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distribution, abundance and
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East Antarctica, from 55-80°E
(CCAMLR Division 58.4.2 East)
Asta C. Heidemann1,2‡, Karen J. Westwood1,3*‡, Annie Foppert1,2,
Simon W. Wright2, Andreas Klocker2†, Clara R. Vives2,3†,
Simon Wotherspoon3 and Sophie Bestley1,2

1Australian Antarctic Program Partnership, University of Tasmania, Hobart, TAS, Australia, 2Institute for
Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia, 3Australian Antarctic
Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, Australia
Southern Ocean phytoplankton form the base of the Antarctic food web,

influencing higher trophic levels through biomass and community structure.

We examined phytoplankton distribution and abundance in the Indian Sector of

the Southern Ocean during austral summer as part a multidisciplinary ecosystem

survey: Trends in Euphausiids off Mawson, Predators and Oceanography

(TEMPO, 2021). Sampling covered six meridional transects from 55-80°E, and

from 62°S or 63°S to the ice edge. To determine phytoplankton groups,

CHEMTAX analysis was undertaken on pigments measured using HPLC.

Diatoms were the dominant component of phytoplankton communities,

explaining 56% of variation in chlorophyll a (Chl a), with haptophytes also being

a major component. Prior to sampling the sea ice had retreated in a south-

westerly direction, leading to shorter ice-free periods in the west (< 44 days, ≤65°

E) compared to east (> 44 days, ≥70°E), inducing a strong seasonal effect. The

east was nutrient limited, indicated by low-iron forms of haptophytes, and higher

silicate:nitrate drawdown ratios (5.1 east vs 4.3 west), pheophytin a (phaeo)

concentrations (30.0 vs 18.4 mg m-2) and phaeo:Chl a ratios (1.06 vs 0.53).

Biological influences were evident at northern stations between 75-80°E, where

krill “super-swarms” and feeding whales were observed. Here, diatoms were

depleted from surface waters likely due to krill grazing, as indicated by high

phaeo:Chl a ratios (> 0.75), and continued presence of haptophytes, associated

with inefficient filtering or selective grazing by krill. Oceanographic influences

included deeper mixed layers reducing diatom biomass, and a bloom to the north

of the southern Antarctic Circumpolar Current Front in the western survey area

thought to be sinking as waters flowed from west to east. Haptophytes were

influenced by the Antarctic Slope Front with high-iron forms prevalent to the

south only, showing limited iron transfer from coastal waters. Cryptophytes were

associated with meltwater, and greens (chlorophytes + prasinophytes) were

prevalent below the mixed layer. The interplay of seasonal, biological and

oceanographic influences on phytoplankton populations during TEMPO had
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parallels with processes observed in the BROKE and BROKE-West voyages

conducted 25 and 15 years earlier, respectively. Our research consolidates

understanding of the krill ecosystem to ensure sustainable management in East

Antarctic waters.
KEYWORDS

pigment analysis, CHEMTAX, chlorophyll, phytoplankton composition, Southern Ocean,
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1 Introduction

Primary production in Southern Ocean waters provides the

basis for the Antarctic food web, directly influencing krill

populations and consequently higher predators such as penguins,

seals and whales (Nicol et al., 2010; Bestley et al., 2018, 2020; Krause

et al., 2022; Lohmann et al., 2023). Potential shifts in phytoplankton

biomass and community structure may therefore have important

implications for the entire ecosystem (Deppeler and Davidson,

2017; Kim et al., 2018). In East Antarctica, the area between 55-

80°E is known to be highly productive (Pinkerton et al., 2021). With

a krill fishery developing in this region (Antarctic krill, Euphausia

superba), ecological processes here need to be better understood to

ensure sustainable ecosystem management.

The Southern Ocean is a High-Nutrient-Low-Chlorophyll

(HNLC) zone where macronutrients such as nitrate and silicate are

overabundant, but essential micro-nutrients, particularly iron, limit

phytoplankton productivity (Boyd and Ellwood, 2010; Bazzani et al.,

2023). Iron is supplied to the Southern Ocean through various

mechanisms including sea-ice melt (Lannuzel et al., 2016),

resuspended sediments from the Antarctic shelf (de Jong et al., 2013;

Smith et al., 2021), andmeltwater from ice shelves, glaciers and icebergs

(Death et al., 2014; Duprat et al., 2016; Herraiz-Borreguero et al., 2016).

Thus, chlorophyll a (Chl a) biomass is often higher near the coast of

Antarctica compared to the open ocean (Westwood et al., 2010;Wright

et al., 2010). The upwelling of Circumpolar Deep Water may also

increase iron availability (Moreau et al., 2019; Smith et al., 2021), as well

as remineralization of organic matter through microbial processes

(Smetacek et al., 2004; Cavan et al., 2019). Light can also limit

productivity in Southern Ocean waters (Vives et al., 2022), with

mixed layer depths controlling the average irradiance received by

cells in surface waters (Mitchell et al., 1991; Nelson and Smith,

1991). Phytoplankton biomass may also form distinct bands below

the mixed layer in this region (Wright and van den Enden, 2000; Gomi

et al., 2007; Westwood et al., 2010) with euphotic depth therefore being

particularly important for these populations.

Whilst Chl a measurements provide a general indication of food

stocks for krill, it is vital that phytoplankton community composition is

also assessed given that size classes are known to change the efficiency

of food webs (Trebilco et al., 2020). Research from the Western

Antarctica Peninsula (WAP) has already shown that global warming
02
can impact communities, with a shift from diatoms to smaller

cryptophytes (Moline et al., 2004; Montes-Hugo et al., 2008; Mendes

et al., 2023). Ocean acidification may also cause a shift to smaller cells,

as demonstrated experimentally for East Antarctic waters (Davidson

et al., 2016; Westwood et al., 2018). Large diatoms are known to form

the main diet of krill, whereas smaller species such as cryptophytes,

haptophytes and prasinophytes generally remain ungrazed (Meyer and

El-Sayed, 1983; Kopczynska, 1992; Pauli et al., 2021). The persistence of

small cells is thought to be either due to inefficient filtering by krill

(Kawaguchi et al., 1999; Conroy et al., 2024) or selective feeding

(Haberman et al., 2003), though feeding efficiency can increase if

small cells are aggregated (Haberman et al., 2003; Liu et al., 2019). In

contrast, salps and microzooplankton such as copepods and pteropods

are highly efficient at grazing small cells (Deibel, 1985; Madin and

Kremer, 1995; Pakhomov and Froneman, 2004; Venkataramana et al.,

2019). However, this increases the complexity of the food web and is

associated with less efficient energy transfer (Murphy et al., 2016).

Biogeochemical cycles may also be influenced by phytoplankton

composition (Boyd et al., 2012; Murphy et al., 2021). The biological

pump is influenced by cell size which affects the rate of carbon

export as phytoplankton become senescent and sink (Smetacek,

1985; Acevedo-Trejos et al., 2015; Fan et al., 2020; Irion et al., 2021).

In addition, selective vs generalized feeding by krill and

zooplankton on various phytoplankton groups influences the re-

packaging of cells into fecal material, which can be exported rapidly

(Cavan et al., 2019; Trebilco et al., 2020). Climate may also be

influenced by phytoplankton composition, with some species such

as Phaeocystis antarctica (P. antarctica, haptophyte) being strong

producers of dimethylsulfoniopropionate (DMSP, DiTullio and

Smith, 1995). DMSP leads to the production of sulfate aerosols,

promoting cloud formation and influencing earth’s radiative budget

(Jang et al., 2022).

Whilst comprehensive studies on phytoplankton composition and

environmental drivers have been undertaken in theWAP and Ross Sea

regions (Smith et al., 2014; Schofield et al., 2017; Bolinesi et al., 2020;

van Leeuwe et al., 2020), less is known for East Antarctica. Similar to

the Ross Sea, diatoms are known to be the dominant group, with

haptophytes (mainly P. antarctica) also forming a major component

(Davidson et al., 2010; Takao et al., 2014; Takahashi et al., 2022).

