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Accurate identification of coastal hyperspectral remote sensing targets plays a

significant role in the observation of marine ecosystems. Deep learning is

currently widely used in hyperspectral recognition. However, most deep

learning methods ignore the complex correlation and data loss problems that

exist between features at different scales. In this study, Multi-scale attention

reconstruction convolutional network (MARCN) is proposed to address the

above issues. Firstly, a multi-scale attention mechanism is introduced into the

network to optimize the feature extraction process, enabling the network to

capture feature information at different scales and improve the target recognition

performance. Secondly, the reconstruction module is introduced to fully utilize

the spatial and spectral information of hyperspectral imagery, which effectively

solves the problem of losing spatial and spectral information. Finally, an adaptive

loss function, coupling cross-entropy loss, center loss, and feature space loss is

used to enable the network to learn the feature representation and improve the

accuracy of themodel. The experimental results showed that the effectiveness of

MARCN was validated with a recognition rate of 96.62%, and 97.92% on the YRE

and GSOFF datasets.
KEYWORDS
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1 Introduction

The near-shore area has become a priority area for marine

monitoring and environmental protection because of its unique

ecological environment and human activities. Remote sensing

technology is used for the identification and monitoring of nearshore

targets, allowing for the timely detection of environmental changes and

providing a scientific basis for effective management. Hyperspectral

imagery (HSI) occupies dozens or hundreds of consecutive bands and

records ground reflectance spectral information, providing a wealth of

discriminatory data for land use and land cover classification, which is

crucial for accurate target identification in these complex environments

(Peng et al., 2018; Liu et al., 2020; Duan et al., 2020a, b; Yue et al., 2021;

Xie et al., 2021; Gao et al., 2023a, b; Zhang X, et al. 2023; Chen et al.,

2023; Gao et al., 2023c; Liu et al., 2024; Yu et al., 2024). However,

achieving accurate target identification has been a challenge due to the

complexity of the nearshore environment. Existing nearshore remote

sensing target identification methods are mainly classified into

traditional image processing techniques and deep learning-

based methods.

Early nearshore remote sensing target recognition relied heavily

on traditional image processing methods. For instance, Zhao X, et

al. (2023) achieved accurate detection of hyperspectral time-series

targets in complex backgrounds using a sparse target perception

strategy based on spectral matching, combined with Spatio-

temporal tensor (STT) decomposition and ADMM optimization.

Similarly, Zhao J, et al. (2023) improved the HSI CEM target

detection algorithm (SRA-CEM) fully utilizing spatial pattern

information, and enhancing detection accuracy in defined

regions. Building on this, Zhang et al. (2021) proposed the

Bayesian constrained energy minimization (B-CEM) method

addresses the challenge of obtaining reliable a priori target

spectra, improving detection reliability. Similarly, Chang et al.

(2023) proposed the Iterative spectral spatial hyperspectral

anomaly detection (ISSHAD) method enhances anomaly

detection performance through an iterative process, further

refining detection capabilities. Additionally, Cheng et al. (2022)

method, based on low-rank decomposition and morphological

filtering (LRDMF), employs superpixel segmentation and sparse

representation models to create a robust background dictionary

while morphological filtering preserves small connected

components. Despite these advancements, these traditional

methods often struggle in complex multi-scale nearshore

environments, highlighting the need for more robust approaches.

In contrast, deep learning methods offer significant advantages in

feature extraction. Makantasis et al. (2015) utilized Convolutional

Neural Networks (CNNs) to encode hyperspectral image pixels with

both spectral and spatial information, followed by classification using

a Multilayer perceptron (MLP). Niu et al. (2018) enhanced a

Deeplab-based framework to extract multi-scale features, mitigating

spatial resolution loss. Li et al. (2022) proposed a two-branch

Residual neural network (ResNet) to extract both spectral and

patch features. Mei et al. (2017) proposed a five-layer CNN (C-

CNN) for hyperspectral image feature learning. Lee and Kwon (2017)

introduced contextual deep CNNs to optimize local spatial-spectral

interactions. Zhang et al. (2018) developed the Diverse Region Based
Frontiers in Marine Science 02
CNN, leveraging inputs from various regions to enhance

discriminative capabilities. Zhang et al. (2020) improved 3D-CNN

to fully utilize spectral and spatial information.

