However, when

nutrient inputs exceed the marine ecosystem's capacity to absorb

them, increasing the abundance and biomass of phytoplankton and

algae, various negative impacts will occur. Increased algae

productivity may exceed the tolerance capacity of herbivores,

resulting in incomplete utilization by herbivores at higher trophic

levels and leading to an increase in the sedimentation of organic

matter on the seabed (Rabalais et al., 2009). Decomposition of

organic matter will consume a large amount of oxygen. When

oxygen levels reach a critical state, mobile species escape to seek new

habitats, whereas sessile species perish as oxygen is depleted

(Glibert et al., 2005; Malone and Newton, 2020). This scenario

can lead to severe degradation of macrobenthic communities.

Furthermore, turbid water reduces light penetration, preventing

submerged plants from performing normal photosynthesis, which

ultimately results in their death, thereby decreasing species diversity

(Paerl, 2018; Savchuk, 2018).

Using the classic organic enrichment hypothesis (Pearson and

Rosenberg, 1978) and the diversity–disturbance hypothesis

(Huston, 1979), the impacts of eutrophication on the species

composition and community structure of macrobenthos can be

thoroughly understood. Eutrophication is a process where the input

rate of organic matter increases: on one hand, anthropogenic

discharges of wastewater carry significant amounts of organic
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substances; on the other hand, continuous nitrogen and

phosphorus discharges promote algal proliferation. Upon algal

death, a substantial release of organic matter further increases the

organic load of water bodies (Nixon, 1995)—for example,

influenced by eutrophication, large accumulations of macroalgae

in Laholm Bay and the Baltic Sea have reduced the water

transparency and oxygen levels, leading to significant fish and

bivalve mortality (Rosenberg, 1985; Rosenberg et al., 1990). In the

North Adriatic Sea, abnormal deaths of macrobenthos are

attributed to excessive phosphorus inputs triggering algal blooms,

followed by extensive algal decay causing bottom-layer hypoxia

(Chiaudani et al., 1980). Similarly, in the United States' Chesapeake

bay, eutrophication has led to increased phytoplankton, decreased

water transparency, and deep-water hypoxia, ultimately resulting in

reduced populations of macrobenthos (Kemp et al., 2005). China is

also affected, with the East China Sea experiencing frequent hypoxia

and harmful algal blooms due to excessive nutrient inputs from the

Yangtze and Qiantang rivers, which have harmed fish populations

(Tang et al., 2006; Zhou et al., 2022).

However, there is a lack of research on how the biological traits of

macrobenthos respond to eutrophication disturbances. Biological

traits offer insights into species distribution and the underlying

mechanisms. Biological traits, characteristics of a species'

morphology, and life history represent the connections between life

history and habitat (Beauchard et al., 2017). Biological trait analysis

(BTA) is a straightforward and widely used method that reflects the

environmental impact on species and illustrates how species regulate

and maintain ecosystems—for instance, body size is a crucial trait for

adapting to different sediments, while habitat preferences can

influence sediment porosity and oxygen levels (Bremner et al., 2006;

Soetaert et al., 2002). When employing biological trait analysis, RLQ

and fourth-corner analysis methods are necessary to determine

whether a specific trait is significantly correlated with environmental

gradients. Although these methods differ, their combined use is the

most effective way to assess the correlation between traits and the

environment (Kleyer et al., 2012). RLQ primarily uses species

abundance as a mediator to assess the relationship between

environmental gradients and traits, representing the overall

relationship between species traits and environmental variables. The

fourth-corner analysis method examines the correlation between a

single trait and a single environmental factor at a time, with the final

results displaying only significantly correlated traits and

environmental variables (Dray et al., 2014).

This study employed BTA, RLQ analysis, and fourth-corner

analysis methods to examine the response of biological traits of

benthic macrofauna in Hangzhou Bay and adjacent waters to

varying levels of eutrophication. The study aims to investigate

how the species abundance and biological traits of macrobenthic

fauna respond to the eutrophication gradient and to assess their

correlations with eutrophication-related factors. This integrated

approach seeks to deepen our understanding of ecological

responses to environmental changes and their implications for

ecosystem health.
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2 Materials and methods

2.1 Study area and sampling design

The East China Sea is one of largest marginal seas in the Pacific

Ocean, featuring an approximately 600-km continental shelf (Qian

et al., 2017). The research area spans the provinces of Zhejiang and

Shanghai and is situated in the coastal region of the northern East

China Sea, the Hangzhou Bay, and adjacent waters. It is a trumpet-

shaped estuary that faces east and west. Its length is 90 km, its width

at the bay mouth is 100 km, and it covers an area of approximately

5,000 km². The typical water depth is 8–10 m, and the mudflat area

is approximately 550 km2. With a coastline of 258.49 km and an

estuary shoreline of 22.08 km, Hangzhou Bay is primarily a flat, silty

coast. It mainly receives freshwater and sediment from rivers such

as the Qiantang, Cao'e, and Yong River (Yang et al., 2012). Among

these rivers, the Qiantang River, which has a water inflow of 373 ×

108 m3 and a sand inflow of 658.7 × 104 t, is a well-known surge

location that runs through Zhejiang Province with high runoff

(Zhang et al., 2016). The Yongjiang and Cao'e Rivers empty straight

into Hangzhou Bay, bringing in 823.3 × 104 t of sand annually along

with an annual inflow of 444.4 × 108 m3 of water. The salinity of the

seawater at the study area is relatively low (Matsuzaki et al., 2016),

and the average water temperature is high (Choi et al., 2021),

influenced by the Yangtze River diluting water and Kuroshio warm

saline water. The study area is located in Hangzhou Bay, where the

long-term input of nutrients and suspended organic matter from

the Yangtze River have caused eutrophication (Chen et al., 2020).

