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Advancing the coral propagation
toolkit via hypersalinity induced
coral micropropagates
Emily Walton1,2, Lindsey Badder1,
Claudia Tatiana Galindo-Martı́nez1,2, David B. Berry3,
Martin Tresguerres2 and Daniel Wangpraseurt1,2*

1Coral Reef Engineering Group, Department of Chemical and NanoEngineering, University of California
(UC), San Diego, San Diego, CA, United States, 2Marine Biology Research Division, Scripps Institution of
Oceanography, University of California (UC), San Diego, San Diego, CA, United States, 3Department of
Orthopaedic Surgery, University of California (UC), San Diego, San Diego, CA, United States
In the face of escalating threats posed by human-induced climate change,

urgent attention to coral reef restoration is imperative due to ongoing reef

degradation. Here, we explored the potential of generating coral

micropropagates as a tool to rapidly generate coral tissue for reef restoration

and reef engineering. We developed a hypersalinity-induced polyp bailout

protocol and a simple attachment device to support the growth of

micropropagates on commonly used restoration substrates. We found that

hypersalinity induction, at a rate of < 1 ppt hr-1, produced healthy

micropropagates of the coral Stylophora pistillata. The highest attachment

success (~74%) was achieved in CaCO3 substrate devices, which outperformed

PVC (~48%) and Portland cement (~5%). Settled micropropagates displayed rapid

growth rates on both CaCO3 (0.037 mm²/day ± 0.002 SE) and PVC (0.057 mm²/

day ± 0.008 SE) substrates, while Portland cement induced tissue degradation.

Our study provides a detailedmethodology for reliably generating, attaching, and

growing coral micropropagates and underscores the potential of polyp bailout as

a viable technique supporting coral propagation efforts.
KEYWORDS

coral propagation, bail out, micropropagates, asexual reproduction, coral restoration
Introduction

Reef-building corals are the primary architects of tropical reef ecosystems that harbor a

diversity of life forms spanning from microorganisms to large marine vertebrates (Hughes

et al., 2017). Coral reefs are a hotspot for ocean biodiversity and provide crucial goods and

services via fisheries, shoreline protection, nutrient cycling, and tourism activities, as well as

societal and cultural importance for indigenous communities (Eddy et al., 2021; Eliff and

Iracema., 2017; Rädecker et al., 2015). However, coral reefs are degrading at an unprecedented

rate due to anthropogenic stressors such as climate change, overfishing, and pollution
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(Pandolfi et al., 2003; van Hooidonk et al., 2016; Heron et al., 2016;

Hoegh-Guldberg et al., 2017).

The rapid decline of coral reefs highlights the urgency of

comprehensive conservation and restoration efforts (Suggett et al.,

2023; Roger et al., 2023a) including coral gardening approaches

and the development of artificial or hybrid reef structures (Burt

et al., 2009; Lima et al., 2019; Rinkevich, 2021; Roger et al., 2023b).

Coral gardening (Rinkevich, 2021) involves the cultivation of coral

fragments under protected conditions in nurseries until they reach

a certain size and maturation, and their subsequent outplanting

onto existing degraded reefs (Forrester et al., 2012). Artificial and

hybrid reefs (A&HR) involve the deployment of human-made

structures that mimic the structure of natural reefs (Burt et al.,

2009; Lima et al., 2019). There has been a growing interest in the

deployment of A&HRs since the 1980s, as these structures reduce

coastal erosion and enhance eco-tourism activities (Rossi and

Rizzo, 2020; Higgins et al., 2022). A key challenge for creating

A&HRs is to rapidly cover the man-made reef structures with

beneficial benthic coral reef communities, including stony corals.

Space competition for bare substrate is high on coral reefs and it

has thus been of interest to rapidly cover or ‘re-skin’ bare

substrates with live corals. By creating small fragments, usually

between 1-4 cm2 in size, one can generate rapid two-dimensional

spreading of coral tissue at rates several orders of magnitude

higher than under standard field conditions (Forsman et al., 2015,

2017). Such microfragments are now widely used in restoration

activities (Tortolero-Langarica et al., 2020; Knapp et al., 2022;

Mostrales et al., 2022). However, as corals are modular animals

that are composed of repeated ‘building blocks’ called polyps that

can bud off asexually, it is theoretically possible to seed and

propagate individual polyps.