Gao et al. (2024) introduced an adaptive local feature processing

module, enhancing feature representation through adaptive shape

diversity and neighborhood aggregation. Tan et al. (2024) proposed

the Multi-scale diffusion feature fusion network (MDFFNet) for

spectral-spatial learning using diffusion models and multi-scale

fusion. Shen et al. (2021) suggested extending labeled sample sizes

using global spatial and local spectral similarity and reducing data

redundancy with extended subspace projection (ESP). Combined

with a Sparse representation classifier (SRC), this method optimizes

Hyperspectral image classification (HSIC) performance, though it

does not fully utilize null spectrum information.

Transformers introduced self-attention mechanisms (Vaswani

et al., 2017; Dosovitskiy et al., 2020), which have been highly

successful in target recognition applications. In the realm of HSI

classification, He and Chen (2019) were pioneers in utilizing Spatial

transformation networks (STNs) to optimize CNN inputs. To

address overfitting in CNN-based HSI classification, DropBlock

emerged as an effective regularization technique, surpassing the

popular dropout method in classification accuracy. Yang et al.

(2022) advanced this field by proposing the Multilevel spectral

spatial transform network (MSTNet), which leverages transformer

encoders to integrate multilevel features within an image-based

classification framework. This approach addressed key challenges

such as the underutilization of long-distance information, limited

receptive domain, and high computational overhead.

Building on transformer-based methods, Zhang W, et al. (2023)

introduced SATNet, an end-to-end change detection network using the

SETrans feature extraction module, a transformer-based correlation

representation module, and a detection module to enhance change

detection in HSIs by exploring spectral dependence. Arshad and Zhang

(2024) further developed the Hierarchical Attention Transformer,

combining the local learning strengths of 3D and 2D CNNs with the

global modeling capabilities of Vision transformers (ViT). He et al.

(2019) contributed to HSI-BERT to address limited perceptual range,

inflexibility, and generalization issues in HSI classification. Recently,

Xiaoxia and Xia (2024) proposed the deep spatial attention-based

convolutional capsule network (SA-CapsNet), which improves HSI

classification performance with an efficient spatial attention

mechanism and a convolutional capsule layer for stabilizing spectral-

spatial feature learning.

Attention mechanisms play a pivotal role in deep learning by

enhancing model focus on pertinent data features, thereby optimizing

task performance. However, the efficacy of deep learning models

hinges crucially on the design and application of appropriate loss

functions to guide training effectively. These functions not only

measure the disparity between predicted outcomes and ground

truth labels but also govern the convergence speed and ultimate

performance of the models during training.

For instance, Focal Loss (Lin et al., 2017) addresses class

imbalance by down weighting easily classifiable samples, thereby

enabling models to concentrate more on challenging samples,

consequently improving classification efficacy. Li et al. (2019)

introduced an adaptive weighting loss function that dynamically
frontiersin.org
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adjusts sample weights based on their difficulty, enhancing the

model’s capability to learn from hard-to-classify instances.

Additionally, Triplet Loss (Schroff et al., 2015) optimizes the

learning of embedding vectors by minimizing intra-class

distances while maximizing inter-class distances, beneficial for tasks

such as image retrieval and clustering. In the domain of

heterogeneous HSI classification, Jin et al. (2023) proposed Cross-

domain meta-learning with task-adaptive loss function (CD-

MTALF), leveraging transfer learning to mitigate the challenge

of limited labeled data in target domains. Addressing spatial and

spectral integration, Zheng et al. (2018) presented the Multiple

loss function network (MLFN), incorporating the Contextual

Deep Reconstruction network (CDRN) for hierarchical feature

extraction from low-resolution images, and the Loss network (LN)

employing pixel-wise spatial and spectral losses to guide model

learning effectively.

Despite the remarkable achievements of deep learning algorithms

in HSI recognition, they still face some challenges and limitations. In

many tasks, objects in images usually appear at different scales, and

there are complex correlations between features at different scales. By

introducing a multi-scale attention mechanism, the model can be

made to dynamically adjust the extraction weights of features

according to the information of different scales, which can help the

model to better capture such correlations, thus better adapting to the

objects at different scales, improving the feature characterization

capability, and enhancing the model’s ability to be robust to scale

and enhance the robustness of the model to changes in scale. Loss of

information is common in actual identification operations. Spectral

and spatial information are usually complementary to each other, e.g.,

spectral information in some specific bands may be crucial for the

identification of a certain category, while spatial information can help

the model to distinguish the texture information of different targets,

and the combination of the two can improve the accuracy of

identification. Therefore, MARCN employs the reconstruction

module to perform spectral information and spatial information

reconstruction operations on the original data, which enables

MARCN to better capture the data information. In addition, by

designing a multi-output loss function, the model is able to optimize

multiple tasks simultaneously during the learning process, which

helps to improve the generalization ability and comprehensive

performance of the model.