Accordingly, the study conducted sampling at 17 stations in

Hangzhou Bay during the summer of 2019 (July–August)

(Figure 1). The primary cause of eutrophication is the imbalance

between the input and output of nitrogen and phosphorus nutrients

and phosphorus nutrients in the water. Therefore, the degree of

eutrophication in this region was represented by calculating the

eutrophication index (EI). Eutrophication levels were calculated

using the eutrophication index method (Yao and Shen, 2005):

EI =
COD� DIN� DIP� 106

4500

In the formula, COD (mg/L) represents chemical oxygen

demand; DIN (mg/L) denotes the mass concentration of

inorganic nitrogen, including nitrite nitrogen, nitrate nitrogen,

and ammonium nitrogen; and DIP (mg/L) indicates the mass

concentration of dissolved inorganic phosphorus. The product of

the individual eutrophication thresholds for COD, DIN, and DIP in

this marine area is 4,500, in which 1 ≤ EI ≤ 3, 3< EI ≤ 9, and EI > 9

representing mild eutrophication, moderate eutrophication, and

severe eutrophication, respectively.
2.2 Environmental variables

Samples were collected using a 0.1-m2 box corer, with four

replicates. Two replicate samples were rinsed with seawater and
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sieved through 0.5-mm mesh sieves to collect macrobenthos, while

the third and fourth replicate samples were used for sediment factor

analysis. In the laboratory, the remaining sediment samples were

poured into porcelain dishes and meticulously inspected until no

macrobenthic organisms remained. The identified macrobenthos

were taxonomically classified to the lowest possible level using a

stereoscopic dissecting microscope (Olympus SZX16) with

reference to professional books and atlases (e.g., Editorial

committee of Fauna of Zhejiang, 1991; Sun and Yang, 1988).

Individual species were then counted and weighed using an

electronic balance to determine their abundance.

During field sampling, water depth, bottom water temperature,

salinity, and dissolved oxygen (DO) were measured at each station

using a Yellow Springs Instruments water quality meter (YSI, OH,

USA). Additionally, at each station, four replicate samples of

bottom water were collected, with each sample consisting of 500

mL of water stored in plastic containers. These samples were then

brought back to the laboratory for the measurement of chlorophyll

a, dissolved silicate, chemical oxygen demand, suspended solids,

dissolved inorganic phosphorus, nitrite nitrogen, nitrate nitrogen,

and ammonia nitrogen. The third and fourth sediment samples

were frozen for subsequent analyses of total organic carbon, sulfide,

and water content. The measuring methods corresponding to each

environmental factor include chlorophyll a (Chla) measured using

fluorescence spectrophotometry, dissolved silicate (DSi)

determined using silicon molybdenum yellow spectrophotometry,

chemical oxygen demand (COD) measured using titration via the

acid potassium permanganate method, suspended solids (SS)

determined using the gravimetric method, dissolved inorganic

phosphorus (DIP) determined using the molybdate blue

spectrophotometric method, nitrite nitrogen (NO₂) determined

using the diazotization method, nitrate nitrogen (NO₃)

determined using the zinc–cadmium reduction method, ammonia

nitrogen (NH₄) determined using the hypobromite oxidation

method, total organic carbon (TOC) determined using a Vario

MICRO cube analyzer (Elementar, Germany), sulfide determined

using the methylene blue spectrophotometric method, and water

content (WC) determined using the drying method (State Bureau of

Quality and Technical Supervision of China, 2007a, 2007b).
2.3 Biological trait analysis

Macrobenthic biological traits were selected for this research based

on species' morphology, life history, mobility, and ecology, which have

been demonstrated as reliable by the majority of studies (Calapez et al.,

2018). The 26 trait modalities of six biological traits (adult body length,

food source, dwelling habit, feeding mode, substratum preference, and

AMBI ecological group) were selected for macrobenthos in Hangzhou

Bay and adjacent waters. The AMBI ecological group of the species was

determined using the software available on the AZTI website (http://

ambi.azti.es). Information on the biological traits of each species was

gathered from the literature (Macdonald et al., 2010) and the online

databases BIOTIC (http://www.marlin.ac.uk/biotic/), Marine

Species Traits (http://www.marinespecies.org/traits/index.php),
frontiersin.org
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the Arctic Traits Database (https://www.univie.ac.at/arctictraits/),

and Polytraits (http://polytraits.lifewatchgreece.eu/polytraits). If

information on the biological traits of certain species could not be

obtained via these routes, the most taxonomically similar biological

traits were chosen instead. Fuzzy codes were used to assign values to

the biological trait patterns of species, as trait modalities were not

absolute (Chevene et al., 1994). The association between a species

and a trait modality was measured on a scale of 0 to 3, where “0”

denoted no association, “1” low association, “2” moderate

association, and “3” high association—for example, the adult

body length of Loimia medusa generally varies from 3 to 10 cm,

although a few can reach lengths of 10 cm or more; hence,

“medium” body lengths are assigned a value of 3, “large” body

lengths are assigned a value of 1, and others receive a value of 0. As

an absolute omnivore, Sternaspis chinensis received a value of 3 for

feeding mode, whereas other modalities of feeding mode trait were

given a value of 0. The fuzzy code values for biological traits of the

macrobenthos are shown in Appendix 2.
2.4 Data analysis

The correlation between eutrophication index and macrobenthic

abundance was assessed using the “vegan” package with the Mantel

test and Spearman correlation analysis (9,999 permutations) because

the data on abundance and eutrophication index were non-normally

distributed and monotonically related. Finally, correlation

scatterplots were generated using the “ggplot2” package. The r-

values range between -1 and 1, with an r of 1 representing a

perfect positive correlation between two variables and a value of -1

indicating a perfect negative correlation. All the above-mentioned

analyses were performed in R4.4.2 software.