A potential option for propagating individual polyps is via polyp

bailout, a natural response to stress that results in the separation of

individual polyps from the coral colony (Sammarco, 1982). This

process serves as an escape response to extreme stressors such as

hypersalinity, extreme high and low temperatures, and acidification

(Kvitt et al., 2015; Shapiro et al., 2016). Importantly, bailed out polyps

retain their symbionts and can re-attach themselves to a substrate and

grow into a new colony (Shapiro et al., 2016; Chuang and Mitarai,

2020). Polyp bail out has been used to create the coral-on-a-chip

system, a promising microscale platform to study coral biology in the

laboratory (Shapiro et al., 2016; Pang et al., 2020). While this system

has been used to characterize the reattachment of bailed out polyps

on a glass surface and tomonitor subsequent individual polyp growth

(Shapiro et al., 2016), the potential of using polyp bailout as a method

for reef restoration remains largely unexplored.

Polyp bailout typically produces dozens of micropropagates

from a singular coral fragment (Shapiro et al., 2016; Schweinsberg

et al., 2021), an output that is much larger than traditional

fragmentation methods. Thus, coral bailout holds great potential

as a method to rapidly re-skin A&HR substrates or aid in the

production of coral fragments for gardening applications. The aims

of this study are to develop a reliable technique for rapidly

generating coral micropropagates and inducing successful
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settlement/attachment and growth of micropropagates on

commonly used restoration substrates. Specifically, we focused on

the model species Stylophora pistillata (Shefy and Rinkevich, 2021)

and evaluate attachment success and tissue growth rates in response

to CaCO3, polyvinyl chloride (PVC), and Portland cement.
Methods

Corals

Colonies of S. pistillata from Birch aquarium (San Diego, USA)

were cultivated in experimental aquaria at Scripps Institution of

Oceanography (UC San Diego, USA), which provides flow-through

seawater at constant temperature (25 °C); an aquarium heater

(EnjoyRoyal, USA) was used to further maintain temperature in

each tank. Downwelling irradiance was provided at 100 mmol

photons m-2 s-1 at a 10hr/14hr light-dark cycle that included

moonlight simulation (4h during dark cycle) (Orbit Marine LED

Current Loop). For polyp bailout experiments, we used fragments

of S. pistillata that were about 2 cm in length.
Induction of polyp bailout

Polyp bailout was evaluated throughout a range of hypersalinity

regimes and experimental protocols. To create different salinity

gradients over time, we evaluated the use of a peristaltic pump,

manual adjustments in water salinity, as well as natural evaporation

of water for different water volumes. Preliminary experiments with

manual increases in salinity with the addition of high salinity water

over a set time and the use of a peristaltic pump resulted in

inconsistent salinity gradients and proved difficult to replicate.

Thus, we focused on creating salinity gradients induced by

natural evaporation of water. Six different volumes (25 mL, 50

mL, 75 mL, 100 mL, 150 mL, 200 mL) of filtered natural seawater

(0.35 µm) (FSW) at 35 PPT were evaporated in a small glass

container (8 cm diameter) to create different rates of salinity

increase over time. Evaporation experiments were performed in a

25 °C room with the container placed on a magnetic stirrer at 40

rpm to create gentle water movement.

Incident irradiance was provided by a light emitting diode

(LED) panel that delivered a downwelling irradiance of 100 mmol

photons m-2 s-1 (400-700 nm, PAR). An air pump was connected to

a small pipette to ensure that the O2 content of the ambient water

was air saturated. Salinity was measured hourly using a

refractometer (Agriculture Solutions, USA). For each salinity

gradient, we exposed 3 fragments to hypersalinity stress. Each

fragment was visually monitored for polyp detachment. S.

pistillata required gentle agitation for the polyps to be released

from the skeleton. This was done by utilizing a plastic pipette to

gently agitate the fragment with water. The generated coral

micropropagates were then transferred to a petri dish filled with

35 ppt seawater to re-acclimate to normal seawater conditions.
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Viability of coral micropropagates

The health and viability of micropropagates was assessed by

examining polyp morphology using a stereoscope (Olympus SZ61,

Japan) and PSII photochemistry via pulse amplitude modulated

(PAM) chlorophyll (chl) a fluorescence imaging (Imaging-PAM).