However, there is high spatial and temporal variation for these and

other taxa (Kawamura and Ichikawa, 1984; Gomi et al., 2005, 2007;
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Davidson et al., 2010; Wright et al., 2010; Iida and Odate, 2014;

Takahashi et al., 2022; Matsuno et al., 2023). The 1996 BROKE

multidisciplinary voyage spanning 80°-150°E (Nicol et al., 2000)

provided several insights into environmental drivers influencing

phytoplankton in East Antarctica. They included grazing by krill or

salps (Hosie et al., 2000; Wright and van den Enden, 2000), season

(Waters et al., 2000), and influence from the Southern Boundary (SB)

which when closer to the coast was associated with decreased sea ice

extent and less production (Nicol et al., 2000). Blooms were found

within melting pack ice but had variable phytoplankton composition,

whereas cryptophytes and some dinoflagellates were prominent in

grazed zones near the ice edge (Wright and van den Enden, 2000).

Offshore, there were distinct sub-surface Chl a maxima with

prasinophytes and haptophytes often prevalent within the

temperature minimum (Tmin) layer (Wright and van den Enden,

2000). Diatoms were also associated with stratified conditions, whereas

haptophytes were prevalent under mixed conditions (Wright and van

den Enden, 2000). Overall, the drivers for different phytoplankton taxa

were varied.

The 2006 BROKE-West multidisciplinary voyage (Nicol et al.,

2010) conducted between 30°-80°E was an extension of BROKE and

provided further insight into phytoplankton dynamics in East

Antarctica (Davidson et al., 2010; Westwood et al., 2010; Wright

et al., 2010). Based on detailed datasets from this voyage, and

building on observations from BROKE, Wright et al. (2010)

proposed a temporal sequence of phytoplankton composition as

light starts to reach the water column during sea ice melt. They

hypothesized that a primary bloom forms around 35 days before

complete disappearance of sea ice, mainly composed of diatoms,

haptophytes (P. antarctica), and cryptophytes (Wright et al., 2010),

seeded from the ice. The primary bloom becomes nutrient-limited

and light-limited at depth due to self-shading, but the latter is

relieved by krill grazing and increased light following ice melt. This

allows a secondary bloom of (mainly) low-iron haptophytes to form

at depth. Krill grazing at the retreating ice edge, combined with

sedimentation of phytoplankton, causes iron to be exported to

depth via sinking fecal pellets and detrital aggregations. This causes

iron depletion in surface waters and removes opportunities for iron

recycling in the upper water column. Offshore, where sea ice has

been absent for longer periods and surface iron is depleted, a

nanoflagellate community develops at depth consisting of

haptophytes, dinoflagellates, prasinophytes (greens) and

cryptophytes, as well as some small diatoms. The offshore

population forms a distinct deep chlorophyll maximum (DCM)

and represents a shade flora, positioned at a depth with just enough

light for growth and sustained by recycled iron as well as residual

and upwelled sources. To date, the temporal sequence proposed by

Wright et al. (2010) has not been re-visited.

In 2021, the TEMPO voyage (Trends in Euphausiids off Mawson,

Predators and Oceanography) was undertaken to gain a krill biomass

estimate for East Antarctica and improve our understanding of the

ecosystem to inform sustainable management practices for krill

fishing (Kawaguchi et al. this issue). In this paper, our aim is to

determine the patterns and drivers of phytoplankton distribution,

abundance and community composition within the TEMPO survey

area, since phytoplankton are the main food source for krill. The
Frontiers in Marine Science 03
survey focused on the Commission for the Conservation of Antarctic

Marine Living Resources (CCAMLR) management area 58.4.2 East

(55-80°E) and provided the opportunity to expand on findings from

the BROKE and BROKE-West surveys conducted 25 and 15 years

earlier, respectively. Specifically, we aim to determine:
• Spatial patterns of phytoplankton biomass (Chl a) within

the survey area.

• Patterns of phytoplankton community composition and

how these are shaped through seasonal, biological and

oceanographic influences, considering previous BROKE

and BROKE-West observations.

• Potential parallels in the temporal sequence of phytoplankton

composition hypothesized by Wright et al. (2010) for

further validation.
2 Materials and methods

2.1 Survey and oceanography

The survey was undertaken during austral summer from 13th

February to 12th March 2021 (Figure 1). Six north-south transects

(T1 to T6) were conducted from west to east (55-80°E) with each

extending from 62°S or 63°S to the sea ice edge. Three transects (60°

E, 70°E, 80°E) coincided with the eastern transects of the BROKE-

West voyage that was undertaken in 2006 (Nicol et al., 2010). An

additional station (CTD 59) was undertaken between 75°E and 80°E

to the north, where a krill “super-swarm” was detected. This

aggregation was > 1 km and c. 100 m deep (M. Cox pers.

comm.). There was also a significant number of whales (approx.

50, mostly humpback and some fin whales) and a krill super-swarm

at the northern end of 80°E in the vicinity of CTD 60 (S. Kawaguchi

pers. comm.), labelled as a “whale hot-spot” station.

CTD operations were conducted using Sea-Bird SBE911

instrumentation and 31 x 12 L Niskin bottles on a rosette. Additional

sensors attached to the rosette included a photosynthetically active

radiation (PAR) sensor and an ECO-Triplet for fluorescence

measurements. To gain a high resolution of Chl a throughout the

water column, high performance liquid chromatography (HPLC) Chl a

data (see below) was regressed against fluorescence measurements from

the same depths to provide calibrated fluorescence profiles.

Oceanographic fronts within the survey region are shown in

Figure 1, as determined by Foppert et al. (2024). The Southern

Antarctic Circumpolar Current Front (sACCF) and Southern

Boundary (SB) were defined as the southernmost extents of the

subsurface 1.8°C and 1.5°C isotherms, respectively (Williams et al.,

2010; Bestley et al., 2020b). The Antarctic Slope Front (ASF) was

defined to be where the subsurface 0°C isotherm deepened below

200 dbar from north to south, and was present along all transects

but one (70°E, Figure 1). Lack of the ASF at 70°E may have been due

to the presence of the Prydz Bay gyre which is known to extend

offshore to approximately 65°S (Vaz and Lennon, 1996, Figure 1), or

alternatively the ship did not travel far enough south to sample it

due to heavy sea ice presence. Mixed layer depths were calculated
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using a seawater density change of 0.03 kg m-3 from the near-

surface (10 dbar, de Boyer Montégut et al., 2004, Foppert et al.,

2024). The Tmin layer, where remnant winter water resides, was

taken to be between the bottom of the mixed layer (as defined using

the D 0.03 kg m-3 criterion) and the 0°C isotherm. For stations south

of the ASF, Tmin was taken to be between the bottom of the mixed

layer and 100 m. Euphotic depths were calculated as 1% incoming

PAR, derived from vertical light extinction coefficients (Kd,

Kirk, 1994).

Nutrients measured in Niskin bottle samples included silicate

(Si), oxidized nitrogen (N), and ammonia, with sampling and

analysis conducted according to standard procedures (Rees et al.,

2019). As iron was not directly measured during the voyage, Si:N

drawdown ratios were calculated as a proxy for iron limitation of

phytoplankton, after Westwood et al. (2010), (see also Hutchins and

Bruland, 1998). Briefly, average concentrations of Si and N in the

mixed layer were subtracted from their respective average

concentrations in the Tmin layer to determine nutrient

drawdown by phytoplankton. Increased ratios are indicative of

increased iron limitation.
2.2 Phytoplankton pigments

Pigments samples (1 L) were taken from Niskin bottles, filtered

onto 13 mm GF/F filters in a darkened laboratory, then the filters

placed in liquid nitrogen for later analysis. Six depths were sampled

at each CTD station and always included the near-surface (5-10 m)

and the depth of the DCM, as determined using real-time

fluorescence data during downward CTD casts. In total 51 CTD

stations were sampled. Pigments were later analyzed ashore using
Frontiers in Marine Science 04
HPLC according to the method used in Wright et al. (2010). Briefly,

filters were immersed in 300 µl 100% N-N-dimethylformamide and

50 µl methanol and incubated for 1 hour at -18°C. An internal

standard (140 ng apo-8’-carotenal) was also added to improve

analytical accuracy and to enable relative peak comparisons.

Following incubation, the samples were mechanically disrupted

using 0.7 mm zirconia beads in a mini-bead beater, then the extract

was isolated from the filter/bead residue using centrifugation.

The HPLC system used for analysis included a Gilson 233XL

autosampler with 402 syringe pump, a Waters 1525 binary pump, a

Symmetry C8 column maintained at 30°C by a water bath, a 2475

fluorescence detector and a 2998 photodiode array detector. For each

HPLC run, 100 µl of sample was diluted with 25 µl water to improve

peak quality (Jeffrey andWright, 1997). Each sample injection was run

for 40 minutes to allow sufficient time for solvent gradients to

cycle through.