In SPSS 26.0 software, the Kolmogorov–Smirnov test was used

to assess the normality of environmental data. The data on species

abundance were examined using nonmetric multidimensional

scaling ordination (nMDS) and cluster analysis (CLUSTER) in
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PRIMER 6.0 software. The Bray−Curtis similarity matrix was

computed after the species abundance data were square-root

transformed. CLUSTER was performed with the average linkage

method. The results of nMDS are reliable when the stress coefficient

is less than 0.01. Using the package “ade4” in R4.4.2, data on

abundance, biological traits, and environmental variables were

evaluated for RLQ and fourth-corner analysis. Species abundance

data were processed using correspondence analysis (CA), species

biological trait data using principal component analysis (PCA), and

environmental variables using Hill–Smith analysis. Additionally,

the overall significance of the randomized permutations of models 2

and 4 was tested using the Monte Carlo test. Because RLQ cannot be

used to determine which environmental variables affect which

biological traits significantly, it is thus combined with the

complementary fourth-corner analysis to obtain the final result

(Dray et al., 2014). To differentiate between the distinct impacts of

eutrophication and other environmental conditions on the

macrobenthic community, variance partitioning analysis (VPA)

was conducted on community abundance and environmental data

using the “vegan” package in R4.4.2.
3 Results

3.1 Environmental variables

The Kolmogorov–Smirnov test was performed for all

environmental variables, and the results showed that none of the

data conformed to a normal distribution, so the median (first

quartile–third quartile) was used for statistical description, as

shown in Table 1. In terms of environmental variables related to

the eutrophication index, the concentration of NO2 was the lowest,

while the concentration of COD and NO3 were the highest at 1.92

and 1.43 mg/L, respectively. Meanwhile, the eutrophication index

ranged from a minimum of 3.11 to a maximum of 34.81.
FIGURE 1

Sampling sites in the coastal area of Hangzhou Bay in 2019. The degree of eutrophication in three regions is calculated based on the eutrophication
index and classified according to corresponding standards with the data collected in this study.
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3.2 Macrobenthic community

Along the northern coast of the East China Sea, 381 individuals

of macrobenthos from 21 species and five phyla were collected. The

community composition of macrobenthos was dominated by

Polychaetes, with 16 species (76%), followed by Echinodermata,

with two species, and Cnidaria, Mollusca, and Nemertea with one

species each, as detailed in Appendix 1. The results of the

correlation analysis revealed a significant negative correlation

between species abundance and the eutrophication index, as

shown by the scatterplot in Figure 2. Cluster analysis (Figure 3)

was performed based on the abundance of each species in the

macrobenthic community, and three groups were identified. Group

1 consisted of sites with an abundance of 15 or less individuals/m2

(sites 1, 2, 3, 4, 5), group 2 included sites with an abundance

between 16 and 30 individuals/m2 (sites 13, 14, 15, 16, 17), and

group 3 included sites with an abundance of 31 or more individuals/

m2 (sites 6, 7, 8, 9, 10, 11, and 12). The results of nMDS (2D stress =

0.01) (Figure 4A) was consistent with that of the cluster analysis,

and three groups were uniformly distributed along the

eutrophication gradient (Figure 4B).
Frontiers in Marine Science 05
3.3 Biological trait analysis

A total of six biological traits and 26 trait modalities are listed in

Table 2. Only the very short (<1 cm) body length, deposit-feeder,

and filter-feeder modalities were not found. The proportions of

macrobenthic biological traits in the three subareas with different

eutrophication levels are shown in Figure 5. The majority of

biological traits exhibited more uniform patterns in the severe

eutrophication area than in the mild or moderate eutrophication

areas—for instance, only two trait modalities of food source, P2 and

P3, were detected in the severe eutrophication sites, but three trait

modalities, P1, P2, and P3, were detected in the mild and moderate

eutrophication sites.

At different levels of eutrophication, each biological trait

exhibited different dominant biological patterns. In terms of body

length, large body lengths (B4) demonstrated a growth advantage

under severe eutrophication. For feeding mode, omnivores (F2)

were the dominant biological pattern across three eutrophication

gradients. Regarding food source, subsurface (P3) represented the

dominant biological pattern across three eutrophication gradients.

In terms of living habit, burrowers (H3) exhibited a growth

advantage under severe eutrophication. With regards to

substratum preference, muddy sand (S4) demonstrated a growth

advantage under severe eutrophication. Finally, within the AMBI

ecological group, second-order opportunistic species (E4) indicated

a growth prevalence due to severe eutrophication.
3.4 RLQ/fourth-corner analysis

The results of the RLQ analysis are displayed in Table 3. The

biological traits of macrobenthos and the environmental variables

exhibited significant associations, as indicated by the test findings of

Models 2 and 4 (P<0.05). Furthermore, 74.80% and 11.02% of the

total variation could be explained by the first two RLQ axes,

respectively. The R and Q axes were more strongly correlated

with the RLQ axis, as shown in Figures 6E, F, and the first two

axes carried the greatest majority of the eigenvalues. The outcomes

of the RLQ analysis were consistent with those of the fourth-corner

analysis (Figure 7) after correction for the p-value. The VPA results

revealed that other environmental variables explained 44% of the

variance, and while both variable classes attained significance, the

eutrophication variables explained 73% of the variance (Figure 8).