We categorized a healthy polyp morphology based on the presence

of intact tentacles, a well-defined tissue structure surrounding the

mouth opening, and the presence of the stomach (Schweinsberg

et al., 2021). Polyps that were characterized as degraded were

lacking one or more of these characteristics. Viable and healthy

polyps also often demonstrated a spinning behavior, as noticed in

other studies (Supplementary Material S1, Shapiro et al., 2016).

For chl a fluorimetry, we used an imaging pulse amplitude-

modulated chl a fluorometer (Imaging PAM, mini version; WALZ

GmbH, Effeltrich, Germany) that employs a blue measuring light (460

nm). Following a dark acclimation period of 20 min, we measured the

maximum quantum yield (FV/Fm) of photosystem II (PSII) following a

saturation pulse (Wangpraseurt et al., 2019a). We also measured

relative electron transport rates (rETR) of coral micropropagates

during the attachment period to artificial substrates, to evaluate the

light-use efficiency (ɑ) and maximum relative electron transport rate

(rETRmax) over time (Ralph and Gademann, 2005). For this, rETR

curves were performed spanning an irradiance regime from 0 to 783

mmol photons m-2 s-1 (0, 1, 23, 43, 81, 145, 222, 269, 321, 403, 492, 783

mmol photons m-2 s-1) with an incubation period of 30 s at each light

step (Ralph et al., 2008). Five micropropagates from each substrate

were measured at days 7, 14, and 21 following bail out. Data was fit to

the Platt equation (Platt et al., 1980).

PB = PB
S (1 − e−a)e−b (1)
Attachment of coral micropropagates

For our attachment tests, we used tiles made from CaCO3

(Ocean Wonders, USA), PVC and Portland cement (HardieBacker,

USA). CaCO3 tiles were left at manufactured dimensions (3.2 cm x

3.2 cm) while PVC and Portland cement tiles were cut to 10 cm x

5 cm in size. Preliminary attachment experiments suggested that the

creation of small crevices improved attachment success, and we

therefore fabricated crevices that were 2 mm deep and 1 mm wide

with 2.5 cm spacings and 2 crevices per substrate using a handsaw.

To ensure sufficient gas and nutrient exchange between the

micropropagates and the ambient water and to provide replication,

we developed 18 laminar flow chambers (LFCs) (12 cm x 6 cm x

3 cm). These LFCs were designed using CAD software (OnShape)

and 3-D printed (PRUSA MK4 3D Printer) using black PLA

filament. LFCs were fitted with laminar flow dividers (6 cm x

3 cm) that were laser cut from acrylic paneling. The LFCs were then

placed on top of holding tanks filled with 10 liters of FSW (35 ppt)

that provided flowthrough aerated seawater at a laminar flow

velocity of 1 cm s-1. Flow velocity was measured via tracking the

movement of small particles in the water. The water temperature

was set to 25°C via a submersible aquarium heater (EnjoyRoyal,
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USA). Tiles were deployed in the LFCs 3 days prior to

micropropagate attachment.

To facilitate attachment to the restoration substrates, 7

micropropagates were carefully dispersed within the crevice of

each tile. Attachment experiments were performed with a total of

6 tiles distributed over 3 tanks per treatment (PVC, CaCO3,

Portland cement) , result ing in a total of 126 tested

micropropagates in 18 laminar flow chambers. Experiments were

performed with FSW at 25°C, 35 ppt salinity, and an incident

irradiance of 100 mmol photons m-2 s-1 (10hr/14hr light-dark cycle).

To maintain salinity levels, FSW was manually added to

compensate for any evaporative losses. Attachment experiments

were performed only with healthy micropropagates, as defined

based on morphological characteristics and Fv/Fm values > 0.3

(see above). Attachment was observed for 7 days and categorized as

attached, detached or degraded (polyp lysis).
Micropropagate growth rate

To determine the growth rate of attached micropropagates, close-

up images were taken over 14 days using a stereoscope (Olympus

SZ61, Japan). To minimize physical disturbance, images were taken

directly in the LFCs. Lateral tissue growth was approximated using

ImageJ (version 1.53, USA) by manually segmenting the planar

surface area (SA, mm2) covered by coral tissue. The growth rate of

micropropagates was analyzed as the % change in the SA of the

micropropagates over a 14-day growth period.
Optical coherence tomography imaging
and substrate characterization