Pigments peaks were identified using Empower software (Waters)

using known retention times determined through a standard mix

(DHI) and a spectral absorption library (Zapata et al., 2000).

Zeaxanthin and lutein peaks were difficult to distinguish due to

interference from a smaller unknown peak that eluted at a similar

time. These pigments were therefore analyzed under one peak named

“ZeaLut”. Chemotaxonomic analysis was undertaken using the

software program CHEMTAX (Mackey et al., 1996; Wright et al.,

1996). Nine phytoplankton taxa were initially chosen for analysis

including chlorophytes, prasinophytes, cryptophytes, diatoms1,

diatoms2, dinoflagellates1, dinoflagellates2, haptophytes8 high-iron,

and haptophytes8 low-iron. This was based on previous experience

within the survey region (Wright and van den Enden, 2000; Wright

et al., 2010). Hierarchical clustering was undertaken on samples prior

to analysis in CHEMTAX to reduce potential errors associated with
FIGURE 1

A schematic of the survey area showing CTD stations along Transects 1 - 6 (55-80°E), oceanographic fronts (after Foppert et al. (2024)), and 500 m
depth contours. Red dashed line = sACCF, green dashed line = SB, purple dashed line = ASF. The approximate locations of gyres and currents are
also indicated by blue dashed lines, after Smith and Trégure (1994), Vaz and Lennon (1996) and Williams et al. (2016). CTD station numbers are
indicated and stations where ice was present are marked with a black asterisk. Sampling was undertaken from west to east. A krill super-swarm
(defined as a dense aggregation > 1 km and c. 100 m deep) was located at CTD 59 – marked by a blue asterisk. A whale hot-spot (c. 50 whales) was
located at CTD 60, with a krill super-swarm also present at this station – marked by a red asterisk. Locations of known polynyas are marked with
light blue dashed circles; From west to east, CB = Cape Borle, U = Utstikkar Bay, CD = Cape Darnley, M = MacKenzie Bay, PB = Prydz Bay
(consisting of Davis and Barrier polynyas combined), after Arrigo and van Dijken (2003) and Portela et al. (2021). The Kerguelen Plateau (KP), Princess
Elizabeth Trough (PET), and Four Ladies Bank (FLB) are also indicated.
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changes in pigment:Chl a ratios under varying environmental

conditions such as light and nutrient availability (Wright et al.,

2010). The R-Studio packages cluster and dynamicTreeCut were

utilized, with the dynamic tree cutting method enabling detection of

clusters dependent on their shape rather than the use of a fixed height

cut-off (Langfelder et al., 2007; Hayward et al., 2023). The analysis

resulted in 8 clusters sharing similar pigments.

To cross-check CHEMTAX outputs, light microscopy was

undertaken on phytoplankton samples (1 L) that had been fixed

in Lugol’s iodine, taken at the same sites and depths as pigment

samples. A total of 18 samples were examined, ensuring

representation from each of the 8 clusters at the near-surface (5-

10 m) and DCM, and from across each of the 6 transects. In some

cases, it was clear that CHEMTAX was allocating a high proportion

of Chl a to dinoflagellates2, whereas it should have been allocated to

diatoms2. This was associated with the inclusion of gyroxanthin

diester (gyrox) in the CHEMTAX analysis. There is evidence that

gyrox may also be produced by haptophytes rather than solely

dinoflagellates2 (Pettersen et al., 2011). Given high proportions of

haptophytes in the samples it was decided to exclude gyrox and

dinoflagellates2 from the CHEMTAX analysis and undertake a re-

analysis. Chlorophytes and prasinophytes were also merged into

“greens” for the re-analysis given the low biomass of these two

groups. Table 1 shows revised phytoplankton groups and the initial

pigment:Chl a ratios used for the second CHEMTAX run.

Optimized ratios following the second run are also shown for

Cluster 1, with values being within acceptable limits. As a further

validation of CHEMTAX outputs, the pigment data was also

analyzed using a new chemotaxonomic open-source R package
Frontiers in Marine Science 05
phytoclass (Hayward et al., 2023) which uses a simulated annealing

algorithm to derive phytoplankton groups. Results from the

CHEMTAX and phytoclass analyses were strongly comparable

with very little variance (Supplementary Figure 1).

Phaeophytin a (phaeo) pigment concentrations were also

measured and utilized to gain insight into the growth stage of

phytoplankton populations within the survey region. Phaeo is an

oxidized degradation product of Chl a and thought to be a useful

indicator of cell senescence (Gaffey et al., 2022), as well as grazing

(Wright et al., 2010). The proportion of phaeo relative to Chl a can

be used to indicate whether phytoplankton biomass reflects

sampling during a growth phase, or during decline of the

population. Comparisons of in situ samples with satellite-derived

phenology have shown that phaeo:Chl a ratios < 28% suggest pre-

peak growth, and higher values (> 0.28) a more senescent phase

(Gaffey et al., 2022).
2.3 Ancillary data

Days since sea ice melt and distances to ice were determined

from satellite. For sea ice calculations, daily passive microwave

estimates of concentrations were obtained from the National Snow

and Ice Data Centre SMMR-SSM/I polar product (Cavalieri et al.,

1996; Maslanik and Stroeve, 1999), with ice cover <15% considered

to be ice free. Data was obtained through the R package raadtools

(Sumner, 2023). Maps of sea ice were produced using Nilas (Heil

et al., 2023), showing daily 6 km concentrations using AMSR-E

(Spreen et al., 2008, https://seaice.uni-bremen.de/sea-ice-
TABLE 1 (a) Initial pigment:Chl a ratios used in CHEMTAX, and (b) optimised ratios for Cluster 1 following analysis.

Class/Pigment Chl c3 Chl c1 Peri ButFuco Fuco 19’-Hex ZeaLut Allo Chl b Chl a

(a) Initial

Greens 0 0 0 0 0 0 0.012 0 0.31 1

Cryptophytes 0 0 0 0 0 0 0 0.36 0 1

Diatoms1 0 0.087 0 0 0.78 0 0 0 0 1

Diatoms2 0.065 0 0 0 1.02 0 0 0 0 1

Dinoflagellates1 0 0 0.54 0 0 0 0 0 0 1

Haptophytes8 high-iron 0.13 0 0 0.01 0.08 0.4 0 0 0 1

Haptophytes8 low-iron 0.27 0 0 0.12 0.02 1.1 0 0 0 1

(b) Optimised Cluster 1

Greens 0 0 0 0 0 0 0.01 0 0.36 1

Cryptophytes 0 0 0 0 0 0 0 0.34 0 1

Diatoms1 0 0.07 0 0 0.68 0 0 0 0 1

Diatoms2 0.074 0 0 0 0.64 0 0 0 0 1

Dinoflagellates1 0 0 0.53 0 0 0 0 0 0 1

Haptophytes8 high-iron 0.05 0 0 0.01 0.08 0.51 0 0 0 1

Haptophytes8 low-iron 0.26 0 0 0.27 0.02 0.67 0 0 0 1
fro
Pigment abbreviations are: Chl, chlorophyll; Peri, peridinin; ButFuco, 19’-butanoyloxyfucoxanthin; Fuco, fucoxanthin; 19’-Hex, 19’-hexanoyloxyfucoxanthin; Zea, zeaxanthin; Lut, lutein (ZeaLut
pigment peaks combined); Allo, alloxanthin.
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concentration/amsre-amsr2/). Maps of satellite-derived Chl a were

produced via the ocean color climate change initiative

(Sathyendranath et al., 2019) using merged products at 4 km

resolution (OC-CCI ocean color data, Version 5, https://

catalogue.ceda.ac.uk/uuid/1dbe7a109c0244aaad713e078fd3059a).
2.4 Models

Linear modelling, ANOVAs and General Additive Models

(GAMs) were used to examine relationships between column-

integrated phytoplankton and environmental variables. All

modelling was undertaken in R (R Core Team, 2021). For linear

modelling and ANOVAs, data was transformed where necessary

based on box-cox and diagnostic plots. For 2-way ANOVAs,

Tukey’s HSD post-hoc tests were undertaken.

GAM analysis was undertaken using the R packages mgcv

(Wood, 2017) and visreg (Breheny and Burchett, 2017).