The left side of the RLQ axis shows that the majority of the

species (e.g., Lygdamis nesiotes, Figure 6B) in this area were

indifferent species (E2) that preferred to live on coarse sand (S1)

substrates (Figure 6D) and an environment with high salinity

(Figure 6C). The rightmost side of the RLQ axis shows that

eutrophic disturbance (Figure 6C) caused by large nutrient inputs

(NO2, NO3, DIP, etc.) corresponded to certain burrowers (H3) that

preferred muddy sand (S4), such as Paracaudina chilensis

(Figure 6B), as well as some second-order opportunistic species

(E4) (Figure 6D) that prefer borrow dwelling (H3), such as

Sternaspis chinensis. Large (B4) tolerant species (E3) (Figure 6D)

showed a positive correlation between body length and NH4
TABLE 1 Environmental variables in the coastal area of Hangzhou Bay
and adjacent waters in 2019.

Environment
variable Code Range

Median
(Q1–Q3)

pH pH 7.94–8.21 8.03 (7.99–8.15)

Salinity Salinity 11.04–33.21
21.14
(17.01–29.47)

Temperature (°C) Temperature 21.45–31.91
25.79
(24.40–28.87)

Depth (m) Depth 7–39 16 (11–26)

Chlorophyll a (mg/L) Chla 0.2–23.2 4.8 (1.8–10.8)

Dissolved oxygen (mg/L) DO 3.39–7.65 6.71 (5.98–7.37)

Dissolved silicate (mg/L) DSi 0.32–2.98 0.57 (0.41–1.72)

Suspended solids (mg/L) SS 23–1,215 78 (48–395)

Total organic carbon (%) TOC 0.16–0.48 0.36 (0.25–0.42)

Sulfide (×10-6) (mg/kg) Sulfide 0.7–46.6 4.7 (2.7–27.9)

Water content (%) WC 35.9–48.7 39.2 (37.1–43.9)

Dissolved inorganic
phosphorus (mg/L) DIP 0.014–0.058

0.026
(0.018–0.044)

Nitrite nitrogen (mg/L) NO2 0.003–0.016
0.007
(0.006–0.010)

Nitrate nitrogen (mg/L) NO3 0.37–1.43 0.59 (0.51–1.31)

Ammonia nitrogen (mg/L) NH4 0.007–0.034
0.015
(0.011–0.026)

Chemical oxygen demand
(mg/L) COD 0.85–1.92 1.44 (1.32–1.73)

Eutrophication index EI 3.11–34.81
10.05
(4.15–20.25)
Q1 indicates the first quartile, and Q3 indicates the third quartile calculated for all the data.
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FIGURE 4

nMDS analysis (A) and distribution (B) of abundance data.
FIGURE 2

Scatterplot of the correlation between species abundance and the eutrophication index.
FIGURE 3

Cluster analysis of the abundance data.
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(Figure 5C) at the bottom right of the RLQ axis. Examples of these

species were Protankyra bidentata, Aglaophamus sinensis, Nephtys

glabra, Aglaophamus dibranchis, Diopatra chiliensis, Kuwaita

heteropoda, and Lumbrineris cruzensis (Figure 6B). Through RLQ

analysis, the degree of eutrophication was further validated,

showing a gradual increase from east to west with the sampling

location on the map (Figure 6A). The results of the variation

partitioning analysis (Figure 8) indicated that the unique

explanatory power of environmental factors related to the

eutrophication index was much greater than that of other

environmental factors.
4 Discussion

The results of this study indicated that macrobenthic

communities had forfeited their growth advantage due to

eutrophic stress, with macrobenthic species abundance showing a

declining trend as eutrophication escalates. This decline primarily

stems from diminished oxygen levels at the sediment interface, a

consequence of heightened nutrient loading in the region and an

excess of organic matter within the sediment (Como et al., 2007).

Additionally, the accumulation of hazardous byproducts like

ammonia and sulfide (Signa et al., 2015) has further constrained

the abundance and biomass of macrobenthos (Dong et al., 2021;

Gusmao et al., 2016; Llanos et al., 2020). Seawater hypoxia and

harmful algal blooms are the two main negative effects of coastal

eutrophication. Eutrophication is one of the primary causes of

dangerous algal blooms among them. According to surveys, there

has been a recent trend in harmfulness and diversification among

the disease-causing algal bloom species in Chinese coastal waters

(Wang et al., 2018). When there is little hydrodynamic pressure,

toxins from harmful algal blooms can stay stagnant in the substrate

for extended periods of time, causing harm to macrobenthos (Wear

and Gardner, 2001). Hypoxia is a consequence of long-term

development. In spring, the abundant nutrients promoted algal

growth and blooms under eutrophic conditions, and the combined

effects of wind and currents spread the algal range, increase the

dissolved oxygen concentration in the water column as well as

primary productivity, and provide a suitable environment for

macrobenthos. During this time, the growth and reproduction of

algae reached their peak. During the summer, the algae begin to

decompose and consume large amounts of oxygen, resulting in a

prolonged period of low-oxygen conditions in the sea. Studies have

shown that, in this state, the dissolved oxygen in the sea is very close

to zero. When photosynthesis is not able to replenish the oxygen

needed for respiration in time and oxygenated seawater is not

available during low tide, the sea will be in a state of hypoxia,

causing physical damage to macrobenthos (i.e., asphyxiation)

