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Knowledge of the reproductive biology of fishes is essential for effective fisheries

management. Information derived from an understanding of fish reproduction, such

as size and age at maturity, is used in models to assess fish stocks and can affect

estimates of important ecological processes such as recruitment, abundance, and

trophic interactions. Common practices for determining the reproductive status of

teleost fishes include macroscopic evaluation of gonads as well as histological

analysis. However, macroscopic evaluation can be biased and histological analysis

is time-consuming, resulting in limitations to spatial and temporal data availability.

Here, we explore Raman spectroscopy of ovaries as a novel approach to rapidly

determine the reproductive status of walleye pollock (Gadus chalcogrammus), a

commercially and ecologically important species in theNorth Pacific.We used a two-

stage partial least-squares (PLS) regression analysis followed by a linear discriminant

analysis (LDA) to classify walleye pollock ovary samples as physiologically mature or

immature and to subsequently predict their histologically-determined reproductive

stage based on the Raman spectra. Biologically mature samples with visible yolk

differentiated frommature and immature samples (non-yolked; 99% accuracy). Non-

yolked ovaries that were physiologically mature (either mature non-developing or

previously spawned) were further differentiated from physiologically immature

ovaries (93% accuracy). In addition, detailed, histologically-determined reproductive

stages of yolked samples also differentiated via Raman spectroscopy, but with

reduced accuracy (79% - 86% accuracy). Our results indicate that accurate

identification of maturity status and the reproductive staging of oocytes of walleye

pollock based on spectral data from ovaries is possible. This can provide a fast and

efficient way to increase the availability of a key component of reproductive data to

inform fisheries research and management.
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1 Introduction

Knowledge of the reproductive status of fishes is vital to the

successful management of fish stocks. Catch quotas are informed by

estimates of stock status calculated using spawning stock biomass

(SSB) or the proportion of the stock contributing to reproduction.

Estimates of SSB are obtained, in part, through the construction of

maturation schedules from field and laboratory-based observations

of ovarian development to estimate the proportion of

reproductively immature versus mature females in a stock or

population. In addition to providing estimates of spawning

potential, knowledge of reproductive strategy and the geography

and phenology, or timing, of spawning can greatly benefit our

understanding of interactions between a species and its

environment. Reproductive patterns in fish species, such as gonad

maturation and ovulation, are often tied to temperature thresholds

(Alix et al., 2020). In recent decades, climate-driven warming trends

have impacted fish distributions, growth rates, and spawning

phenology (McClure et al., 2023; Hollowed et al., 2013; Vitale

et al., 2006). Climate change will likely continue to affect fish

reproductive biology, increasing the need for tools that facilitate

efficient and accurate data collection to monitor ecologically and

economically important species.

Histological analysis, considered the most accurate tool for

identifying reproductive status (West, 1990), involves the

microscopic examination of ovary tissues which have been fixed,

stained, and mounted on a slide. This process allows for the

identification of microscopic structures related to ovary

development, such as seasonal maturation, to identify the

physiological maturity and reproductive status of oocytes within

an ovary. For this work, we focus on physiological maturity, defined

here as the advancement of immature fish prior to their first

spawning season to a mature fish that is capable of participating

in seasonal spawning through yolk acquisition and ovary

development (Brown-Peterson et al., 2011). As the ovary matures,

structural changes can be observed through histological evaluation,

including the development and increased complexity of oocyte

structures, magnitude increases in the size of oocytes, and

material accumulations such as lipid in the form of yolk.

However, histological processing is effort-intensive, requires the

use of hazardous chemicals, and incurs costly processing fees from

specialized laboratories. These factors often limit the temporal and

spatial coverage of data collected using this approach.

Spectroscopy is an emerging technology in ecological research

that may provide an efficient alternative to determine the

physiological maturity and reproductive status of fishes (Talari

et al., 2014; De Gelder et al., 2007). Ovary tissue, like most

biological tissues, comprises molecular structures that can be

measured using spectroscopic approaches: proteins, lipids,

carbohydrates, and RNA/DNA with levels that fluctuate

throughout development (Guraya, 1986). Several spectroscopic

techniques have been applied to ovarian tissue. For example,

Fourier Transform Infrared Imaging (FTIRI) has been used to

characterize macromolecular components such as lipids, proteins,

carbohydrates, and phosphates during ovarian maturation and

resorption (Carnevali et al., 2019). Fourier Transform near
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infrared (FT-NIR) spectroscopy was used to differentiate non-

spawning from spawning-capable fish (TenBrink et al., 2022).