Parameters initially considered as predictors included mixed layer

depth, days since ice melt, Tmin thickness, Tmin temperature,

nitrogen concentrations in the Tmin layer and Si:N ratio. However,

these needed to be reduced due to a high number of coefficients

compared to a small sample size (n=51 stations). Following

examination of separate GAMS for these parameters and the

associated significance terms, a final GAM was fitted including

mixed layer depth, days since sea ice melt, Si:N drawdown ratio

(indicator of iron limitation) and nitrogen in the Tmin layer. Mixed

layer depth and days since sea ice melt were found to be significant

drivers of diatoms2 biomass (see below), so a similar GAM analysis

was undertaken to also explore their effects on other

phytoplankton taxa.
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3 Results

3.1 Sea ice

Sea ice within the survey region retreated from north-east to

south-west prior to the voyage commencing (Figures 2, 3). By mid-

November the sea ice was already low to absent at the northern ends

of 70-80°E. 55-65°E transects still had 100% ice cover along most of

their length. The sea ice then retreated along the northern sections of

55-65°E throughout December. There was a gradual retreat south

across all transects thereafter, with a minimum in February when

voyage sampling commenced. By early to mid-March when sampling

was being completed, the sea ice had started to re-form (Figure 2). As

stations were undertaken from west to east, 55-65°E experienced

more recent sea ice compared to other transects not only due to later

melt, but also due to earlier sampling. 55-65°E and 80°E had sea ice

present at southern-most stations at the time of sampling (Figure 3).

The sea ice at the southern end of 80°E was newly formed. The

southern stations on 70°E and 75°E did not have sea ice present at

their sampling sites, though there was heavy sea ice in the

surrounding area. Days since sea ice melt (defined as the number

of days since a satellite pixel was 15% covered) ranged from 0-122

days at the time that samples were taken (Figure 3). The sACCF had a

significant influence on the timing of sea ice melt with stations north

of the sACCF melting earlier (F1,49 = 45, p<0.001, Figures 2, 3).
3.2 Chlorophyll distribution

Integrated Chl a concentrations (summed over 0-150 m)

derived from high resolution fluorescence measurements ranged
FIGURE 2

Sea ice concentrations (%) prior to and during the TEMPO voyage (Spreen et al., 2008).
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from 18 to 102 mg m-2 (Figure 4). Chl a concentrations were

elevated (> 61 mg m-2) at the northern ends of 55°E and 60°E, the

mid-section of 70°E, and the southern end of 80°E. At 75°E there

were comparatively low Chl a concentrations (< 31 mg m-2) on the

shelf, but elevated concentrations at the continental slope and

extending offshore. 65°E had relatively low Chl a along its length

compared to the other transects. The krill super-swarm and whale

hot-spot stations had notably low Chl a concentrations of < 24 mg

m-2 (Figure 4).

Throughout the water-column Chl a concentrations ranged

from 0.02 to 2.6 µg L-1, with an average of 0.47 µg L-1 (Figure 5).

Elevated Chl a concentrations at the northern end of 55°E were

located within the mixed layer (Figure 5). In contrast, there was

elevated Chl a below the mixed layer at 60°E and 65°E. The elevated

Chl a stations across 55-65°E were all north of the sACCF

(Figures 4, 5). South of the sACCF there were a number of Chl a
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“holes” (< 0.2 µg L-1) within the mixed layer across 55-65°E

(Figure 5). The well-defined nature of these holes, apparent at

similar latitudes across transects, suggested that they may have been

interlinked zonally, i.e. with the same hole spanning transects in

association with currents.

The large offshore bloom along 75°E was located within the

mixed layer (Figure 5) with Chl a concentrations as high as 2.6 µg L-1.

High Chl a along 70°E and 80°E were likely an east-west extension of

this bloom. However, at 80°E most Chl a at the southern end was

below the mixed layer rather than within it. This was due to shallow

mixed layer depths associated with low salinity and temperature

(Figure 5; Supplementary Figure 2), suggesting a meltwater lens at

this location despite recent sea ice formation. 75°E showed an abrupt

transition between the slope/offshore bloom and the shelf region,

where comparatively low Chl a occurred throughout the water

column (Figure 5). Elevated Chl a concentrations across 70-80°E
FIGURE 4

Integrated Chl a (10-150 m, mg m-2) at stations along Transects 1 to 6 (55-80°E). Stations where sea ice was present are marked with a yellow
asterisk. Red dashed line = sACCF, brown dashed line = SB, purple dashed line = ASF. The krill super-swarm station is marked by a blue asterisk. The
whale hot-spot station is marked by a red asterisk.
FIGURE 3

Days since sea ice melt at CTD stations along Transects 1-6 (55-80°E). Stations where sea ice was present are marked with a yellow asterisk. Red
dashed line = sACCF, brown dashed line = SB, purple dashed line = ASF. The krill super-swarm station is marked by a blue asterisk. The whale hot-
spot station is marked by a red asterisk.
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were all south of the SB (Figures 4, 5). North of the sACCF, there was

low Chl a in surface waters at the krill super-swarm and whale hot-

spot stations (Figures 4, 5).

Mixed layer depths ranged from 16 to 74 m (Figure 5), with

shallowest depths at the southern end of 80°E due to the meltwater

lens (see above). Euphotic depths ranged from 26-120 m (Figure 5),

with depths of > 90 m at the krill super-swarm (75°E) and whale

hot-spot (80°E) stations, as well as CTD 57 (in the vicinity of the

krill super-swarm station) and CTDs 2, 17 and 25. These stations

were all associated with low Chl a. At most stations, mixed layer

depths were notably shallower than euphotic depths (Figure 5) so

that cells circulating within the mixed layer would have experienced

a high light environment. The exception was at stations where the

55-65°E and 70-80°E blooms occurred. At these locations, mixed

depths were more similar to euphotic depths, and in some cases

deeper, with circulating cells likely to experience periods of photo-

limitation due to fluctuating light (Figure 5).

GAM analysis was used to further explore the major determinants

of integrated Chl a stocks. The strongest association was a strong non-

linear negative relationship with euphotic depth (p < 0.001, eff df= 3.23,

R2 adj=0.908, deviance explained=91.4%, Figure 6A). This clearly

represented shading of the water column as biomass increased,

rather than a negative response of phytoplankton to irradiance.

There was also a non-linear relationship with days since sea ice melt

(p=0.014, eff df = 3.46, R2 adj=0.212, deviance explained=26.7%, n=51,

Figure 6B). Biomass was high immediately following ice melt, slowly

increased to a peak at 70 days, then declined. There were two high Chl
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a outliers evident (Figure 6B) – CTD 52 on the slope at 75°E, and CTD

66 at the southern end of 80°E. Both stations were associated with the

70-80°E bloom.
3.3 Satellite phenology

Ocean color data from satellites provided synoptic-scale patterns

of Chl a in the lead up to, and during the voyage (Figure 7). The

December composite showed there was elevated Chl a offshore (62-

64°S) from 60-80°E in the vicinity of retreating sea ice. However,

throughout February when sampling occurred this offshore Chl a was

no longer visible. Similarly, the Prydz Bay polynya andWest Ice Shelf

were associated with consistently high Chl a on the shelf and offshore

from December through to February (Figure 7), but by the time 70-

80°E were sampled this visible surface Chl a had also decreased.

Interestingly, there was a low Chl a band between the shelf and

offshore in the Prydz Bay region during January and February, in the

vicinity of the slope front (Figure 7). Ice cover hindered visibility in

this region during March when in situ sampling was undertaken. The

Cape Darnley and MacKenzie polynyas had peak Chl a

concentrations in March, with the Cape Darnley autumn bloom

achieving the highest surface concentrations evident within the

survey area throughout the entire austral summer season. However,

70°E sampling in the vicinity of Cape Darnley was undertaken further

offshore away from the polynya, and was also undertaken late

February to early March so that these high Chl a concentrations
FIGURE 5

Chl a concentrations with depth (µg L-1) along each transect (55-80°E). Dark grey circles with dashed lines are mixed layer depth calculated from
density (kg m-3), white circles with dashed lines are euphotic depth (m). Light grey circles are mixed layer depth calculated from maximum buoyancy
frequency, for comparison with other studies. CTD station numbers are also shown. Data was interpolated between CTD stations using DIVA and
plotted in Ocean Data View (Schlitzer, R., Ocean Data View, odv.awi.de, 2023). The krill super-swarm station is marked by a blue asterisk. The whale
hot-spot station is marked by a red asterisk. Approximate frontal locations are indicated by arrows; red = sACCF, brown = SB, purple = ASF.
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FIGURE 7

Chl a derived from monthly composites of ocean colour in the lead-up to and during the voyage (mg m-3, Sathyendranath et al., 2019) and
from HPLC pigment analysis during the voyage (mg m-2, yellow circles). Depth contours (500 m) are shown as unbroken white lines. White dashed
lines indicate 15% ice cover.
FIGURE 6

GAM analysis of integrated (10-150 m) Chl a showing the relationship with (A) euphotic depth, and (B) days since sea ice melt.
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had likely not yet developed. Overall, in situ sampling of

phytoplankton across the survey area appeared to occur post-peak

of visible ocean color for most transects.
3.4 Phaeophytin and Si:N

Concentrations of phaeo ranged from 0 to 2.5 µg L-1

(Figure 8A). Measurements were significantly lower across 55-65°

E (30.0 ± 16.4 mg m-2) compared to 70-80°E (18.4 ± 12.5 mg m-2,

F1,49 = 7.95, p=0.007), with a complete absence of phaeo at the

southern end of 55°E. Concentrations did not noticeably change
Frontiers in Marine Science 10
with depth for any given station. Phaeo:Chl a ratios showed that

most phytoplankton populations in the survey area were in a

decline phase, as indicated by proportions > 0.28 (Figure 8B).