(Tagliapietra et al., 1998). Human discharges of wastewater

and sewage not only contain N and P nutrients but also carry

large amounts of metals and organic pollutants that can also

harm macrobenthos. A large number of toxic compounds in

sediments have toxic effects and can cause the mortality of fish

and mollusks and ultimately reduce the abundance of

macrobenthos (Bao et al., 2021).
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A popular analytical technique for connecting the biological

traits of macrobenthos to stresses or disturbances in the marine

environment is biological trait analysis (BTA), also known as RLQ/

fourth-corner analysis (Tsikopoulou et al., 2022). This technique can

also be used to analyze the relationships between environmental

variables and species biological traits (Brown et al., 2014). These two

tools allow us to study changes in macrobenthic biological traits

when organisms are exposed to the stress of marine ecological

pollution (Hooper et al., 2005; Törnroos and Bonsdorff, 2012).

Additionally, particular pollution perturbations (e.g., eutrophication

pollution and heavy metal pollution) can be differentiated from other

environmental variables (Panassiti et al., 2023) as well as from the

weights of other disruptions to the environment (Menezes et al.,

2010). Severe eutrophication disruption significantly reduces the trait

modalities of macrobenthos, similar to heavy metal disruption (Dong
TABLE 2 Biological traits and trait modalities of macrobenthos and
corresponding abbreviations.

Biological traits Trait modalities
Trait
codes

Body length Very short (<1 cm) B1

Short (1–3 cm) B2

Medium (3–10 cm) B3

Large (>10 cm) B4

Feeding mode Carnivore F1

Omnivore F2

Deposit-feeder F3

Filter-feeder F4

Herbivore F5

Food source Epibenthic P1

Surface P2

Subsurface P3

Living habit Sessile H1

Tube dweller H2

Burrower H3

Surface crawler H4

Substratum preference Coarse sand S1

Fine sand S2

Mud S3

Muddy sand S4

Sandy mud S5

AMBI ecological group Sensitive species E1

Indifferent species E2

Tolerant species E3

Second-order opportunistic species E4

First-order opportunistic species E5
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et al., 2021). The present study observed only two food source trait

modalities (surface-P2 and subsurface-P3) in the severe

eutrophication area, though three trait modalities were found at

other sites. Only three substratum preference trait modalities were

found in the severe eutrophication area—mud (S3), muddy sand

(S4), and sandy mud (S5)—but five were found in the mild

eutrophication area. These findings suggest that environmental

disturbances could suppress the development of biological trait

modalities in macrobenthos (Edegbene et al., 2022; Wang et al.,

2022) and change the composition of dominant biological trait

modalities in macrobenthic communities (Boersma et al., 2016;

Kenny et al., 2018).
FIGURE 5

Composition of modalities of macrobenthic biological traits in Hangzhou Bay and adjacent waters. Trait modality codes are shown in Table 2.
TABLE 3 Summary of the RLQ analysis.

P-
value

Model 2 0.03

Model 4 0.04

Total inertia 18.41

Eigenvalues Ax1 Ax2 Ax3 Ax4 Ax5

13.77 2.03 1.34 0.92 0.19

Projected inertia (%) Ax1 Ax2 Ax3 Ax4 Ax5

74.81 11.02 7.28 4.99 1.06

Cumulative projected
inertia (%)

Ax1 Ax1:2 Ax1:3 Ax1:4 Ax1:5

74.80 85.81 93.10 98.09 99.14

Eigenvalues
decomposition

Eig Covar sdR sdQ Corr

13.77 3.71 2.55 2.26 0.64

2.03 1.42 1.18 1.82 0.66

Inertia and coinertia R Inertia Max Ratio

Eg1 6.52 7.34 0.89

Eg1+2 7.92 11.40 0.69

(Continued)
TABLE 3 Continued

P-
value

Inertia and coinertia Q Inertia Max Ratio

Eg1 5.09 5.79 0.88

Eg1+2 8.40 9.72 0.86

Correlation L Inertia Max Ratio

Eg1 0.64 0.95 0.68

Eg1+2 0.66 0.95 0.70
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By using VPA, it was found that the explanatory rate of

eutrophication variables (73%) was greater than that of other

environmental variables (44%). This study found that

environmental factors related to eutrophication indices (e.g., NH4,

NO3, NO2, DIP, etc.) were more explanatory of the characteristics

of biological trait composition of macrobenthos in Hangzhou Bay—

for example, biological trait modalities showed a decreasing trend

with increasing eutrophication levels. For instance, under more

severe eutrophication stress, the trait modalities of body length,

living habit, substratum preference, and AMBI ecological group of

macrobenthos could be characterized by long body length,

preference for a muddy sand, burrowing, and tolerant and

second-order opportunistic species, respectively.