Raman spectroscopy has been used to discriminate egg quality

and viability by tracking macromolecule fluctuations during specific

developmental stages post fertilization in fish (Ishigaki et al., 2016).

Of these approaches, none have yet been applied to track the

ovarian maturation process for ecological and fisheries

management applications.

In Raman spectroscopy, a laser is used to irradiate material,

which on contact, scatters a spectrum of light which is subsequently

measured. This provides a molecular “fingerprint” with patterns or

bands unique to the composition and configuration of the sample.

The intensity of the Raman scattering is proportional to this scatter

change and can be used to quantify chemical components of a

sample. An advantage of Raman spectroscopy is that it is less

sensitive to water than other spectroscopic techniques (Butler et al.,

2016). These features of Raman spectroscopy, combined with

portable instrumentation, rapid data collection (seconds to

minutes), and probe-based measurement capabilities, make it

uniquely suited to determine molecular constituents in biological

tissues and a promising tool to assess ovary maturation in the

laboratory or in situ.

In this study, we evaluate the potential for Raman spectroscopy

to provide information on the physiological maturity and

reproductive status of walleye pollock (Gadus chalcogrammus),

referred to as “pollock” hereafter. Pollock are a semi-pelagic,

schooling fish widely distributed in the North Pacific Ocean and

support lucrative commercial fisheries in the Bering Sea and the

Gulf of Alaska. Reproductive information used in pollock stock

assessments is based on macroscopic evaluation of gonads

(Monnahan et al., 2023; Ianelli et al., 2023; Williams, 2007).

Visual maturity estimates are collected at the point of capture and

used to estimate maturation status and spawning phenology.

Because pollock spawn in multiple batches each year, ovaries may

contain oocytes at varying levels of maturation and can be

challenging to stage macroscopically (Williams, 2007). While

macroscopic assessments of maturation allow for extensive data

collection, differentiating between immature, developing, and spent

fish is particularly difficult for this species. Misidentifying these

stages can impact the accuracy of maturation schedules used for the

estimation of SSB and management reference points (Flores et al.,

2019). Additionally, climate change is expected to exacerbate shifts

in pollock spawning behavior and phenology (Eisner et al., 2020;

Rogers and Dougherty, 2018; Kotwicki et al., 2005) which has the

potential to impact growth, survival, and recruitment (Cushing,

1990; Frank and Leggett, 1982).

This study tests the efficacy of Raman spectroscopy to

determine the maturation state (physiologically immature vs.

mature) and reproductive stage (ovary development progression

toward spawning) of pollock in efforts to improve data collection

efficiency and availability for the species. Hence, we address three

questions to evaluate the efficacy of this technology:
1. Based on biochemical changes in ovary development

associated with yolk formation, can Raman spectroscopy

be used to differentiate mature pollock ovaries with
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histologically visible yolk development (hereinafter referred

to as “yolked” ovaries) from pollock ovaries with little to no

visible yolk development (hereinafter referred to as “non-

yolked” ovaries)?

2. Ovaries with no yolk development can signify a biologically

immature fish, a fish that recently spawned, or a fish that

spawned in a previous year but lacks signs of development

in a current spawning season. These categories are often

misclassified using macroscopic approaches but can impact

estimates of SSB. Therefore, among non-yolked ovaries: can

immature and very early developing ovaries be

differentiated from mature, non-developing and mature

recently-spent ovaries based on the Raman spectra of

their oocytes?

3. Finally, can this tool differentiate among more advanced

yolked stages for informing ecological and spawning

phenology studies that require more detailed data on

reproductive status than stock assessment applications?
2 Methods

2.1 Fish collection and
laboratory preparation

Ovary specimens were collected aboard the NOAA ship Oscar

Dyson during acoustic-trawl pollock stock assessment surveys

conducted by the Alaska Fisheries Science Center’s Midwater

Assessment and Conservation Engineering (MACE) Program.

Samples were collected in the Gulf of Alaska (GOA) during February

and March 2017 (Figure 1; McCarthy et al., 2018). Ovaries were

removed from the fish, weighed to the nearest mg, placed in amesh bag

and preserved in 10% formalin. Few immature pollock were collected

during the MACE cruises, therefore, physiologically immature pollock,

which were collected and reared at NOAA’s Little PortWalter Research

Station (LPW) on Baranof Island, Alaska, were added to our
tiers in Marine Science 03
collections. Combined, these collections comprised a range of ovary

stages to encompass a balanced dataset representing all maturation

stages (Supplementary Figure 1).