Cells in a growth phase (ratios < 0.28) were mainly in the western

survey region across 55-65°E with these transects sampled earlier in

the season (see above). Average ratios were significantly lower

across 55-65°E (0.53 ± 0.3), compared to 70-80°E (1.06 ± 0.55,

F1,49 = 18.66, p< 0.005). Phaeo concentrations were not notably

high at the krill super-swarm and whale hot-spot stations

(Figure 8A), but this was likely associated with the very low

biomass at these stations. In contrast, phaeo:Chl a ratios for these

stations were high with values > 0.75 (Figure 8B).
FIGURE 8

(A) Phaeophytin a (pheo) concentrations (µg L-1), and (B) phaeo:Chl a ratios. Populations in a growth phase (ratios < 0.28) are indicated by dark blue
circles. Light blue circles (ratios > 0.28) indicate populations in relative decline. Concentrations of 0 µg L-1 have been included to show locations
where samples were taken. The krill super-swarm station is marked by a blue asterisk. The whale hot-spot station is marked by a red asterisk.
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Macronutrient concentrations were generally non-limiting

within the survey area, with nitrate ranging between 18.3-35.9 µM

and silicate from 3.9-86.8 µM. The Si:N drawdown ratio was used as

a proxy for iron limitation within the survey area (Hutchins and

Bruland, 1998; Westwood et al., 2010), with higher ratios indicative

of higher limitation. Si:N drawdown showed a similar pattern to

phaeo:Chl a with ratios lower in the western survey area across 55-

65°E (4.3 ± 0.7) compared to 70-80°E in the east (5.1 ± 0.7), with a

one-way ANOVA showing that this difference was significant (F1,49
= 8.9, p=0.004, Figure 9).
3.5 Phytoplankton community composition

Phytoplankton assemblages, determined using CHEMTAX

analysis of pigments, had large spatial variations within the

survey area (Figure 10). Diatoms2 was the most abundant group

across all transects (Table 2), explaining 56% of variability in total

Chl a with a strong linear relationship (F1,49 = 65.5, R2-adj= 0.56,

p<0.001). Concentrations ranged from to 0.001 to 1.9 µg L-1, with

an average of 0.26 ± 0.34 µg L-1. Microscopy showed that the

pennate diatoms Fragilariopsis and Pseudonitzschia were the most

represented genera within this group. The centric diatom

Thalassiosira was also abundant as solitary cells. Haptophytes8

(high-iron and low-iron) were the second-most prevalent group,

comprising almost 30% of total Chl a. There was variation as to

which of the two iron groups dominated across the survey area, with

a generally inverse relationship (Figure 10). Haptophytes8 high-

iron were slightly more prevalent than low-iron overall, comprising

58% of the total haptophyte biomass. Concentrations of

haptophytes8 high-iron ranged from 0 to 0.49 µg L-1, with an

average of 0.08 ± 0.08 µg L-1. Haptophytes8 low-iron ranged from 0

to 0.45 µg L-1 with an average of 0.06 ± 0.06 µg L-1. The primary

species identified through light microscopy was P. antarctica, with

both solitary cells and colonial forms present.
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Diatoms1 were mainly found within the mixed layer across the

survey region (Figure 10; Table 2). Concentrations ranged from 0 to

0.31 µg L-1 with an average of 0.016 ± 0.039 µg L-1. In contrast, greens

had highest biomass below the mixed layer (range 0 to 0.18 µg L-1,

average 0.02 ± 0.03 µg L-1, Table 2) with their main prevalence at the

southern ends of 65°E and 70°E, and off the shelf at 75°E. Similarly,

dinoflagellates1 were more prevalent below the mixed layer, though

biomass was relatively low (range 0 to 0.25 µg L-1, average 0.014 ±

0.024 µg L-1) and almost absent along 80°E. Cryptophytes were also

low in biomass (range 0 to 0.14 µg L-1, average 0.025 ± 0.017 µg L-1)

but were most prevalent at the southern-ends of 75°E (both on- and

off-shelf) and 80°E. Cryptophyte populations were present both

above and below the mixed layer (Figure 10; Table 2).

Elevated Chl a concentrations observed across the northern and

mid-sections of 55-65°E (Figure 5) were associated with high

abundances of diatoms2, north of the sACCF (Figure 10). The

diatoms were clearly within the mixed layer at 55°E, but below the

mixed layer at 60°E and 65°E. There were also elevated

concentrations of haptophytes8 high-iron across 55-65°E, but

cells were both above and below the mixed layer at 60°E and 65°

E. Haptophytes8 high-iron were prevalent south of the ASF along

most transects, particularly at 55°E, on the shelf at 75°E, and at 80°E

(Figure 4). There were significantly lower densities of haptophytes8

high-iron north (6.3 ± 4.5 mg m-2) compared to south of the ASF

(9.5 ± 3.3 mg m-2, F1,49 = 6.11, p=0.017). Haptophytes low-iron

were prevalent below the mixed layer across 55-65°E compared to

surface waters (Figure 10; Table 2).

Elevated Chl a concentrations spanning 70-80°E south of the

sACCF (Figure 5) were similarly associated with diatoms2 and

haptophytes (Figure 10). However, in contrast to the bloom across

55-65°E, the haptophytes associated with the 70-80°E bloom in the

eastern part of the survey area were predominantly low-iron rather

than high-iron. Haptophytes low-iron were generally more

prevalent in the eastern part of the survey area (70-80°E)

compared to west (55-65°E).
FIGURE 9

Silicate to nitrate ratios (Si:N) along Transects 1-6 (55-80°E). High ratios indicate high iron limitation and vice versa. Stations where sea ice was
present are marked with a yellow asterisk. Red dashed line = sACCF, brown dashed line = SB, purple dashed line = ASF. The krill super-swarm
station is marked by a blue asterisk. The whale hot-spot station is marked by a red asterisk.
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At the krill super-swarm station where there was low Chl a (see

above), diatoms2 biomass was low throughout the water column

(Figure 10). There was a high abundance of diatoms2 along 75°E,

but an abrupt decrease in abundance where the krill were present.

Similarly, at the whale hot-spot station there was low biomass of

diatoms2 at the northern end of 80°E. Most other phytoplankton

taxa were also absent at the krill super-swarm and whale hot-spot

stations, except for haptophytes8 high iron.
3.6 Relationships with
environmental variables

As diatoms2 were the dominant phytoplankton group and are

the preferred food source for krill, the main modelling was

undertaken on this taxon to further investigate relationships with

environmental parameters. GAM analysis on column-integrated

diatoms2 showed that mixed layer depth and days since sea ice melt

were significant drivers of biomass (R2-adj=0.36, deviance

explained=46.9%, n=49, Figure 11). Diatoms2 biomass clearly

decreased with deeper mixed layers (p=0.018, eff df=0.83). They

also showed high biomass immediately following ice melt, a slight

decrease, then similar to the Chl a model an increase between

around 40 to 80 days post-melt, then a decline (p=0.022, eff df=

3.74). Nitrate concentration in the Tmin layer, Si:N drawdown and

temperature of the Tmin layer had no significant influence

on diatoms2.
Frontiers in Marine Science 12
For other phytoplankton taxa, mixed layer depth had a

significant influence on two groups only; haptophytes8 low-iron

(p=0.042, eff df=1.00, r2-adjusted=0.062, deviance explained=8.1%,

Figure 12), and dinoflagellates1 (p=0.011, eff df=4.94, r2-

adjusted=0.258, deviance explained=33.1%). However, the

significant results were leveraged by the station with the deepest

mixed layer (73 m at CTD 22). With this outlier removed the

relationship for both taxa then became non-significant (p = 0.06

haptophytes8 low-iron, p=0.19 dinoflagellates1).