Optical Coherence Tomography (OCT) imaging was used to

non-invasively characterize the surface structure of the artificial

substrates and the attachment of coral micropropagates. OCT

imaging was performed as described previously (Wangpraseurt

et al., 2017, 2019b) using a Ganymede spectral domain OCT

system (GAN311C1, 930 nm) with an axial resolution of 5.5 µm,

an imaging depth of 2.9 mm and a lateral resolution of 8 µm (in

air). Briefly, bare substrates were imaged in a black acrylic

chamber filled with seawater. To calculate surface roughness, 3D

OCT images were binarized in ImageJ (NIH, Bethesda, MD) and

imported into Matlab (Mathworks, Natick, MA) as a tiff stack. The

voxels on the surface of the substrate were identified as the binary

voxel closest to the probe for each stack of voxels. Then the surface

voxels were fit to a plane by simple linear regression. The

difference between the surface and the best-fit plane was

calculated for all points. Surface roughness is reported as the

mean difference between the surface and best-fit plane for each

sample (Equation 2).

Ra =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(x, y, z) − t(x, y, z)

p
(2)

Wherein Ra is surface roughness, S(x,y,z) is the surface, and t(x,

yz) is the best-fit plane.
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Statistical analysis

All statistical analyses were performed using Origin Pro (2023)

and Microsoft Excel (2022). We used an alpha level of 0.05 to

determine statistical significance.
Results & discussion

Hypersalinity-induced micropropagates

We successfully generated viable S. pistillata bailed polyps

using a simple evaporation-based hypersalinity gradient

(Figure 1A). These bailed polyps looked intact at salinity rates

of 0.9 ppt/hr or less, while tissue disintegration occurred at faster

rates (Figure 1A). At a salinity increase rate of 0.9 ppt/hr, > 82% of

micropropagates appeared healthy as indicated by intact tentacles,

stomach and mouth opening (Figure 1A). Variable chlorophyll a

fluorescence imaging revealed no significant difference in the

maximum quantum yield (Fv/Fm) of photosystem II (PSII) of

micropropagates compared to intact coral fragments (0.45 ± 0.04

vs. 0.47 ± 0.08; ANOVA, p = 0.208; Figures 1C–E). The sequence
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of morphological changes over the salinity gradient was

reproducible and we typically observed polyp retraction when

salinities of 44-46 ppt were reached, which was followed by the

separation and thinning of the coenosarc at about 48-51 ppt, and

total separation of polyps from the connecting tissue and skeleton

at about 52-56 ppt. This process resulted in the total bailout of

polyps after a period of 24-26 hours.

Our study builds upon the work of Shapiro et al. (2016), which

demonstrated that two other Pocilloporidae coral species

(Pocillopora damicornis and Seriatopora hystrix) responded to

hypersalinity stress with viable polyp bailout. However, our study

developed a simple and replicable method protocol for inducing

polyp bailout in S. pistillata. Consistent with Shapiro et al. (2016),

we observed polyp bailout occurring at salinity levels 17-21 ppt

above that of ambient seawater. It is noteworthy that, in contrast to

previous observations in P. damicornis, the induction of viable

micropropagates in S. pistillata required agitation and water

circulation, presumably to alleviate hypoxic stress during darkness

(Wangpraseurt et al., 2012). The similarities in polyp bailout

responses across P. damicornis, S. hystrix, and S. pistillata suggest

that this may be a common response to hypersalinity stress in

corals, or at least within the Pocilloporidae family.
FIGURE 1

Stylophora pistillata micropropagate viability (A, B) Generated micropropagates in response to evaporation-based hypersalinity gradients (scale bar =
1 mm). (C, D) Representative images of the maximum quantum yield (Fv/Fm) of photosystem II (PSII) of healthy coral fragments and generated coral
micropropagates following 26 h of hypersalinity treatment (scale bar = 0.5 cm). (E) Histogram of Fv/Fm of healthy S. pistillata polyps from intact
fragments (dark blue) and generated micropropagates (red) induced via a salinity gradient of 0.9 ppt/hr (n= 20 polyps).
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Micropropagate attachment to coral reef
restoration substrates

The use of coral micropropagates for restoration has been

hampered by the inability of micropropagates to successfully

attach and grow over extended periods of time (Schweinsberg

et al., 2021). Here, we developed a simple attachment device that

uses an aerated, laminar flow-through system equipped with

micropropagate chips (Figures 2A–D, see methods) to

successfully induce attachment of S. pistillata bailed out polyps.