In preparation for histological analysis, specimens were soaked

in multiple water baths to remove excess formalin, and a cross-

section of tissue from each ovary was processed and stained.

Specimens collected at LPW were stained using hematoxylin and

eosin (H&E) by Histology Consultation Services (Emerson, WA)

while specimens collected at sea were sent to Histologistics (Dudley,

MA) and stained with Schiff’s Mallory using periodic acid stains

(PAS). Staining aids in the microscopic identification of the

different stages of oocyte development and is particularly useful

for differentiating mature from immature ovaries during the non-

spawning season.
2.2 Reference data: histological analysis

Histologically determined reproductive stages were used as

reference data to analyze spectral patterns. Reproductive stages

were determined microscopically from histologically prepared

slides. We applied standardized terminology for staging from

Brown-Peterson et al. (2011). Histological images show examples

of advancing stages of maturation and the microscopic structures

seen within each ovary stage (Figure 2). Immature (IMM) fish are

those which have not reached first maturity. Developing stage

(DEV) fish show increased oocyte sizes, the development of

cortical alveoli and may include very early signs of yolk

development. Vitellogenic stages (VIT) include a further increase

in oocyte size and increasing yolk concentrations. During late

vitellogenesis, nuclear migration denotes the transition from yolk

accumulation to shifts in the composition of yolk in preparation for

spawning. The prespawning stage (PSWN) includes a brief period

in the annual cycle when yolk droplets and the nucleus break down

and coalesce. Hydration, or the rapid increase in size due the uptake

of water, marks the early spawning stage (SWN). As the spawning

season progresses through ovulation, oocytes are released from the
FIGURE 1

Map of transect line locations for the Alaska Fisheries Science Center’s acoustic-trawl walleye pollock stock assessment surveys and the location of
the Little Port Walter Research Station on Baranof Island, Alaska.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1455514
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Neidetcher et al. 10.3389/fmars.2024.1455514
follicles and there is a resulting increase in empty or post-ovulatory

follicles (POFs). The partial spent stage (PSNT) accounts for the

batch spawning strategy of pollock and occurs when both

vitellogenic stages and POFs are present. Spent stage (SNT)

ovaries are composed mostly of POFs and possibly a few atretic

yolk stages that failed to ovulate. Finally, mature but not developing
Frontiers in Marine Science 04
(MND) ovaries were identified as having spawned previously, but

showed no signs of development at capture. Pollock is a multi-batch

spawning fish and often has multiple stages of oocyte development

present concurrently (Supplementary Figure 2). For this work,

ovary stage assignments were made using the predominant oocyte

structures present as opposed to the most advanced oocyte structure
FIGURE 2

Images illustrate oocyte structures and components used to assign ovary maturation stages. Immature stage ovaries (A) are characterized by small,
tightly grouped previtellogenic oocytes. Resting or reproductively inactive ovaries (no development; B) are most often observed for the length of
time between spent and developing where the ovary appears inactive or with signs of late resorption and early perinuclear development. In
developing stage ovaries (C) oocytes enter the maturation cycle and begin to develop with cortical alveoli and early vitellogenesis (yolk
accumulation). During the vitellogenesis stage (D), yolk continues to accumulate and oocyte increases exponentially in size until nuclear migration
and yolk coalescence. An increase in yolk transformation and beginning signs of hydration identifies ovaries in the pre-spawning stage (E). The
spawning stage is defined with predominately hydrated oocytes with an increase in post ovulatory follicles (F). Partial spent stage ovaries (G) occur
when batches of oocytes are spawned and additional batched in less developed vitellogenic oocytes remain. Spent stage ovaries (H) contain
primarily post ovulatory follicles and yolked oocyte remnants in the process of resorption.
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(Neidetcher et al., 2014). This decision was made a priori because