Days since ice melt influenced most phytoplankton groups,

except dinoflagellates1 and diatoms1. Haptophytes8 high-iron

decreased with days since melt (p=0.029, eff df=1.00, R2-

adjusted=0.075, deviance explained=9.4%, Figure 13), whereas

haptophytes8 low-iron increased up until 70-80 days, then

declined (p=0.036, eff df=2.69, R2-adjusted=0.156, deviance

explained=20.2%). Greens and cryptophytes remained relatively

stable with days since ice melt, but started to decline at around 70

days post-melt (greens: p=0.003, eff df=2.34, R2-adjusted=0.233,

deviance explained=26.9%; cryptophytes: p=0.025, eff df=2.08, R2-

adjusted=0.150, deviance explained=18.5%). For all taxa, biomass

declined at 95-120 days post-melt, with these stations all sampled

26th February or later, coinciding with the onset of austral autumn.

Overall, both mixed layer depth and days since ice melt had

influences on phytoplankton populations within the survey region.

One or both of these parameters influenced all taxa apart from

dinoflagellates1 and diatoms1, noting that the influence of

additional environmental parameters is not shown for taxa other
FIGURE 10

Depth profiles of phytoplankton taxa (µg L-1) across the survey region. Mixed layer depths are shown as grey lines (D 0.03 kg m-3), and the bottom of the
Tmin layer shown as blue lines (note that deep values >150 m are not shown). Inter-frontal regions are coloured as per the key. Values of 0 µg L-1 have
been included to show the locations where samples were taken. Due to high concentrations of diatoms2 they were reduced by a factor of 4 (f4) to
improve visualisation. The krill super-swarm station is marked by a blue asterisk. The whale hot-spot station is marked by a red asterisk.
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than diatoms2. A preliminary analysis of additional parameters

showed no meaningful patterns and were thus not pursued.
4 Discussion

The TEMPO survey off East Antarctica enabled the spatial

distribution and temporal patterns of Chl a and phytoplankton

communities to be described, as well as elucidating environmental

drivers for these patterns. Variability was caused by an interplay of

oceanographic, seasonal and biological influences that shaped

populations. These are discussed further below. The survey also

provided the opportunity to re-visit a similar region to the BROKE
Frontiers in Marine Science 13
(Nicol et al., 2000) and BROKE-West (Nicol et al., 2010) voyages

conducted 25 and 15 years earlier, respectively. The TEMPO survey

differed from BROKE and BROKE-West in that it occurred about

one month later and did not penetrate the sea ice zone.

Nevertheless, the general patterns and features observed during

TEMPO were similar to the previous voyages, and successional

patterns relating to ice melt, krill grazing, and iron limitation were

generally consistent with those described by Wright et al. (2010).

Chl a concentrations for TEMPO ranged from 0.02 to 2.6 µg L-1,

with an average of 0.47 µg L-1, and integrated biomass from 18-102

mg m-2. These concentrations were significantly lower than for

BROKE-West (0.88-5.6 µg L-1, average 1.2 µg L-1 and up to 328

mg m-2, Wright et al., 2010), likely due to the ship being unable to

enter sea ice where most productivity occurs (Strutton et al., 2000;

Westwood et al., 2010). Maximum Chl a concentrations for BROKE

(3.4 µg L-1) were also higher than our study (Wright and van den

Enden, 2000), though integrated concentrations were similar (27.4-

103.0 mg m-2). Diatoms2 was found to be the dominant taxon within

the TEMPO survey region. This group therefore had a strong

influence on Chl a distribution and explained 56% of variation.

Haptophytes8 were the next dominant taxon and comprised 30% of

Chl a. The dominance of diatoms and haptophytes was expected and

agrees with other studies in the East Antarctic region (Davidson et al.,

2010; Wright et al., 2010; Iida and Odate, 2014; Takao et al., 2014;

Takahashi et al., 2022).
4.1 Oceanographic influences

There were two major blooms within the survey area, mainly

consisting of diatoms2 and haptophytes8. The first bloom spanned

55-65°E north of the sACCF. Diatoms2 were within the mixed layer

at 55°E, but below the mixed layer at 60°E and 65°E. Given the

bloom was north of the sACCF this may suggest that the population

was sinking as the current moved from west to east, with large and

heavy cells observed such as Fragilariopsis and Thalassiosira having

high export potential (Roca-Martı ́ et al., 2017). Sinking may have

been facilitated through nutrient limitation, though the northern

sections of 55°E and 60°E were sampled closely in time. In contrast,

haptophytes8 remained within the mixed layer across these

transects, with the dominant species being motile cells of P.

antarctica. The persistence of haptophytes8 in surface waters was

therefore expected, given the small size of cells (< 5 µm) which
TABLE 2 Summary of key results for the seven major CHEMTAX
phytoplankton groups.

Phytoplankton
Group

Key Results

Cryptophytes

Low background concentrations across most of the
survey area; Higher concentrations at southern stations
on 75°E and 80°E; Biomass both above and below the
mixed layer.

Diatoms1
Low background concentrations across most of the
survey area; Most biomass within the mixed layer.

Diatoms2

The most abundant taxa comprising 56% of total Chl
a; High abundances spanning 55-65°E north of the
sACCF, and 70-80°E south of the sACCF and SB; Cells
predominantly within the mixed layer at 55°E, 70°E
and 75°E; Cells below the mixed layer at 60°E, 65°E
and 80°E.

Dinoflagellates1
Low background concentrations across most of the
survey area; Almost absent along 80°E; Highest
concentrations found below the mixed layer at 70°E.

Greens
Prevalent below the mixed layer; High concentrations
found at the southern ends of 65°E and 70°E, and off
the shelf at 75°E.

Haptophytes8
high-iron

Prevalence south of the ASF along most transects;
Associated with the 55-65°E bloom; Biomass both
above and below the mixed layer; Cells still present at
the krill super-swarm and whale hot-spot stations.

Haptophytes8
low-iron

Associated with the 70-80°E bloom; Biomass above and
below the mixed layer across 70-80°E; Low
concentrations in the western part of the survey area
across 55-65°E, with cells prevalent in the Tmin layer.
FIGURE 11

GAM analysis of diatoms2 showing the interactive relationship with (A) mixed layer depth, and (B) days since sea ice melt. Only parameters that had a
significant influence are shown.
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hinders sinking, and evidence that the carbon flux of haptophytes is

less efficient than for diatoms (Gowing et al., 2001; Wolf et al.,

2016); although we note that rapid export of P. antarctica blooms

can occur when cells are in colonial form (DiTullio et al., 2000). The

second bloom spanned 70-80°E south of the SB. Again, this bloom

was dominated by diatoms2 as well as haptophytes8, though in this

case there was no evidence for the sinking of cells from surface

waters. Satellite evidence suggested that the 70-80°E bloom was

associated with advection from the Prydz Bay and West Ice Shelf

regions. These regions may also be important for fueling blooms in

the Princess Elizabeth Trough and Southern Kerguelen Plateau

(Schallenberg et al., 2018). In the BROKE and BROKE-West

surveys the SB was found to have an influence on production

(Nicol et al., 2000; Wright et al., 2010). However, this was not found

in our study given that blooms occurred both north and south of

this front.

The main physical control on diatom2 populations was found

to be mixed layer depth, with decreased biomass when mixed layer
Frontiers in Marine Science 14
depth increased. Mixed layer depths were mostly shallower than

euphotic depths throughout the survey area, so circulating cells did

not experience photo-limitation. The preference of diatoms2 for

shallower mixed layers and higher average irradiances agrees with

the BROKE survey (Wright and van den Enden, 2000) and studies

from other Antarctic regions including the Ross Sea (Arrigo et al.,

1999), Western Antarctic Peninsula (Kopczynska, 1992; Schofield

et al., 2017) and Northern Antarctic Peninsula (Costa et al., 2023).