The main contributions of this work are summarized as follows:
Fron
1. The introduction of a multi-scale attention mechanism can

optimize the feature extraction process and facilitate the

capture of both local and global information in images,

resulting in an improved performance of the model.

2. Employing reconstruction modules can enhance the

model’s ability to better comprehend and utilize input

data, thereby ensuring that no information is lost.

3. Adaptive Loss Function: This network uses an adaptive

loss function, which can automatically adjust the size

and shape of the loss function according to the

characteristics of the input data. This design allows the

model to better adapt to different input data and improve

model performance.
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2 Convolutional networks based on
multi-scale attention reconstruction

The network proposed in this study is shown in Figure 1,

including Multi-scale attention residual block (MSARB),

classification module, reconstruction module, and customized

loss function.
2.1 Feature extraction module

As shown in Figure 2. The feature extraction module

implements both local and global attention mechanisms. The

local attention mechanism captures detailed information in the

feature map through smaller convolutional kernels, while the global

attention mechanism uses larger convolutional kernels to capture

information about a wider range of data. The combination of these

two attention mechanisms allows the network to focus on both the

local details and the global structure of the input features, thus

improving the characterization of the features. The combined

attention results are combined with the original feature map, and

the final classification results are derived after the central

classification and full connectivity operations.

2.1.1 Reduce the number of channels
The number of channels of the input feature map X is reduced

by a convolutional layer with a convolutional kernel of 1 × 1 to

minimize the computation and extract preliminary features:

X = Convnew(x) (1)

where Convnew denotes the new convolution operation for

reducing the number of channels.

Convolution operation is an operation to extract features by

sliding the convolution kernel over the input feature map and

performing the accumulation of dot products. For the input feature

map X and convolution kernel K, the convolution operation can be

expressed as:

Y(i, j) = (K*X)(i, j) =o
m
o
n
K(m, n) · X(i −m, j − n) (2)

where i, j denotes the location of the output feature map and

m, n traverses the size of the convolution kernel.

2.1.2 Localized attention
The first layer of the attention mechanism is applied to extract 5

× 5 local features. The local attention weights are computed by a

convolution operation and a Sigmoid activation function and

applied to the feature map:

Latt = s(Convlocal(x)) (3)

Xlocal = X⊙ Latt (4)

where Convlocal denotes the convolution operation of local

attention, s denotes the Sigmoid activation function, Latt is the local

attention weight, and ⊙ denotes element-by-element multiplication.
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Element-by-element multiplication is the multiplication of two

matrices with elements in the same position, which is useful when

applying attention weights

(A⊙B)(i, j) = A(i, j) · B(i, j) (5)

where A and B are two matrices of the same dimension.
Frontiers in Marine Science 04
2.1.3 Global attention
A second layer of attention is applied to extract 11 × 11 global

features. The global attention weights are computed by global

averaging of the input feature map, a convolution operation and a

Sigmoid activation function and applied to the feature map:

Gatt = s (Convglobal(mean(X, dim = (2, 3)))) (6)
FIGURE 2

Illustration for influence process of the proposed MARCN.
FIGURE 1

Illustration for the proposed MARCN, which includes multi-scale attention feature extraction module, classification module, customized loss
functions, spatial information reconstruction module and spectral information reconstruction module. SE is index selection, ATT is attention
mechanism, and MSARB is multi-scale attention feature extraction module, RSPAA is the spatial information reconstruction module and RSPEA is the
spectral information reconstruction module. Loss is the loss function used in training.
frontiersin.org
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Xglobal = X⊙Gatt (7)

wheremean(X, dim = (2, 3)) denotes the global averaging of the

dimensionality reduced input feature map X Convglobal denotes the

global attention convolution operation, s denotes the Sigmoid

activation function, and Gatt the global attention weight.

The Sigmoid activation function is used to map the input values

between 0 and 1 with the formula:

s (x) =
1

1 + e−x
(8)

It is typically used to generate weights or probability values

between 0 and 1.