Raman spectroscopy measures molecular composition, and

focusing on predominant structures rather than most advanced

should better reflect composition that might be measured in the

spectra. For yolked stage ovaries where multiple stages were present

at similar levels and the predominant stage was less clear, labeling

deferred to the more advanced structures. In addition, each

specimen was identified with either the presence or absence of

visible yolk development.
2.3 Spectra collection and processing

We acquired Raman spectral data from ovary tissue using a

Raman Process BallProbe® with a 780 nm laser and a wavenumber

range of 50-3300 cm-1 (MarqMetrix®) (Figure 3). A representative

subsample of tissue (< 1 g) was collected from a location adjacent to

the histology tissue sample for spectral data acquisition. These

tissue samples were collected from within each ovary and

excluded the ovary wall. The samples were soaked in deionized

water to remove residual formalin and because deionized water

does not interact with Raman scattering (Adiks et al., 2008). Raman

spectroscopy is not sensitive to sample mass (Butler et al., 2016);

however, for each sample, roughly 0.050 g of tissue (or if the ovary

was too small, as much tissue as could be collected) was placed in

the center of a 22 mm diameter quartz vial for spectral

interrogation. The laser power on the samples was 400 mW with

an exposure time of 1000 ms to optimize information versus noise.
Frontiers in Marine Science 05
Ten repeat measurements were collected, with the spherical

sapphire lens on the fiber optic probe touching the sample, and

averaged to create one representative spectrum per sample.

Fluorescent lights were turned off during Raman spectra collection.

Prior to data analysis, the Raman spectra were preprocessed.

We subtracted a blank spectrum (measured with >.6 m between the

probe and closest object) from each sample spectrum to eliminate

peaks due to the sapphire in the fiber optic probe (Raml et al., 2011).

Spectra were truncated into the fingerprint region (200-1800 cm-1)

and high frequency region (2600-3250 cm1). We then applied

extended multiplicative signal correction (EMSC) to normalize

spectra (Martens and Stark, 1991) and polynomial subtraction

using the modified polyfit method to remove fluorescent

background (Lieber and Mahadevan-Jansen, 2003). For the

fingerprint region, we parameterized EMSC and modified polyfit

with seventh-order polynomials. For the high frequency region, we

parameterized EMSC with a fifth-order polynomial and modified

polyfit with a third-order polynomial. Savitzky-Golay smoothing,

with a second-order polynomial and a window size of 25 points, was

applied to both regions to reduce unwanted noise in spectra

(Delwiche and Reeves, 2010).
2.4 Statistical analyses

We used principal component analysis (PCA) as an exploratory

analysis for data visualization and to identify spectral outliers.

Detection and elimination of outliers was performed based on
FIGURE 3

Image includes an example of specimen processing using the MarqMetrix® Raman instrument, the Process BallProbe® (on the right), a monitor
presenting spectral patterns, and specimenpresentation to the probe (inset).
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robust calculation of outlier limits (Pomerantsev and Ye Rodionova,

2014). Values that fell outside a significance level of 0.01 were

considered outliers and removed from the data set (n = 2).

We used a two-step analysis to classify samples as

physiologically mature or immature from their Raman spectra

and compare to histologically determined reference data. First, we

used a partial least-square (PLS) regression analysis followed by a

linear discriminant analysis (LDA) to classify yolked and non-

yolked samples (Boulesteix, 2004). A PLS regression is a

multivariate method commonly used in chemometric analysis for

dimensionality reduction and to linearize spectral data (Wold et al.,

1984; Boulesteix, 2004). In PLS, the independent (here, spectral

data) and dependent (here, yolk presence as determined by

histological analysis) data matrices are decomposed into a set of

scores and loadings (hereinafter referred to as latent variables). The

latent variables are then used as predictors in LDA. This approach is

preferable to applying other multivariate techniques such as PCA

for dimension reduction prior to LDA because PLS maximizes

covariance between independent and dependent variables. LDA

performs well on a smaller number of uncorrelated variables

(Dudoit et al., 2002). In LDA, the independent variables (here,

latent variables from PLS) are assumed to have normally distributed

probability density functions with respect to the dependent variable.

Yolked v. non-yolked membership is determined from the class

with maximum posterior probability. All samples classified as

yolked in the PLS-LDA were considered biologically mature.

Second, we applied a PLS-LDA to classify the non-yolked samples

as either physiologically mature (if histology indicated it was MND

or SNT) or immature (if histology indicated it was IMM or DEV).

To evaluate the ability to further predict the spawning progression

of pollock ovaries with visual yolk development from their Raman

spectra, we used a PLS-LDA to classify yolked specimens to their

histologically determined reproductive stage (VIT, PSWN, SWN,

and PSNT). While visible yolk at barely discernible levels may be

seen in DEV ovaries and in small amounts of residual, yolked

oocytes in SNT ovaries, yolk occurs in these stages at minute levels

compared to the yolk contained in VIT, PSWN, SWN, or PSNT

ovaries we maintain their characterization as non-yolked.