Diatoms are successful under stable light conditions due to low

pigment concentrations per cell combined with high amounts of

photoprotective pigment, allowing lower susceptibility to

photoinhibition compared to other groups (Arrigo et al., 2010;

Kropuenske et al., 2010). In fact, this group does not cope well with

fluctuating light compared to other groups, due to slower photo

acclimation processes (Larkum et al., 2003; Strzepek and Harrison,

2004; Kropuenske et al., 2010; van Leeuwe et al., 2020). Additional

processes that may have contributed to decreased abundances

included the entrainment of low Chl a water from depth (Smith
FIGURE 13

GAM analysis of the various phytoplankton taxa against days since ice melt. Significant relationships are marked with an asterisk.
FIGURE 12

GAM analysis of the various phytoplankton taxa against mixed layer depth. Significant relationships are marked with an asterisk, but they are not
significant when 73 m mixed layer depth is excluded.
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et al., 2011), or increased particle aggregation from turbulence

leading to export (Jones and Smith, 2017). Haptophytes were not

affected by mixed layer depth in our study, but other studies have

shown that they do favor mixed conditions (Wright and van den

Enden, 2000). The main haptophyte, P. antarctica, is known to be

highly adaptable to fluctuating light including under iron-limited

conditions (Arrigo et al., 2010; van Leeuwe and Stefels, 2007;

Kropuenske et al., 2010).

Haptophytes8 distribution was influenced by the ASF, in addition

to seasonal influences described below. There were significantly

higher concentrations of haptophytes8 high-iron south of the ASF

across most transects, compared to north of the ASF. This pattern

was very likely related to increased iron availability, with stations

south of the ASF in closer vicinity to the Antarctic continental shelf

and sea ice (Westwood et al., 2010). Shelf waters are known to supply

sustained inputs of iron to surface waters through sediment

resuspension (de Jong et al., 2013; Smith et al., 2021), with sea ice

and melting from glaciers and ice shelves also being a significant

source (Death et al., 2014; Duprat et al., 2016; Herraiz-Borreguero

et al., 2016; Lannuzel et al., 2016). A significant change in haptophytes

across the ASF confirms the physical influence of this front on

nutrient availability, with reliance on cross-slope exchange

processes such as frontal instabilities and eddies to influence

transport (Heywood et al., 2014).
4.2 Seasonal effects

A second influence on haptophytes8 was season. North of the

ASF there was a change in the relative proportion of high- and low-

iron haptophytes8 from west to east across the survey area.

Haptophytes8 high-iron were the prevalent form in the 55-65°E

bloom and across the western survey region in general. In contrast,

the 70-80°E bloom and general eastern survey region was

dominated by low-iron forms, suggesting that this region was

iron-limited. 55-65°E transects were sampled earlier in the season

than 70-80°E. 55-65°E also experienced later sea ice melt, with

retreat occurring across the survey area in a southwesterly direction.

The combined influence of earlier sampling and later ice melt meant

that most stations along 55-65°E were < 44 days post-melt. In

contrast, the majority of 70-80°E stations were > 44 days post-melt

(excepting stations on the shelf). Accordingly, GAM analysis

showed that with increasing days since sea ice melt, haptophytes8

high-iron gradually decreased, whereas haptophytes8 low-iron

increased, reflecting the differences observed between the western

and eastern survey.

Pheophytin a (phaeo) concentrations and Si:N drawdown ratios

further supported a strong seasonal influence on haptophytes8 and

all other phytoplankton taxa within the survey area. Phaeo is a

degradation product of Chl a (Jeffrey, 1997) and was significantly

lower across 55-65°E compared to 70-80°E. It was also completely

absent along sections of 55°E near the sea ice. Similarly, Si:N ratios

were also significantly lower across 55-65°E suggesting less iron

limitation of diatoms in this region (Hutchins and Bruland, 1998;

Takeda, 1998; Franck et al., 2000). Finally, lower phaeo:Chl a ratios

across 55-65°E compared to 70-80°E showed that 55-65°E
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populations to be in better health than 70-80°E populations.

Interestingly however, most phaeo:Chl a ratios across the whole

of the survey area were > 0.28 which suggested that cells were past

their peak in growth at the time of sampling (Gaffey et al., 2022).

This agreed with the satellite ocean color data which showed that by

the time of sampling, Chl a that was previously present in surface

waters had declined.

Despite clear changes in the health of phytoplankton between

the western and eastern survey area, this was not reflected in

column-integrated biomass for most taxa with days since sea ice

melt only influencing the ratio of haptophytes high- and low- iron

(see above) and diatoms2 over most of the growth season. This is

discussed further in Section 4.5 below, in relation to the temporal

sequence hypothesized by Wright et al. (2010). The main influence

of days since sea ice melt was at the end of season with a decline in

all taxa at > 95 days post-melt. These stations were all sampled 26th

Feb or later, therefore coinciding with the onset of austral autumn.

The last transect was completed on 12th March, by which time the

sea ice had started to reform. Mixed layer depths for these final

stations were not yet noticeably deeper. However, reduced

daylength and lower angles of incoming light would have meant

that cells were experiencing lower daily average irradiances, limiting

productivity (Strutton et al., 2000). This would have allowed loss

processes such as sinking and grazing to outweigh growth (Smith

et al., 2000). Waters et al. (2000) also found decreased

phytoplankton abundance with the onset of winter conditions

during the BROKE survey.
4.3 Grazing

Large numbers of whales (c. 50) observed feeding at the

northern end of 80°E (S. Kawaguchi pers. comm., April 2021),

and krill super-swarms observed between 75°E and 80°E (M. Cox

pers. comm., April 2021) indicated this region to be highly

productive. Similarly, large numbers of humpback whales were

previously observed feeding in the same vicinity in 2016 (A.

Constable pers. comm. March 2016, K-Axis voyage, V3; 2015/16,

RSV Aurora Australis), and tracking data has shown that Western

Australian humpback whales visit this area from November to

March (Bestley et al., 2019). Elevated climatological Chl a derived

from satellite ocean color provides further evidence for high

seasonal productivity here (Pinkerton et al., 2021). In addition,

Foppert et al. (2024) found evidence of upwelling in this region

during TEMPO, a process which likely increased nutrient

availability for phytoplankton, and may support predictable

foraging grounds for migrating baleen whales.

There was observational evidence for selective grazing of

phytoplankton at the whale hot-spot and krill super-swarm

stations located in this region. Diatoms2 had been stripped from

surface waters, causing notably lower chlorophyll concentrations

compared to the rest of the survey area. It is highly likely that

diatoms2 had been grazed by krill, with their large cell size making

them the preferred food source due to more efficient filtering

(Meyer and El-Sayed, 1983). In contrast, small haptophytes

remained within surface waters at both stations. This was likely
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due either to inefficient filtering of small cells by krill (Kawaguchi

et al., 1999; Conroy et al., 2024), or selective feeding on diatoms

rather than haptophytes (Haberman et al., 2003). Phaeo: Chl a

ratios at both stations were higher than elsewhere along these

transects (> 0.75), also supporting the suggestion of heavy

grazing. Interestingly, the haptophytes8 remaining in the water

column at the whale hot-spot and krill super-swarm stations were

high- rather than low-iron forms, despite these stations being off-

shore and in the eastern survey area. This suggests nutrient

recycling, possibly through bacterial remineralization of krill or

whale fecal material which is known to be iron rich (Ratnarajah

et al., 2018). Sloppy feeding by krill may also have been a source of

iron (Cavan et al., 2019).

A series of “holes” in surface Chl a (< 0.2 µg L-1) occurred

across 55-65°E. Similar holes were also observed north of the ice

edge during BROKE and BROKE West (Wright and van den

Enden, 2000; Wright et al., 2010), which, during the latter cruise,

closely matched the distribution of krill swarms grazing the ice-edge

bloom. Comparison of Chl a and integrated krill biomass data in the

vicinity of CTD stations during TEMPO showed no relationship

across the survey area (data not shown). However, krill swarms are

actively motile and the biomass measured at a specific time in the

vicinity of a CTD station does not necessarily represent recent

grazing pressure. Cox et al. (2022) found during the TEMPO voyage

that small scale krill surveys can provide a good representation of

the statistical distribution of krill densities across a larger scale, but

only within the same latitudinal band. This potentially supports the

hypothesis of the Chl a holes being interconnected across transects

due to bands of high krill density. However, the Chl a holes were not

strictly within the same latitudinal band, showing minor shifts to

the south from 55°E to 65°E. Given these holes were present both

north and south of the sACCF, SB and ASF it does not seem that

fronts were influential.
4.4 Shelf waters

The only shelf stations within the survey area were at the

southern end of 75°E in Prydz Bay. Here, there was an abrupt

transition to low Chl a compared to the slope and offshore

phytoplankton bloom (60-80°E). This transition may have been

partly related to circulation patterns. The shelf stations (CTDs 47-

50) were located across Four Ladies Bank which is known to act as a

barrier to water exchange between the continental shelf and offshore

(Smith and Trégure, 1994; Xu et al., 2019). There is a gyre within

Prydz Bay associated with the outflow of supercooled ice shelf water

from underneath the Amery Ice Shelf. This water is channeled

offshore through the Amery Depression, with a weak return flow

thought to exist across Four Ladies Bank to the Amery (Williams

et al., 2016). It was therefore likely that the 75°E shelf stations were

experiencing quite different oceanographic influences compared

to offshore.