We evaluated the suitability of commonly used restoration

materials, including CaCO3, PVC, and Portland cement as

micropropagate chip substrates (Adey and Michael Vassar, 1975;

Boström-Einarsson et al., 2020; Levenstein et al., 2022). CaCO3 is

often used as a substrate in coral gardening efforts and is a preferred

substrate as it is also the building material of coral skeletons
Frontiers in Marine Science 05
(Levenstein et al., 2022). PVC-based substrates have been

extensively used in coral nurseries and the formation of AR

frameworks, due to their low cost and ease of installation (Mallela

et al., 2017). Likewise, cement serves as an inexpensive and scalable

substrate that has become increasingly popular in the development of

ARs (Burt et al., 2009; Boström-Einarsson et al., 2020). We found

significant differences in settlement and attachment rates between

CaCO3, PVC and Portland cement using our custom-made

micropropagate attachment device (Two-way ANOVA, p = 2.39E-

10 (Figures 2A–D). The highest attachment rate was observed for

CaCO3 (73.81% ± 10.7%) which was > 15-fold higher compared to

Portland cement (4.76% ± 7.38%) and about 1.4-fold higher than for

PVC (47.62% ± 11.66%, Figure 2E). For the first seven days,

micropropagate degradation was highest for Portland cement

(71.4% ± 12.8%), which was nearly 5-fold greater than for CaCO3

(14.2% ± 9.1%) and 10-fold greater compared to PVC (7.1% ± 12.0%,
FIGURE 2

Attachment of micropropagates to restoration substrates. (A–D) Micropropagate chip device. (A, B) Schematic and image of the 3D printed acrylic
chambers. Slow, laminar flow of aerated seawater is delivered to the micropropagates. Crevices (1 mm in width and height) facilitate tissue
attachment. (C) Example 3D optical coherence tomography image of attached micropropagate and (D) image of entire recirculating system.
(E) Micropropagate attachment success for chips made from Portland cement, PVC and CaCO3.
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Figure 2E). Together, these results underscore the importance of

material choice for optimizing attachment success of micropropagates.

We hypothesized that the observed differences in attachment success

are related to surface roughness and substrate microarchitecture

(Fujiwara et al., 2022). We therefore used OCT, an optical analog to

ultrasound (Jaffe et al., 2022), to characterize the 3D surface structure of

restoration substrates with micrometer resolution. We found no clear

relationship betweenmicroscale surface roughness (Ra, seemethods) p =

0.287 and attachment success, (Figure 3D, Supplementary Figure S1). Ra
was highest for CaCO3 (18.5 mm ± 1.3 SE) which was 1.5-fold higher

compared to Portland cement (12.2 mm ± 1.5 SE) and about 6.5-fold

greater than for PVC (2.8 mm ± 0.3 SE) (Figures 3A–D). Although it is

known that larger roughness elements (e.g. mm scale crevices, Randall

et al., 2021), provide protection and can enhance attachment success in a

flow-driven environment, smaller roughness elements analyzed in this

study (Ra < 20 mm) did not affect micropropagate performance. These

results suggest that other factors have a more prominent role in

modulating attachment success and micropropagate degradation

within the scope of our experiment. For instance, Portland cement is

known to be highly alkaline (pH ~13, e.g. Guilbeau et al., 2003) and such

enhancements in surface pH could have negative effects on coral growth.
Micropropagate tissue growth
and healthiness

Using our micropropagate chip device, we successfully created

growing micropropagates on PVC and CaCO3 chips (Figures 4A–I).
Frontiers in Marine Science 06
We observed the highest growth rate of micropropagates on PVC

(0.057 mm2 ± 0.008 SE) which was 1.5-fold higher than for CaCO3

(0.037 mm2 ± 0.002 SE, Figures 4E, H). In contrast, micropropagates

growing on Portland cement experienced significant tissue

degradation and did not grow laterally (Figures 4A, B). Variable chl

a fluorescence imaging revealed highest Fv/Fm values for day 7, day

14, and day 21 for micropropagates growing on CaCO3 (Day 7 = 0.49

± 0.06, Day 14 = 0.46 ± 0.09, Day 21 = 0.48 ± 0.08) which was nearly

1.5-fold higher than for PVC (Day 7 = 0.36± 0.04, Day 14 = 0.38 ±

0.03, Day 21 = 0.35 ± 0.05) and almost 2-fold greater compared to

Portland cement (Day 7 = 0.28 ± 0.04, Day 14 = 0.22 ± 0.06, Day

21 = 0.20 ± 0.3) (Supplementary Figure S2). Analysis of rETR showed

an increase in both the initial slope of the curve (a- light use

efficiency) and the rETRmax over time for CaCO3 and PVC,

eventually yielding rates similar to healthy control fragments

(Figures 4C, F, I). In contrast, micropropagates on Portland cement

did not recover and showed continuous loss of photosynthetic

potential over time (Figures 4C, Supplementary Figure S2).
Applications of coral micropropagates