Variable importance in projection (VIP) scores were calculated

for each wavenumber to identify the spectral regions most

important for classification in each model (Goldstein et al., 2021).

The calculation of VIP includes the covariance between

independent and dependent variables and reflects how much a

variable contributes to describing both independent and dependent

data (Andersen and Bro, 2010). A VIP score describes the relative

importance of the dependent variable in predicting the independent

variable (i.e. yolk presence or absence). Using a threshold of one,

VIP scores were used to identify wavenumbers most important for

prediction (VIP score > 1) (Lazraq et al., 2003), however all

wavenumbers were included in predictive models.

Cross-validation was used to determine the optimal number of

latent variables (Boulesteix, 2004) and the predictive ability of the

three models on new data. In cross-validation, one sample was

systematically left out, and a PLS-LDA applied to the remaining

samples. The parameter estimates were then used to estimate the

classification of the left-out sample. Model predictive ability on new
Frontiers in Marine Science 06
data was then estimated based on several metrics that compare

model-based classification to traditionally determined reference

data from histological analysis.

For all categories, we report specificities, or the accuracy of

rejecting a sample from an incorrect category, sensitivities, or the

accuracy of assigning a sample to the correct category, and overall

balanced model accuracy. Balanced accuracy (henceforth referred

to as accuracy) was used due to unequal sample sizes in each class,

and is a summary metric calculated as the average between

sensitivity and specificity for each model. Area under the receiver

operating characteristic curve (AUC) is also reported as an

evaluation of model performance across all possible classification

thresholds. It is calculated as the area under the curve of True

Positive Rates plotted against False Positive Rates, and a value of 1

represents perfect classification. Multiple metrics are calculated and

compared to robustly evaluate model performance. Data analysis

was conducted in R statistical computing software version 4.1.0 (R

Core Team, 2021), with packages mdatools (ver. 0.11.5,

Kucheryavskiy (2020), https://github.com/svkucheryavski/

mdatools), plsgenomics (ver. 1.5-2, Boulesteix et al. (2018), see

https://CRAN.R-project.org/package=plsgenomics), and mixOmics

(ver. 6.26.0 Gautier et al. (2017), see http://mixomics.org/).
3 Results

In total, n = 226 specimens were analyzed to evaluate the utility

of Raman spectra in classifying pollock as physiologically immature

or mature and differentiating yolked reproductive stages (Table 1).

The wavenumbers most important for classification (VIP>1) in

each model are summarized in Supplementary Table 1.
3.1 Maturity status

The Raman spectra of physiologically mature ovaries with

yolk development were differentiable from the spectra of ovaries

with little to no yolk development (Figure 4A). Spectral data

showed clear separation between yolked and non-yolked samples

along latent variables (LV) 1 and 3 from PLS used for

dimensionality reduction (Figure 5A). The optimal number of

latent variables from PLS was 8, which explained 96.34% of

variance in the spectral data matrix and 88.72% of variance in

the response data (here, yolked vs. non-yolked). Using these 8

latent variables, all but two samples were correctly classified in the

LDA (92.8% accuracy, AUC = 0.98 (Table 2). Wavenumber

regions 450-558, 776-818, 838-851, 1192-1214, 1296-1426, 1474-

1510, 1582-1628, 1751-1778, and 2794-2831 cm-1 contributed

substantially to variation in spectra related to the response

variable (VIP > 1) (Figure 4A, Supplementary Table 1). All

samples classified as yolked were considered mature.

The Raman spectra of mature but non-yolked ovaries (MND or

SNT) were differentiable from the spectra of non-yolked immature

ovaries (IMM or DEV) (Figure 4B). There was separation between

non-yolked immature and mature ovaries along LV1 and LV2
frontiersin.org
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(Figure 5B). The optimal number of LVs from PLS used for LDA

was 5, which explained 95.03% of variance in the spectral data

matrix and 71.09% of variance in the response data (here, mature vs.