Krill grazing may also have been partly responsible for the

abrupt transition to low Chl a, particularly given that diatoms2 was

the main group depleted. Satellite observations showed high Chl a

in this region from December through to February, but this had
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decreased by the time of sampling in early March. Within Prydz Bay

the krill species Euphausiia crystallorophias would likely have been

the dominant taxon responsible for grazing (Thomas and Green,

1988; Hosie and Cochran, 1994). Zooplankton other than krill also

require consideration as grazers, with microzooplankton, copepods,

pteropods and salps also prominent in Prydz Bay (Pearce et al.,

2010; Hosie and Cochran, 1994; Li et al., 2001; Yang et al., 2013).

These zooplankton groups efficiently ingest small phytoplankton

cells (Johnston et al., 2021) however there was no clear evidence of

this in the current study. Whilst there was a decrease in

haptophytes8 low-iron on the shelf compared to the slope and

offshore, there was a marked increase in haptophytes8 high-iron

likely due to increased iron availability (see above), so the overall

biomass of haptophytes8 remained essentially the same. Small

cryptophytes were also present over the Prydz Bay shelf in higher

concentrations than other transects. Regardless of whether

circulation patterns and/or grazing influenced the transition in

Chl a between the shelf and offshore, these regions have

previously been shown to be ecologically distinct (Hosie and

Cochran, 1994; Davidson et al., 2010).
4.5 Comparison with the BROKE-West
temporal sequence

The patterns of phytoplankton biomass and composition during

the TEMPO survey were consistent with those of BROKE-West and

the latter part of the hypothesized temporal sequence proposed by

Wright et al. (2010). Wright et al. (2010) proposed that a primary

bloom forms around 35 days before complete disappearance of sea

ice, which is seeded from the ice community, and consists mainly of

diatoms2, high- and low-iron haptophytes8 and, to a lesser extent,

cryptophytes. This bloom quickly exhausts iron stocks and is

consumed by krill, allowing a secondary bloom of low-iron

haptophytes at depth due to increased light there. The surface

waters are left iron-depleted as iron has been exported to depth via

the sinking of detrital aggregates from the primary bloom and krill

fecal pellets following grazing. A nanoflagellate shade community

then develops at depth utilizing recycled iron (Boyd and Ellwood,

2010) as well as residual or upwelled sources.

Several observations during TEMPO matched this sequence.

First, our study showed highest biomass of diatoms2 and

haptophytes8 immediately following ice melt, noting that we were

unable to sample prior to melt. These populations were likely

residual from a primary bloom that had developed under the ice.

Takahashi et al. (2022) also recently showed evidence for the

seeding of the water column by diatoms from sea ice

communities. Second, the observed change from predominantly

high-iron to low-iron haptophytes8 and patterns of Si:N drawdown

are consistent with exhaustion of iron by the bloom (see above).

Third, our study showed the development of a deep nanoflagellate

community, consisting of greens and haptophytes. Greens were

prevalent below the mixed layer across most transects, particularly

across 65-75°E. Haptophyte8 low-iron were prevalent below the

mixed layer across 55-65°E. The success of nanoflagellates at depth

in low-iron environments is likely due to their small cell size, with
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efficient uptake of recycled iron due to high surface area to volume

ratios (Sunda and Huntsman, 1997; Li et al., 2009; Marañón, 2015).

However, there were also some differences from BROKE-West,

which may be partly explained by TEMPO occurring a month later in

the season. In the BROKE-West temporal sequence, diatoms2

decreased rapidly after 20 days post-melt, whereas in our study

there was a slow decline from 0 to 40 days, implying that loss

processes were slower. There was also a secondary increase in

diatoms2 from 40-80 days post-melt in our study. This may simply

have represented sites with few loss processes, with cells that had

grown earlier in the season remaining in the water-column but slowly

becoming senescent. Increased Si:N drawdown ratios and phaeo in

our study supported this suggestion. Sexual reproduction may also

have occurred leading to an increase in cell size, as recently shown by

Matsuno et al. (2023) at 90-100 days post-melt.

Our study was also different from BROKE-West in that

cryptophytes were not prevalent during TEMPO, with an average

concentration of only 0.025 µg L-1. In the Western Antarctic

Peninsula where cryptophytes are prevalent (Hayward et al.,

2024), high biomass is associated with low salinity (32.5-33.75

psu) and colder (-1 to 1°C) coastal waters (Schofield et al., 2017),

with plumes extending as far as 100 km offshore (Moline et al.,

2004). We identified a meltwater lens at southern stations on 80°E

during the TEMPO voyage with salinity and temperature as low as

32.7 psu and -1.3°C at the surface, respectively (Foppert et al., 2024).

Accordingly, cryptophyte abundances were higher in this region.

There were also higher abundances of cryptophytes at the southern

end of 75°E on the shelf in Prydz Bay and extending offshore.

Whilst there was no clear meltwater lens at this location (Foppert et

al., 2024), salinity and temperature were low in the southernmost

surface waters sampled (CTD 47, 33.3 psu, -1.2°C), with both

parameters gradually increasing to the north. A gradual increase

in salinity and temperature along 75°E (rather than the abrupt

changes seen at 80°E), may have been related to mixing associated

with the gyre (see above, Williams et al., 2016).

Lastly, dinoflagellates1 were present in the deep nanoflagellate

community during the BROKE-West survey (Wright et al., 2010)

but this was not seen during TEMPO, apart from at one station at

the southern end of 70°E where there were high concentrations

within the Tmin layer. In general, abundances of dinoflagellates1

were lower for TEMPO than for BROKE-West. An almost complete

absence of dinoflagellates1 along 80°E suggested that this taxon was

strongly influenced by season, leading to the lower concentrations

for the TEMPO survey.
4.6 Conclusions

The TEMPO survey represented the first large multidisciplinary

survey off East Antarctica since the BROKE and BROKE-West

surveys conducted 25 and 15 years earlier, respectively. It offered the

opportunity to re-examine processes at the base of the food web in a

region where krill fishing may expand, and to further understand

the interplay of seasonal, biological and oceanographic drivers. Our

data was broadly consistent with the previous surveys, and
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supported a temporal sequence in phytoplankton biomass and

composition proposed for ice edge blooms.

The dominant phytoplankton groups were diatoms2 and

haptophytes8, the latter with pigments that represented high- and

low-iron forms. The primary drivers of biomass and composition

included mixed layer depth, the ASF, seasonal changes, and iron

depletion. There was also clear evidence of krill grazing, with a number

of “holes” in the distribution of phytoplankton along transects. These

holes appeared to mainly affect diatoms2 with clear depletion in

surface waters. Haptophytes8 remained at these sites, suggesting

selective grazing of the large diatoms by krill, or inefficient grazing

of the smaller haptophyte cells. Greens and haptophytes low-iron were

prevalent below the mixed layer and represented a nanoflagellate

shade community similar to that observed for BROKE-West.

Whilst we found that phytoplankton populations and processes

over the past 25 years were comparable across studies, the predicted

loss of sea ice with climate change will likely influence phytoplankton

composition into the future. The potential effects of such changes on

krill populations and dependent organisms, as well as on carbon

export, warrants further study on bloom development, particularly

within the sea ice early in the season. Such data is vital as a base for

ecosystem and carbon models. From a methodological standpoint,

our study showed that a combination of pigment analysis for

phytoplankton taxa (particularly the high- and low-iron forms of

haptophytes8), phaeo:Chl a ratios, and Si:N drawdown ratios,

provides valuable insights into the growth and grazing of

phytoplankton and can be used to refine modelling efforts.
5 Additional requirements

All voyage activities were undertaken under an approved Notice of

Determination and Authorization, in compliance with the Antarctic

Treaty (Environment Protection Act) 1980. Phytoplankton/pigment

samples were collected under AMLR Permit 20-23-4512 in compliance

with the Marine Living Resources Conservation Act 1981.
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