2.1.4 Feature fusion
Finally, the results of local and global attention are fused to

obtain the final feature representation:

Xatt = Xlocal + Xglobal (9)

where, Xatt denotes the feature map that fuses local and global

attention. Convolution operation is performed on Xatt to obtain the

feature map K , the features of the middle pixels of K are extracted as

the query vector q. Matrix multiplication of K and the query vector

q is performed to obtain the attention weight W:

W = softmax
KT · qffiffiffiffiffi

ck
p

� �
(10)

where K and q are reshape and transpose, respectively, to fit the

shape of the matrix multiplication. Compute the weighted feature

map X1:

X1 =
AvgPool(Y ⊙W)
AvgPool(W)

(11)

where W repeats C0 times to resize Y along the channel

direction, C0 is the channel size, AvgPool denotes average pooling,

and ⊙ denotes element-by-element multiplication. Splicing X1 with

intermediate pixel features and going through the fully connected

layer yields the output y0.
2.2 Reconstructed module

The main function of the spatial information reconstruction

module is to enhance the spatial features of the input feature map.

Firstly, it checks whether the self-attention is initialized or not, after

that, the input feature map X is sampled and reconstructed to construct

the query, key and value required by the self-attention mechanism. The

self-attention mechanism obtains a weighted feature representation by

computing the similarity weighted values between the query and key.

This process helps the model to capture the global dependencies in the

input feature graph. In addition to the self-attention mechanism, the

spatial information reconstruction module processes the input feature

map through a convolutional layer, an operation that helps to capture

local feature information. Finally, the output of the self-attention

mechanism and the output of the convolution operation are

weighted and fused using rate1 and rate2 defined during
Frontiers in Marine Science 05
initialization. This preserves both global spatial information and local

detail information, thus enhancing the model’s ability to process spatial

features. The MSE loss used in RSPAA is defined as:

LRSPAA = o
B

b=1

‖yb − pb‖2 (12)

where yb is the original pixel, it can be obtained by extracting

the value of the center pixel directly from the input feature map X.

pb is the result of RSPAA, it is obtained through pooling and a fully

connected layer, and b is the batch size.

The main function of the spectral information reconstruction

module is to reconstruct and enhance the input spectral features. As

shown in Figure 3, by calculating the number of features selected to

retain a certain percentage, an equally spaced index array is generated

to select specific features from the input features. This selective feature

extraction can reduce the amount of data that the model needs to

process, thereby reducing the computational complexity. Attention

mechanism is introduced to further process the linearly transformed

features. The attention mechanism enables the model to focus on the

most important features, assign a weight to each feature by calculating

the similarity between the features, and then use these weights to

weight the features to obtain a weighted feature representation. The

features processed by the attention mechanism are fused with the

original linearly transformed features. This step is achieved by a simple

addition operation:

y← y + yattention (13)

This fusion helps to preserve the original features while introducing

features enhanced by attentional mechanisms, thus improving the

characterization of the features. This process is particularly critical for

improving performance in spectral image recognition tasks. The MSE

is used as the loss function and the original pixels are used as labels for

training. The MSE loss used in RSPEA is defined as:

LRSPEA = o
B

b=1

‖yb − pb‖2 (14)

where yb is the original pixel, it can be obtained by extracting

the value of the center pixel directly from the input feature map X.

pb is the result of RSPAA, it is obtained through pooling and a fully

connected layer, and b is the batch size.
2.3 Customizing the loss function

The training code mainly uses two loss functions: Cross Entropy

Loss and Center Loss, and the loss functions are described in

detail below.

2.3.1 Cross entropy loss
In deep learning, the cross-entropy loss function is widely used

in multi-category recognition tasks. Assuming that there are N

categories, for each sample, we represent its label with an N-

dimensional vector, where only one element is 1, indicating the

true category of the sample, and the rest of the elements are 0. The

output of the model is usually an N-dimensional vector processed
frontiersin.org
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by a softmax activation function, which represents the probability

that the sample belongs to each category. The cross-entropy loss

function is formulated as follows:

LCE = −o
M

c=1
yoc log (poc) (15)

where M is the total number of classes, yoc indicates the true

class, and poc is the predicted probability.

2.3.2 Center loss
The loss function of Center loss consists of two parts: softmax loss

and center loss, where the softmax loss is used for the recognition task,

and the center loss is used to constrain the distance between the feature

vector and the centroid, which is usually calculated by using the

Euclidean distance or cosine distance. The purpose is to make the

feature vector as close as possible to the centroid of its corresponding

category, so as to form a clear category boundary in the feature space

and improve the discriminative property of the features, and finally

achieve the compactness learning of the features by optimizing the

center loss, which in turn improves the recognition performance of the

model. The formula of the Center loss function is as follows.