immature). Of samples classified as non-yolked, 98.0% of mature

samples were correctly classified by PLS-LDA and 88% of immature

samples (92.8% accuracy, AUC = 0.98) (Table 2). Wavenumber

regions 437-553, 666-755, 770-784, 873-924, 1062-1130, 1242-1299,
Frontiers in Marine Science 07
and 1455-1465 cm-1 contributed most substantially to variation in

spectra related to the response variable (VIP > 1) (Figure 4B,

Supplementary Table 1). Overall, 43 out of 50 (86.0%) total

biologically immature samples and 175 out of 177 (98.9%) total

physiologically mature samples were correctly classified and

classification accuracies all exceeded the No Information

Rate (Table 2).
FIGURE 4

Raman spectra preprocessed with extended multiplicative scatter correction, polynomial subtraction, and Savitzky-Golay smoothing shows variable
intensity per maturity over VIP regions. The left column shows all spectra and the right column shows average spectra and standard error for (A)
yolked vs. non-yolked samples, (B) the maturity status of samples predicted as non-yolked, and (C) the finer scale stage progression for samples
predicted as yolked. Wavenumbers identified as important for projection (VIP score > 1) with respect to the response variables are shown highlighted
in the white spaces. All other wavenumbers are grayed out (VIP scores < 1).
TABLE 1 Sample distribution by fish fork length in 5 cm length bins per histologically determined ovary stage immature (IMM), developing (DEV),
vitellogenic (VIT), pre-spawning (PSWN), Spawning (SWN), partial-spent (PSNT), spent (SNT), mature not developing (MND).

Length IMM DEV VIT PSWN SWN PSNT SNT MND Total

15 2 2

20 9 9

25 6 6

30 21 21

35 4 4

40 1 5 5 1 3 7 8 30

45 7 26 19 18 18 10 11 109

50 9 4 8 4 3 4 32

55 1 2 2 2 7

60 1 3 2 6

Total 42 8 41 29 32 27 24 23 226
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3.2 Yolked stage progression

There was less differentiation in Raman spectra among yolked

samples that were a priori grouped by histologically determined

reproductive stage. Progression in stages with yolk present was

visible along LV1 and LV5, especially for SWN and PSNT samples,

but with overlap among stages (Figure 5C, Supplementary

Figure 3). The optimal number of LVs from PLS was 9, which

explained 94.90% of variance in the spectral data matrix but only

42.63% of variance in the response data. The highest classification

accuracy was for PSNT samples (86.0% accuracy; AUC = 0.92)

followed by SWN samples (85.0% accuracy; AUC = 0.93) and VIT

samples (85.1% accuracy; AUC = 0.95) (Table 2). The PSWN

samples had the lowest classification accuracy (78.9% accuracy;

AUC = 0.90). Wavenumber regions 324-339, 422-528, 1573-1587,
Frontiers in Marine Science 08
2873-2877 cm-1 contributed most substantially to variation in

spectra related to the response variable (VIP > 1) (Figure 4C,

Supplementary Table 1).
4 Discussion

Fish maturity information is an essential metric for stock

assessment. Efficient data collection tools would further advance

fisheries management by expanding the capacity to collect maturity

data and track climate-associated spatial and temporal shifts in

spawning and maturity (Rørvik et al., 2022; Rogers and Doughtery,

2018; Kjesbu et al., 2014). Application of Raman spectroscopy to

assess pollock maturity indicates that this approach is an effective

alternative to laborious histological approaches, and provides
TABLE 2 The proportion of correctly predicted samples relative to total sample size, the sensitivity (true positive rate), the specificity (true negative
rate), the balanced accuracy, and area under the curve (AUC) relative to the no information rate of the model predictions from cross validation.

Analysis Class Proportion Sensitivity Specificity Balanced
Accuracy%

AUC No
information rate

Yolk presence non-yolked
yolk present

95/96
129/130

0.99 0.99 99.1 0.99 0.58

Non-yolked:
Maturity status

immature
mature

43/49
46/47

0.88 0.98 92.8 0.98 0.51

Yolk: Progression vitellogenic
prespawning
spawning
partial spent

33/41
20/29
23/32
21/26

0.80
0.69
0.72
0.81

0.90
0.89
0.98
0.91

85.1
78.9
85.0
86.0

0.95
0.90
0.93
0.92

0.32
0.32
0.32
0.32
Results shown as proportions of total samples.
FIGURE 5

Scores on latent variables with 95% confidence ellipses shown from partial least squares dimensionality reduction for (A) yolked vs. non-yolked
samples, (B) the maturity status of samples predicted as non-yolked, and (C) the spawning phenology of samples predicted as yolked. The latent
variables with the most differentiation by response variable are shown for each analysis.
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additional insight beyond macroscopic maturity assessments.