Body length affects all levels of organization, from cell to

community (Donadi et al., 2015). The most effective (Buchwalter

et al., 2002; Ristau et al., 2015) and intuitive instrument (Odume,

2020) for assessing ecological responses to environmental

disturbances is thought to be a change in body length (Eriksson

et al., 2010). This study found that appropriate nutrient enrichment

can increase organic matter content in sediments by enhancing
Frontiers in Marine Science 09
primary production, thereby increasing food availability and

promoting species growth (Atkinson et al., 2011; Collie et al.,

2000), giving them a competitive advantage (Macdonald et al.,

2012). However, as the degree of eutrophication continuously

increases, larger-bodied species become more advantageous in

terms of growth. The main reason is that severe eutrophication

can lead to prolonged hypoxia, forming dead zones. The reduction

in abundance alters the food web (Diaz and Rosenberg, 2008).

Species of large body size can accumulate significant energy reserves

when food was abundant, allowing them to survive for a longer

period even when food supply decreases.

Macrobenthos played a regular role in the mixing of pollutants

with sediments through burrow construction and maintenance,

feeding, feces, and respiration (Lam-Gordillo et al., 2022). They

also serve as pathways and mediators for a variety of biochemical

processes (Queirós et al., 2013). This study found that burrowers and

tube dwellers were the primary eutrophic-associated trait modalities,

mostly due to their increased tolerance to direct contact with

different types of contaminants while participating in the mixing

of pollutants (Kuzmanovic et al., 2017; Llanos et al., 2020).
FIGURE 6

Results of the RLQ analysis represented by first and second axes: (A) sampling sites, (B) score of species, (C) coefficients of environmental variables,
(D) score of biological traits, (E) correlations between R axes and RLQ axes, and (F) correlations between Q axes and RLQ axes and eigenvalues of
RLQ axes. The d value indicates the grid size of the graph. The codes for species are shown in Appendix 1, and environmental variable abbreviations
are available in Table 1. B1, very short; B2, short; B3, medium; B4, large; P1, epibenthic; P2, surface; P3, subsurface; H1, sessile; H2, tube dweller; H3,
burrower; H4, surface crawler; F1, carnivore; F2, omnivore; F3, deposit-feeder; F4, filter-feeder; F5, herbivore; S1, coarse sand; S2, fine sand; S3,
mud; S4, muddy sand; S5, sandy mud; E1, sensitive species; E2, indifferent species; E3, tolerant species; E4, second-order opportunistic species; E5,
first-order opportunistic species.
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Additionally, the results indicated that, in areas of higher

eutrophication, the dominant biological modes were muddy sand

and sandy mud, with species such as Cossura dimorpha, Nephtys

glabra, Diopatra chiliensis, and Paracaudina chilensis highly

distributed in this region. This concentration was mainly

attributed to these species being burrowers, spending most of their

time in their tunnels. Muddy sand and sandy mud substrates

with some sand were more suitable for burrowers (Murphy et al.,

2017), especially in hypoxic environments with higher

eutrophication levels.

The spatial distribution of dominant taxa is asymmetrical, which

is known from the AMBI ecological groups of the species. The
Frontiers in Marine Science 10
macrobenthos were classified into five AMBI ecological groups,

namely, sensitive, indifferent, tolerant, second-order opportunistic,

and first-order opportunistic species, based on their sensitivity to

different gradients of environmental disturbance (Borja et al., 2000).

The different ecological group categories represented the sensitivity

of macrobenthos to disturbance. Second-order opportunistic species

are positively correlated with eutrophication indices, while indifferent

species show a negative correlation with them. Therefore, second-

order opportunistic species predominated in areas with severe

eutrophication, whereas indifferent species occurred in areas with

mild eutrophication. The same phenomenon has been observed

in the Bohai Sea (Wang et al., 2022), Daya Bay (Rao et al., 2021),
FIGURE 7

Combined results of fourth-corner analysis and RLQ analysis. (A) Results of fourth-corner tests for multiple validation of p-values using the false
discovery rate (FDR). (B) Plots of biological traits and environmental variables obtained from RLQ analysis. Significant (P < 0.05) positive correlations
are indicated by red, and significant negative correlations are indicated by blue. Biological traits codes are shown in Table 2, and environmental
variable abbreviations are shown in Table 1.
FIGURE 8

Variance partitioning analysis (VPA) for eutrophication and natural variables explaining biological diversity. 0.44, contribution of other environmental
variables to community changes individually; 0.73, contribution of factors related to eutrophication index to community changes individually;
residuals, unexplained portion by all environmental variables.
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Prydz Bay (Baishnab et al., 2023), and the southeastern coast of India

(Pandey et al., 2022). Partial opportunistic species (such as Sternaspis

chinensis) are considered as bio-spreaders and pollution-tolerant

benthic deposit feeders, often exhibiting a growth advantage in

low-quality marine environments rich in high levels of nutrients

and heavy metals. This also indicates that the assessment of

ecological quality revealed that the AMBI ecological group had a

greater indicative value.

Despite their widespread use in marine ecological studies, BTA

and RLQ/fourth-corner analysis still have certain drawbacks

(Munari, 2013)—for instance, there are currently gaps in the

knowledge on the biological traits of macrobenthos and no

accepted criteria to classify biological traits (Beauchard et al., 2017;

Berger et al., 2018). Furthermore, it might be challenging to fully rule

out the effects of natural variables in a study and to quantify a

particular type of anthropogenic perturbation alone in complex

marine ecosystems (Beauchard et al., 2017; Berger et al., 2018;

Edegbene et al., 2020). Other environmental variables, including

those that had been chosen and other unmeasured environmental

variables, also had an impact on macrobenthos in addition to

eutrophication perturbations, as demonstrated by the 44%

explanatory rate found for these variables via VPA. Surface

crawlers and suspended matter exhibited substantial positive

correlations among the selected environmental factors. This

correlation may be attributed to the fact that the majority of

surface crawlers feed on suspended organic particles in the water.