LCenter =
1
2o

m

i=1
‖Xi − Cyi‖

2
2 (16)

where Xi is the depth feature of sample i, Cyi is the center of the

category to which sample i belongs, and m is the batch size. center

loss promotes intra-class compactness by minimizing the Euclidean

distance between a sample feature and its corresponding

category center.
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In summary, the network’s ultimate loss is.

L = LRSPAA + LRSPEA + LCE + lLCenter (17)

where l is a weight parameter used to balance the two losses. This

combination exploits the effectiveness of the cross-entropy loss in the

recognition task, but also enhances the differentiation of the features

through the Center loss, thus improving the performance of the model.
3 Experimentation and analysis

In this section, the Yellow River Estuary (YRE) and the Gaofeng

State Owned Forest Farm (GSOFF) hyperspectral datasets are used to

evaluate the effectiveness of the proposed MARCN. The GSOFF

dataset, as an extended dataset, is used to verify the generalization

ability of this algorithm. First, the YRE and the GSOFF datasets are

introduced, second, ablation experiments are conducted to verify the

effectiveness of MARCN, and finally, several state-of-the-art

conventional algorithms are used to compare with the proposed

MARCN algorithm to verify the efficiency of the proposed

algorithm MARCN.
3.1 Data sets

(1) Yellow River Estuary: The dataset was collected by GF-5

satellite over the Yellow River Delta in November 2018, with a data

size of 1,185 × 1,342 pixels. The spatial resolution of images is 30m.

The images have a spectral resolution of 5 nm, 150 spectral bands in
FIGURE 3

Description of the spectral information reconstruction module.
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the VNIR 0.40 ~ 1.00 µm range, 180 spectral bands in the SWIR

wavelength range of 1.00 ~ 2.50 µm, and a spectral resolution of 10

nm.1-2 near-infrared (NIR) bands, as well as 175-180, 172-173,

119-121, 96-115, and 42- 53 SWIR bands were shifted, leaving a

total of 285 bands. It has 20 wetland bands. Table 1 shows the

number of training and test samples. The pseudo-color and sample

distribution maps are shown in Figure 4.

(2) Gaofeng State Owned Forest Farm: In January 2018, the

GSOFF dataset was acquired using the AISA Eagle II diffraction

grating push-broom hyperspectral imager over the Gaofeng State-

Owned Forest Farm in Guangxi, China. This dataset features a spatial

resolution of 1m×1m and a spectral resolution of 3.3nm,

encompassing an image size of 572×906 pixels. The hyperspectral

data comprises 125 spectral bands spanning wavelengths from 0.4 to

1.0 µm. It includes nine different forest vegetation categories and

three additional categories. Table 2 details the number of training and

test samples, while Figure 4 presents the pseudo-color and sample

distribution maps.
3.2 Ablation studies

The purpose of the ablation experiments is to validate the feature

extraction module, reconstruction module, and loss function of the
Frontiers in Marine Science 07
proposed MARCN. The recognition performance is measured using

OA (Overall Accuracy). As shown in Table 3, there is a significant

improvement in the recognition accuracy after adding RSPAA and

RSPEA to HIS recognition. In MARCN, for the datasets YRE, the OA

increased by 1.82%. To verify the algorithm’s strong generalization

capabilities, we conducted an extended validation on the GSOFF

datasets, achieving a 0.49% increase in accuracy. Thus, the

effectiveness of RSPAA and RSPEA for hyperspectral image

recognition is confirmed.

In order to validate the effectiveness of the proposed multi-scale

attention feature extraction module, experiments are conducted with

the conventional convolutional MrCNN instead of the MARCN

module. From the experimental results, it can be seen that OA

increases by 5.56% on the datasets YRE. To test the algorithm’s

generalization, we performed an extended validation on the GSOFF

datasets, resulting in a 6.83% increase in accuracy. Therefore, the

effectiveness of multi-scale attention feature extraction is verified.