Raman spectroscopy was successful at identifying yolked and

non-yolked individuals, and subsequently discriminating between

non-yolked immature and mature individuals. This is an

improvement over gross visual approaches that frequently

misidentify non-yolked immature and non-yolked mature

specimens (Williams, 2007). Given that correct classification of

mature and immature individuals is central to estimating spawning

stock biomass in stock assessments, employing Raman spectroscopy

in this context could improve both the quantity and quality of

maturity data available for stock assessments.

Several spectral regions identified as important (VIP > 1) for

differentiating between yolked and non-yolked specimens are

associated with molecular components that fluctuate with oocyte

maturation (Guraya, 1986). Pollock ovaries, comprised of lipids,

proteins, and carbohydrates, vary by maturation stage (Gorbatenko

and Lazhentsev, 2016). Lipid and protein values in ovaries peak at

the advanced yolked stages and are lowest in post-spawning fish

(Gorbatenko and Lazhentsev, 2016). This coincides with our results,

which showed higher Raman intensity for yolked compared to non-

yolked ovaries in regions associated with proteins and lipid fatty

acids (Figure 3, Table 3). Spectral band regions for yolked ovaries

also showed a higher intensity in bands associated with glucose and

saccharides, which are involved with energy storage (Mishra and

Joy, 2004), and tryptophan, which is associated with yolk

coalescence in ovaries (Sahu et al., 2020). The spectra of non-

yolked samples show higher intensity in broad, overlapping regions

that correspond to polysaccharides, RNA, DNA, glycogen, collagen,

Amide II, and phospholipids (Figure 3, Table 3), and are consistent

with high levels of these molecules in non-yolked fish ovaries

(Guraya, 1986). These molecular associations suggest that spectra

are capturing differences between yolk and non-yolked stages that

we would expect based on previously observed physiological and

macromolecular changes in ovaries.

Compared to the large variation in the spectral data between

yolk and non-yolked samples, non-yolked stages of immature,

developing, spent, and mature-not-developing showed

considerably less variability in their spectra. This is not wholly

unexpected given relative dearth of fatty acids, which were critical to

distinguishing yolked from non-yolked ovaries. While perinuclear

(i.e. pre-yolk) oocytes are present in all maturation stages, immature

ovaries contain only perinuclear stage oocytes and are differentiated

histologically from mature non-yolked ovaries by a tighter packing

configuration of the oocytes in the ovary and a thinner ovary wall.

In addition, immature ovaries lack oocyte and follicular remnants

which are present at varying levels of resorption in spent and

mature non-yolked stages. The follicular envelope and the zona

pellucida develop from a single layer of squamous cells into a multi-

layered structure. Levels of polysaccharides, glycoproteins,

carbohydrate-protein matrix or protein and polysaccharide

combinations change throughout development and differences in

Raman spectra are associated with these molecular changes

(Guraya, 1986). At ovulation, the follicle ruptures as a result

structural changes and fluid uptake during hydration. The

remaining post-ovulatory follicle and residual unspawned oocytes

are broken down through apoptosis and are seen at varying levels of
Frontiers in Marine Science 09
resorption. These atretic POFs and remnant oocytes delineate spent

stage ovaries. Given that these processes occur gradually and often

in concert, sub-classification of non-yolked stages by Raman

spectroscopy shows great promise, particularly in successfully

differentiating between immature and mature non-yolked ovaries

with 98% accuracy.