A higher concentration of suspended matter also meant a greater

concentration of organic particles, which was more favorable for the

survival of surface crawlers.
5 Conclusions

The study revealed the relationship between macrobenthos and

eutrophication gradient. The biological characteristics and

community structure of macrobenthos along the Hangzhou Bay

and adjacent waters were influenced by the eutrophication gradient,

and the method of biological traits was able to provide some

insights into the spatial distributional changes of macrobenthos.

Eutrophication was significantly correlated with the biological traits

such as body length, living habit, substratum preference, and AMBI

ecological group. Large body length, burrowers and tube dwellers as

living habits, and a preference for a sandy and muddy substrata

were the primary biological traits of macrobenthos in areas with

increased NH4, NO3, NO2, and DIP concentrations. Furthermore,

the severe eutrophication area was dominated by second-order

opportunistic and tolerant species, such as Sternaspis chinensis

and Protankyra bidentata. The eutrophication disturbance

severity was also precisely described by the AMBI ecological

group. Variation partitioning analysis further confirmed the

significant impact of eutrophication on the community and

biological traits composition of macrobenthos.
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Beauchard, O., Verıśsimo, H., Queirós, A. M., and Herman, P. M. J. (2017). The use
of multiple biological traits in marine community ecology and its potential in ecological
indicator development. Ecol. Indic. 76, 81–96. doi: 10.1016/j.ecolind.2017.01.011

Berger, E., Haase, P., Schäfer, R. B., and Sundermann, A. (2018). Towards stressor-
specific macroinvertebrate indices: Which traits and taxonomic groups are associated
with vulnerable and tolerant taxa? Sci. Total Environ. 619–620, 144–154. doi: 10.1016/
j.scitotenv.2017.11.022

Boersma, K. S., Dee, L. E., Miller, S. J., Bogan, M. T., Lytle, D. A., and Gitelman, A. I.
(2016). Linking multidimensional functional diversity to quantitative methods: a
graphical hypothesis-evaluation framework. Ecology 97, 583–593. doi: 10.1890/15-0688
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Chevene, F., Doléadec, S., and Chessel, D. (1994). A fuzzy coding approach for the
analysis of long-term ecological data. Freshw. Biol. 31, 295–309. doi: 10.1111/j.1365-
2427.1994.tb01742.x

Chiaudani, G., Marchetti, R., and Vighi, M. (1980). “Eutrophication in emilia-
romagna coastal waters (North Adriatic Sea, Italy): a case history,” in Mediterranean
Coastal Pollution (Netherlands: Elsevier), 185–192. doi: 10.1016/B978-0-08-026058-
7.50019-4

Choi, Y., Kim, D., Noh, J. H., and Kang, D.-J. (2021). Contribution of Changjiang
River discharge to CO2 uptake capacity of the northern East China Sea in August 2016.
Continental Shelf Res. 215, 104336. doi: 10.1016/j.csr.2020.104336

Collie, J., Hall, S., Kaiser, M., and Poiner, I. (2000). A quantitative analysis of fishing
impacts shelf-sea benthos. J. Anim. Ecol. 69, 785–798. doi: 10.1046/j.1365-
2656.2000.00434.x

Como, S., Magni, P., Casu, D., Floris, A., Giordani, G., Natale, S., et al. (2007).
Sediment characteristics and macrofauna distribution along a human-modified inlet in
the Gulf of Oristano (Sardinia, Italy). Mar. pollut. Bull. 54, 733–744. doi: 10.1016/
j.marpolbul.2007.01.007

Diaz, R. J., and Rosenberg, R. (2008). Spreading dead zones and consequences for
marine ecosystems (American Association for the Advancement of Science
(American)). doi: 10.1126/SCIENCE.1156401

Ding, X., Shi, J., Guo, X., Gao, H., Liu, S., and Guo, W. (2023). Interannual variations
in the nutrient cycle in the central Bohai Sea in response to anthropogenic inputs.
Chemosphere 313, 137620. doi: 10.1016/j.chemosphere.2022.137620

Donadi, S., Eriksson, B. K., Lettmann, K. A., Hodapp, D., Wolff, J.-O., and
Hillebrand, H. (2015). The body-size structure of macrobenthos changes predictably
along gradients of hydrodynamic stress and organic enrichment. Mar. Biol. 162, 675–
685. doi: 10.1007/s00227-015-2614-z
Frontiers in Marine Science 12
Dong, J., Zhao, L., Sun, X., Hu, C., Wang, Y., Li, W., et al. (2021). Response of
macrobenthic communities to heavy metal pollution in Laoshan Bay, China: A trait-
based method. Mar. pollut. Bull. 167, 112292. doi: 10.1016/j.marpolbul.2021.112292
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Appendix 1
List of macrobenthic species in Hangzhou Bay and adjacent waters and corresponding codes.