As shown in Table 3, there is a significant improvement in the

recognition performance after adding Center loss (CL) to hyperspectral

image recognition. In MARCN, the OA of YRE and GSOFF datasets

increased by 4.07% and 0.43% respectively. Therefore, the effectiveness

of Center loss for HSI recognition is confirmed.
3.3 Parametric analysis

The core parameters of MARCN are RA and RE, which

represent the mask ratios of RSPAA and RSPEA, respectively, and

by adjusting the ratio, the complexity and computational power of

the model can be controlled. Lower values of ratio mean that more

features are retained, which may increase the computational burden

of the model, but may also improve the model’s ability to capture

details. Higher values of ratio, on the other hand, reduce the

number of features and may help reduce overfitting and improve

the model’s ability to generalize. Choose from 0.25, 0.5, 0.75, 0.85,

and 0.9g. In Tables 4 and 5, it can be seen that as the ratio increases,

the change in recognition accuracy is not very significant, indicating

that the network model already has good robustness.
3.4 Comparison algorithm analysis

The proposed method’s detection performance was validated

using nine hyperspectral classification methods for comparison.

These methods include CNNHSI (Hu et al., 2015), RPCACNN

(Makantasis et al., 2015), OTVCA (Rasti et al., 2016), SSCNN (Mei

et al., 2017), CDCNN (Lee and Kwon, 2017), DRCNN (Zhang et al.,

2018), FusCNNGCN (He et al., 2019), 3DCNN (Zhang et al., 2020),

and BERTHSI (Hong et al., 2020). The parameters for these nine

methods were set according to the original publications to optimize

their performance.

In Tables 6 and 7, the recognition performance is evaluated using

class-specific accuracy (CA), overall accuracy (OA), average accuracy

(AA), and the Kappa coefficient. The RPCACNN method shows poor

performance on both datasets, likely because it loses some

discriminative information during RPCA-based dimensionality
TABLE 1 Class labels and train-test samples distribution of YRE.

Class No Class Name Train Test

1 Spartina alterniflora 84 743

2 Low-tide mudflat 84 709

3 High-tide mudflat 91 645

4 Mixed area 1 16 123

5 Mixed area 2 95 774

6 Mixed area 3 75 731

7 Oil field 72 612

8 Sea 135 756

9 Intertidal phragmite 86 758

10 Ecological reservoir 75 563

11 Suaeda salsa 67 610

12 Salt fields 81 663

13 Arable land 68 681

14 Phragmite 83 756

15 Woodland 49 502

16 Lotus pond 75 461

17 Typha orientals presl 6 30

18 Robina pseudoacacia 65 516

19 Pond 86 763

20 Yellow river 88 771

Total 1481 12167
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reduction, especially when noise reduction or outlier removal is

emphasized. Methods like SSCNN (Mei et al., 2017), CDCNN (Lee

and Kwon, 2017), DRCNN (Zhang et al., 2018), and 3DCNN (Zhang

et al., 2020) fail to capture global dependencies between pixel points,

leading to insufficient comprehension of the overall semantic

information, thereby affecting recognition performance.

Hyperspectral images contain both spatial and spectral information,

making it crucial to fuse these two types of information effectively.

However, algorithms such as OTVCA (Rasti et al., 2016), CNNHSI

(Hu et al., 2015), FusCNNGCN (He et al., 2019), and 3DCNN (Zhang

et al., 2020) are inadequate in spatial-spectral information fusion,
TABLE 2 Class labels and train-test samples distribution of GSOFF.

Class No Class Name Train Test

1 Cuninghamia lanceolata 4038 76705

2 Pinus massoniana 268 5072

3 Pinus massoniana 208 3967

4 Eucalyptus grandis x urophylla 746 14185

5 Eucalyptus urophylla 2014 38261

6 Catanopsis hystrix 1274 24187

7 Mytilaria laosensis 150 2850

8 Camellia oleifera 416 7908

9 Other broadleaf forest 538 10203

10 Road 524 9948

11 Cutting blank 508 9662

12 Building land 4 64

Total 10688 203012
F
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TABLE 5 Analysis experiments about the parameter Re in reference to
the classification performance (overall accuracy [%]) for YRE and
GSOFF datasets.

Re 0.25 0.5 0.75 0.85 0.9

YRE 95.22 96.45 95.37 96.62 95.22

GSOFF 97.87 97.79 97.79 97.92 97.88
fro
FIGURE 4

Maps of false color and training and testing samples distributions of GSOFF and YRE datasets, respectively. For the GSOFF dataset (A–C) are pseudo color
images, training set, and testing set, respectively. For the YRE dataset, (D–F) are pseudo color images, training set, and testing set, respectively.
TABLE 3 Analysis experiments about the suggested RESPA, RESPE, MSA,
and CL in reference to the classification performance (overall accuracy
[%]) for YRE and GSOFF datasets.