Compared to the classification success of yolked vs. non-yolked

and non-yolked stages from our first two tests, classification of

yolked progression was considerably less accurate. However,

accuracy still exceeded 75%, suggesting that Raman spectroscopy

can be used to rapidly assess shifts in spawning phenology, albeit

with increased uncertainty. Raman spectroscopy could be

particularly useful in assessing yolk progression when fixing and

transporting samples in formalin is not feasible due to its hazardous

nature. Additionally, alternative methods of reference data

collection such as detailed oocyte composition using microscopic

Raman may improve calibration models potentially increasing

classification accuracy. Similar to the examination of yolked v

non-yolked and the non-yolked stages, wavenumber regions that

are correlated with yolked stage progression were associated with

changes in the oocyte and molecules that are relevant to

reproductive development, such as increased blood supply in

vitellogenesis and higher levels of lipid, protein, and collagen

during the spawning stage (De Gelder et al., 2007). This suggests

Raman spectroscopy is measuring molecular changes during oocyte

development and the reduced ability to classify stages may simply

reflect the continuous, rather than categorical, process of ovary

maturation. Greater overlap in the spectra suggests reduced

molecular variability among yolked stages. This may also be due

to the batch spawning strategy of pollock where multiple batches of

oocytes at different levels of maturation may occur in the ovary at

the same time. While the determination of reproductive stage

progression from Raman was less accurate than determining

maturity status, the approach shows substantial promise and

highlights the possibility for more detailed maturity information

such as phenological shifts to be incorporated into long-term and

large-scale maturity datasets.
5 Conclusion

The results of this study suggest that Raman spectroscopy can

be used as an effective tool in differentiating 1) yolked from non-

yolked stages and 2) immature fish from mature fish. These results

alone provide the ability to rapidly update outdated maturity ogives

(proportion of mature fish at age or length), which is a critical data

input for stock assessments. Further research is needed to identify

specific molecular constituents, functional groups, and relevant

spectral bands to further improve yolked stage subclassification

based on Raman spectra, but initial results are promising (≥ 78.9%

accuracy). Our results also suggest that Raman spectroscopy may be

used as a tool to monitor more dynamic changes in fish

reproductive processes allowing researchers to track shifts

associated with location, timing, and periodicity of spawning

marked by the presence of later-stage yolked oocytes, partially

spent ovaries and potentially skipped spawning. Climate-change
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TABLE 3 Descriptions of the maturity stage histology, physiology, and prominent molecular shifts that occur during maturation.

Macro-
molecular
components

VIP Spectral
region Q1

VIP Spectral
region Q2

VIP Spectral
region Q3

DNA/RNA
Organelle
development

450-558
776-818
Amino Acids, RNA/
DNA, glycogen,
Collagen

1192-1214 nucleic
acid, Amide III
protein group,

1296-1426
CH2,CH3; collagen,
fatty acid, Amide III,
lipid

1476-1510
Amino acids, DNA,
Amides

838-851
Amino acid, glucose,
saccharides (5)

1582-1628
Amino acids. Amide
I, protein

1751-1778
lipid, fatty acid

2794-2831
lipid and protein

439 -549
DNA/RNA

.668 - 712
Phospholipid
Collagen
Carbohydrate
Protein

875 - 918
Lipid
Amide
Triglyceride
Collagen

1254 - 1305
1430-1450

deformation CH2,
CH3
lipids

1605 - 1690
Phenyl groups
Amide I
Lipids

422-428
Phospholipid
Cholesterol (lipid)

495-528
glycogen, disulfide
stretching of protein and
collagen

1573-1638: nucleic acids
in tissue, amino acids,
Amide I, RBC

2872-2886 lipids and
proteins

1397-1428
Amide II
AmideI

h
a

A lack of oocyte
development,
presence of

ulation
Structural protein
collagen

Protein and lipid
increase in
yolk accumulation

Protein pyrolysis

post Uptake water

post- Follicle atresia
combined with
yolk accumulation

h few Follicle atresia

The physiology column describes changes that occur in the composition of oocyte structures and accumulations that occur
gions and corresponding molecule assignments available through prior research reviews (Talari et al., 2014) highlight areas of
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Staging
(maturation
sequence)

Q 1
yolk vs.
non yolk

Q 2 mature vs.
mature,
not developing

Q 3
yolked
progression

Physiology

Immature No yolk Immature Chromatin to perinuclear stage

Mature
Not Developing

No yolk Mature Not Developing Perinuclear stage oocytes interspersed wi
follicle remnants and miscellaneous tunic

Developing No yolk Mature Not Developing Perinuclear to cortical alveoli, oocyte
enlargement, potentially early yolk accum

Vitellogenesis Yolk Mature Vitellogenesis Oocyte growth with accumulation of yolk
droplets around the periphery to greatly
expanded with nuclear migration

Prespawning Yolk Mature Prespawning Coalescence; breakdown of yolk droplets

Spawning Yolk Mature Spawning Hydration, ovulation and the presence of
ovulatory follicles

Partial Spent Yolk Mature Partial Spent Ovulation event evidenced by presence o
ovulatory follicles along with vitellogenic
stages oocytes

Spent No yolk Mature Not Developing Predominantly post-ovulatory follicles wi
residual mature stages

Columns to the left show stage groupings per Question 1: yolk vs non-yolk; Question 2: Immature vs. mature; and Question 3: yolk progression
during maturation. Broad scale shifts in the molecular components of these changes are provided in the adjacent column to the right. VIP band re
overlap and an alignment with histology grouping and spectral patterns.
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impacts to the ecosystem will require efficient tools to monitor

important reproductive aspects of natural resources. Raman

spectroscopic methods show promise to meet those needs.
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