The results of this study highlight the potential of the polyp

bailout approach to enhance the production of individual polyps,

underscored by the ability to generate viable and growing

micropropagates from a single small coral fragment (Figure 1). We

developed a simple, transferable method to generate and grow

micropropagtaes from S. pistillata in laboratory set-ups. Using a
FIGURE 3

Optical coherence tomography imaging and microstructural characterization of restoration substrates. (A) Portland cement (B) PVC and (C) calcium
carbonate substrates used in attachment experiments. Top view image (left, scale bar = 5 mm) and associated 3D OCT scan of area highlighted in
blue (middle). Analyzed 2D projections of the difference in distance between the tissue height and a plane fit to the tissue surface (right, scale bar =
100 mm). (D) Surface roughness (Ra) for the tested restoration substrates.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1454887
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Walton et al. 10.3389/fmars.2024.1454887
custom-made micropropagate chip device, our results suggest that

attachment and growth are substantially affected by substrate

material properties, whereby CaCO3- or PVC-based substrates are

more suitable than cement. Our study focused on the first month

after attachment, and material behavior as well as coral physiology

might change over time and affect these results within the first year

(e.g. Leonard et al., 2022; Yus et al., 2024). Additionally, the success of

this technique for coral outplanting and gardening applications will

strongly depend on competitive pressure from adjacent benthos.

Indeed, and similar to settled coral larvae, micropropagates may be

very susceptible to overgrowth by competitive macroalgae (e.g. turf

algae) (e.g. Lirman, 2000). Therefore, the choice of substrate should

also consider settlement and growth of competitive organisms

(Leonard et al., 2022). Another concern is the lack of genetic

variability of micropropagates, as it is an asexual mode of

propagation (Shearer et al., 2009). A potential approach is to use

micropropagates obtained by coral bail out in ex situ coral nurseries

(e.g. Vizel and Kramarsky-Winter, 2015) and leverage their rapid
Frontiers in Marine Science 07
initial tissue growth rate, similar to current microfragment cultivation

approaches (Mostrales et al., 2022). Outplanting of tissue-covered

chips, if economically viable, could then supplement the re-skinning

of artificial or hybrid reefs together with assisted sexual reproduction

(Koch et al., 2022; Roger et al., 2023a) and larval seeding approaches

(Dela Cruz and Harrison, 2020).

In conclusion, polyp bailout offers the potential for large-scale

production of viable micropropagates, representing a valuable addition

to coral propagation efforts. Future research should aim to assess the

performance of micropropagates produced through this technique

under different environmental conditions and how micropropagates

compare to other fragmentation techniques under in situ conditions.

This will contribute to a more comprehensive understanding of the

advantages and limitations of polyp bailout in the broader landscape of

coral restoration strategies. Additionally, due to their similar properties

to settled coral larvae, micropropagates can also be used as a suitable

model system for studying mechanisms that control post-settlement

mortality (e.g. competition, predation, detachment).
FIGURE 4

Growth rates and viability of settled coral micropropagates for (A–C) Portland cement, (D–F) PVC and (G–I) CaCO3 substrates. Microscope images
of morphological changes at day 7, 14 and 21 (A, D, G). Planar tissue surface area changes (mm-2) per micropropagate over 14 days (B, E, H). Best
fits (solid red line), 95% confidence intervals (red area), 95% prediction intervals (light red area) and average growth rates (GR) are shown (R2= 0.93,
0.93 and 0.99 for B, E and H, respectively). (C, F, I) rETR of micropropagates after 7, 14 and 21 days of cultivation in micropropagate chip set-up.
Control measurements (healthy fragments) were performed before bailout. On Day 21 at PAR of 492, CaCO3 = 19.5 ± 0.9, PVC = 18.9 ± 2.2,
Portland cement = 2.3 ± 2.5. Data are means ± SE (n= 45). Best fits (dotted and solid lines) are based on the Platt equation (see Equation 1).
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