RSPAA RSPEA MSA CL YRE GSOFF

× × × × 88.09 90.96

× × × √ 92.16 91.39

√ √ × √ 92.69 91.46

√ √ × × 89.91 91.45

× × √ × 93.65 97.52

× × √ √ 94.89 95.11

√ √ √ × 94.95 96.97

√ √ √ √ 96.62 97.92
The bold text represents the accuracy with all modules included.
TABLE 4 Analysis experiments about the parameter Ra in reference to
the classification performance (overall accuracy [%]) for YRE and
GSOFF datasets.

Ra 0.25 0.5 0.75 0.85 0.9

YRE 95.37 96.13 95.94 96.62 95.23

GSOFF 97.83 97.78 97.92 97.92 97.81
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TABLE 6 Classification results [%] of YRE with different methods.

8)

FusCNNGCN
(He

et al., 2019)

3DCNN
(Zhang

et al., 2020)

BERTHSI
(Hong

et al., 2020)
MARCN

100 89.91 100 100

100 100 100 100

100 100 100 100

100 100 100 100

25.58 23.00 43.15 91.21

84.27 74.83 100 100

98.34 100 100 98.20

100 100 100 100

100 100 100 100

97.87 100 100 100

42.79 89.02 45.57 96.89

62.90 97.74 70.29 62.75

99.41 89.57 77.97 100

100 100 100 100

82.67 98.80 92.03 99.40

78.09 84.60 64.64 89.59

100 100 100 100

62.79 92.05 70.74 97.67

100 100 100 99.61

100 100 100 100

86.09 90.75 87.89 96.62

86.74 91.98 88.22 96.77

85.27 90.21 87.19 96.42
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Class
No

CNNHSI
(Hu

et al., 2015)

RPCACNN
(Makantasis
et al., 2015)

OTVCA
(Rasti

et al., 2016)

SSCNN
(Mei

et al., 2017)

CDCNN
(Lee and

Kwon, 2017)

DRCNN
(Zhang

et al., 201

1 100 100 100 100 100 100

2 100 100 100 100 100 100

3 97.52 100 100 95.97 99.22 100

4 82.93 100 100 100 100 100

5 75.19 66.93 44.32 85.66 20.41 48.84

6 73.60 64.71 100 81.81 86.05 90.70

7 54.58 46.90 100 69.61 100 97.71

8 100 100 100 100 100 100

9 99.21 100 100 100 100 100

10 86.50 78.69 100 89.52 100 100

11 96.39 73.11 92.79 51.80 91.80 97.38

12 63.95 65.91 90.95 84.16 70.44 73.30

13 60.35 47.28 48.90 46.99 98.97 91.04

14 96.69 91.80 100 89.81 100 100

15 79.08 79.88 100 73.90 86.25 99.60

16 60.95 30.37 95.44 77.22 87.64 86.55

17 93.33 10.00 100 100 100 100

18 81.98 30.43 99.81 33.91 0.00 22.09

19 81.65 85.45 100 97.64 97.9 100

20 100 100 100 100 100 100

OA 84.73 77.90 92.56 84.00 86.57 90.15

AA 84.20 73.57 93.61 83.90 86.93 90.36

Kappa 83.83 76.59 92.13 83.06 85.78 89.58
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TABLE 7 Classification results [%] of GSOFF with different methods.

7)

CDCNN
(Lee and

Kwon, 2017)

DRCNN
(Zhang

et al., 2018)

FusCNNGCN
(He

et al., 2019)

3DCNN
(Zhang

et al., 2020)

BERTHSI
(Hong

et al., 2020)
MARCN

92.05 98.00 95.78 95.43 96.99 98.11

77.43 92.61 89.33 92.84 92.94 96.14

73.56 92.74 84.93 97.08 93.80 97.57

91.62 99.28 98.06 96.84 97.46 99.72

99.09 99.58 98.48 97.51 92.44 99.98

76.52 86.41 83.82 84.41 90.09 93.14

73.86 96.91 92.67 94.28 83.58 99.42

94.92 99.06 97.77 98.47 99.97 99.53

77.59 89.16 83.40 90.74 93.46 93.78

99.66 99.74 99.49 99.01 99.69 99.34

99.22 99.83 99.81 99.69 98.34 99.97

65.63 26.56 48.44 45.31 68.75 63.64

90.60 96.50 94.42 94.80 95.12 97.92

85.09 89.99 89.33 90.97 92.29 95.03

88.11 95.57 92.95 93.45 93.84 97.37
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Class
No.