Phylum Class Order Family Genus Species Code

Annelida Polychaeta Phyllodocida Sigalionidae Ehlersileanira Ehlersileanira incisa Ehl.in

Annelida Polychaeta Terebellida Terebellidae Loimia Loimia medusa Loi.me

Annelida Polychaeta Terebellida Sternaspidae Sternaspis Sternaspis chinensis Ste.sc

Annelida Polychaeta Sabellariidae Lygdamis Lygdamis nesiotes Lyg.ne

Annelida Polychaeta Maldanidae Euclymene Euclymene annandalei Euc.an

Annelida Polychaeta Phyllodocida Goniadidae Glycinde Glycinde bonhourei Gly.bo

Annelida Polychaeta Spionida Spionidae Paraprionospio Paraprionospio pinnata Par.pi

Annelida Polychaeta Eunicida Lumbrineridae Lumbrineris Lumbrineris cruzensis Lum.cr

Annelida Polychaeta Cossuridae Cossura Cossura dimorpha Cos.di

Annelida Polychaeta Phyllodocida Nephtyidae Aglaophamus Aglaophamus dibranchis Agl.di

Annelida Polychaeta Eunicida Lumbrineridae Kuwaita Kuwaita heteropoda Kuw.he

Annelida Polychaeta Terebellida Terebellidae Amaeana Amaeana occidentalis Ama.oc

Annelida Polychaeta Phyllodocida Nephtyidae Nephtys Nephtys glabra Nep.gl

Annelida Polychaeta Phyllodocida Nephtyidae Aglaophamus Aglaophamus sinensis Agl.si

Annelida Polychaeta Eunicida Onuphidae Diopatra Diopatra chiliensis Dio.ch

Annelida Polychaeta Maldanidae Maldane sp. Mal.sp

Cnidaria Anthozoa Actiniaria Phelliidae Phellia Phellia gausapata Phe.ga

Echinodermata Holothuroidea Molpadida Caudinidae Paracaudina Paracaudina chilensis Par.ch

Echinodermata Holothuroidea Apodida Synaptidae Protankyra Protankyra bidentata Pro.bi

Mollusca Gastropoda Cephalasipidea Cylichnidae Cylichna Cylichna cylindracea Cyl.cy

Nemertea Anopla Lineidae Lineus sp. Lin.sp
F
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Appendix 2
Fuzzy code values for the functional traits of 21 macrobenthic species in Hangzhou Bay and adjacent waters.

Species
Body length Food source Living habit Feeding mode Substratum preference AMBI ecological group

B1 B2 B3 B4 P1 P2 P3 H1 H2 H3 H4 F1 F2 F3 F4 F5 S1 S2 S3 S4 S5 E1 E2 E3 E4 E5

Ehlersileanira incisa 0 0 3 0 0 0 3 0 0 2 2 3 0 0 0 0 0 0 2 2 2 0 0 3 0 0

Loimia medusa 0 0 3 1 0 3 0 0 3 0 0 0 3 0 0 0 0 0 2 2 0 0 0 0 3 0

Sternaspis chinensis 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 3 0 0 0 0 3 0

Lygdamis nesiotes 0 0 3 0 3 0 0 2 2 0 0 0 3 0 0 0 3 0 0 0 0 0 3 0 0 0

Euclymene
annandalei

0 0 3 1 0 0 3 0 3 0 0 0 3 0 0 0 0 0 0 0 3 0 3 0 0 0

Glycinde bonhourei 0 3 0 0 0 0 3 0 0 3 0 3 0 0 0 0 0 0 2 2 0 0 0 0 0 3

Paraprionospio
pinnata

0 3 1 0 0 3 0 0 3 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 3

Lumbrineris
cruzensis

0 0 0 3 0 0 3 0 3 0 0 0 3 0 0 0 0 0 0 0 3 0 0 3 0 0

(Continued)
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Continued

Species

Body length Food source Living habit Feeding mode Substratum preference AMBI ecological group

B1 B2 B3 B4 P1 P2 P3 H1 H2 H3 H4 F1 F2 F3 F4 F5 S1 S2 S3 S4 S5 E1 E2 E3 E4 E5

Cossura dimorpha 0 0 0 3 0 3 0 0 0 3 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 3

Aglaophamus
dibranchis

0 0 0 3 0 0 3 0 0 3 0 3 0 0 0 0 2 2 0 0 0 0 0 3 0 0

Kuwaita heteropoda 0 0 0 3 3 2 0 0 0 2 2 0 3 0 0 0 0 0 2 2 3 0 0 3 0 0

Amaeana
occidentalis

0 0 3 0 0 3 0 0 3 0 0 0 3 0 0 0 0 0 0 3 2 0 0 0 3 0

Nephtys glabra 0 0 0 3 0 0 3 0 0 3 2 3 0 0 0 0 0 0 2 0 2 0 0 3 0 0

Aglaophamus
sinensis

0 0 0 3 0 0 3 0 0 3 0 3 0 0 0 0 2 2 0 0 0 0 0 3 0 0

Diopatra chiliensis 0 0 0 3 3 0 0 0 3 2 0 0 3 0 0 0 0 0 0 3 0 0 0 3 0 0

Maldane sp. 0 1 3 0 0 0 3 0 3 0 0 0 3 0 0 0 2 2 0 0 3 0 3 0 0 0

Phellia gausapata 0 0 3 0 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 3 0 0

Paracaudina
chilensis

0 0 1 3 0 0 3 0 0 3 0 0 3 0 0 0 2 0 2 2 2 0 3 0 0 0

Protankyra bidentata 0 0 0 3 3 0 0 0 0 3 0 0 0 0 0 3 0 0 3 0 0 0 0 3 0 0

Cylichna cylindracea 0 3 0 0 0 0 3 0 0 3 0 3 0 0 0 0 0 3 0 0 0 0 0 3 0 0

Lineus sp. 0 0 2 3 0 3 0 0 0 3 0 3 0 0 0 0 0 0 3 0 0 3 0 0 3 0
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