CNNHSI
(Hu

et al., 2015)

RPCACNN
(Makantasis
et al., 2015)

OTVCA
(Rasti

et al., 2016)

SSCNN
(Mei

et al., 201

1 86.83 83.48 95.34 91.96

2 11.74 34.27 99.70 75.51

3 3.05 20.04 99.24 85.53

4 77.99 52.23 100 86.07

5 61.86 66.16 99.93 96.73

6 45.59 29.80 83.31 85.07

7 1.16 6.91 99.89 70.28

8 58.80 72.03 99.03 95.52

9 45.53 54.82 91.30 68.81

10 97.63 98.13 98.43 99.10

11 94.78 95.74 99.98 99.15

12 7.81 0.00 0.00 90.63

OA 69.59 67.48 95.63 90.32

AA 49.40 51.13 88.85 87.00

Kappa 60.91 58.69 94.48 87.79
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resulting in the underutilization of spectral and spatial information.

TheMARCN proposed in this study demonstrates the best recognition

performance on both datasets, with OA improvements of 1.33% and

4.06% over the second-highest method.

Figures 5 and 6 demonstrates the recognition effect of all the

methods, from which it can be seen that among the baseline

methods, the RPCACNN has the worst recognition effect graph,

recognizing the salt field as a mudflat, and the lotus pond fails to be
Frontiers in Marine Science 11
recognized. OTVCA, DRCNN and 3DCNN recognize relatively well,

however, the OTVCA algorithm generates results that are too smooth

and the detail information is submerged, which is because local features

in the data are not well captured, resulting in data loss. Methods such as

DRCNN and 3DCNN ignore the global dependencies between pixel

points, leading to insufficient understanding of the overall semantic

information in the model and affecting the recognition effect. CNNHSI

and FusCNNGNN contain more noise points in their recognition
FIGURE 6

GSOFF’s classification maps of different methods. (A) is the classification result of the CNNHSI algorithm, (B) is the classification result of the RPCACNN
algorithm, (C) is the classification result of the OTVCA algorithm, (D) is the classification result of the SSCNN algorithm, (E) is the classification result of
the CDCNN algorithm, (F) is the classification result of the DRCNN algorithm, (G) is the classification result of the BERTHSI algorithm, (H) is the
classification result of the 3DCNN algorithm, (I) is the classification result of the FusCNNGCN algorithm, and (J) is the classification result of the
MARCN algorithm.
FIGURE 5

YRE’s classification maps of different methods. (A) is the classification result of the CNNHSI algorithm, (B) is the classification result of the RPCACNN
algorithm, (C) is the classification result of the OTVCA algorithm, (D) is the classification result of the SSCNN algorithm, (E) is the classification result
of the CDCNN algorithm, (F) is the classification result of the DRCNN algorithm, (G) is the classification result of the BERTHSI algorithm, (H) is the
classification result of the 3DCNN algorithm, (I) is the classification result of the FusCNNGCN algorithm, and (J) is the classification result of the
MARCN algorithm.
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results. Compared to the baseline methods, the MARCN algorithm

proposed in this study achieves higher recognition accuracy with fewer

mislabeled pixels. The observed smoothness and distinct boundary

features in the results are due to the introduction of the spectral

information reconstruction module and the spatial information

reconstruction module. These modules enhance the utilization of

spectral and spatial features, effectively reduce noise interference,

accurately detect object boundaries, and preserve image details.
4 Conclusion

In nearshore scenarios, theMARCNmethod successfully addresses

the limitations of traditional feature extraction methods in complex

environments through its multiscale attention mechanism and

reconstruction modules. The introduction of the center loss function

effectively reduces intra-class differences, making spectral features of

different types more concentrated and easier to distinguish. This

improves the accuracy and robustness of recognition. In

experiments, MARCN outperformed existing hyperspectral feature

extraction methods in nearshore environments, showing significant

advantages in complex and variable conditions. However, MARCN has

certain limitations, such as dependency on specific types of data and

the need for substantial computational resources. Future work can

focus on optimizing the algorithm’s computational efficiency and

further enhancing its recognition capabilities in extreme environments.

Overall, the application of MARCN in nearshore scenarios

demonstrates its significant potential in environmental monitoring,

resource management, and disaster warning. By effectively extracting

and processing complex spectral-spatial information, MARCN excels

in diverse and changing environmental conditions.
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