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The Surface Water Ocean Topography (SWOT) mission significantly improves on

the capabilities of current nadir altimeters by enabling two-dimensional

mapping. Assimilating this advanced data into high-resolution models poses

challenges. To address this, Observing System Simulation Experiments (OSSEs)

were conducted to evaluate the effects of both simulated and actual SWOT data

on the Regional Ice Ocean Prediction System (RIOPS). This study examines the

OSSEs’ design, focusing on the simulated observations and assimilation systems

used. The validity of the OSSE designs is confirmed by ensuring the deviations

between the assimilation system and the Nature Run (NR) align with

discrepancies observed between actual oceanic data and OSSE simulations.

The study measures the impact of assimilating SWOT and two nadir altimeters

by calculating root mean square forecast error for sea surface height (SSH),

temperature, and velocities, along with performing wave-number spectra and

coherence analyses of SSH errors. The inclusion of SWOT data is found to reduce

RMS SSH errors by 16% and RMS velocity errors by 6% in OSSEs. The SSH error

spectrum shows that the most notable improvements are for scales associated

with the largest errors in the range of 200-400 km, with a 33% reduction

compared to traditional data assimilation. Additionally, spectral coherence

analysis shows that the limit of constrained scales is reduced from 280 km for

conventional observations to 195 km when SWOT is assimilated as well. This

study also represents our first attempt at assimilating early-release SWOT data. A
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1456205/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456205/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456205/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456205/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456205/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456205/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1456205&domain=pdf&date_stamp=2024-11-12
mailto:goqangl@gmail.com
https://doi.org/10.3389/fmars.2024.1456205
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1456205
https://www.frontiersin.org/journals/marine-science


Liu et al. 10.3389/fmars.2024.1456205

Frontiers in Marine Science
set of Observing System (data denial) experiments using early-release SWOT

measurements shows similar (but smaller) responses to OSSE experiments in a

two nadir-altimeter context. In a six-altimeter constellation setup, a positive

impact of SWOT is also noted, but of significantly diminished amplitude. These

findings robustly advocate for the integration of SWOT observations into RIOPS

and similar ocean analysis and forecasting frameworks.
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1 Introduction

Nadir altimeter Sea Level Anomaly (SLA) measurements have

significantly enriched our understanding of ocean circulation

dynamics. While along-track SLA data can discern wavelengths as

small as 50–70 km (Dufau et al., 2016), the global mesoscale

resolution remains limited by the spacing (distance between

adjacent tracks) and temporal samplings (repeat period) of

individual altimeter missions. Multiple altimeters are

indispensable for achieving global maps of mesoscale variability.

Numerous studies have evaluated the efficacy of altimeter

constellations (e.g., Pascual et al., 2006; Dibarboure et al., 2011),

affirming that a minimum of three to four altimeters is requisite for

reconstructing the global ocean surface topography at a mesoscale

resolution. Nevertheless, amalgamating data from multiple

altimeter missions falls short of resolving wavelengths smaller

than 150–200 km (e.g., Ducet et al., 2000; Le Traon, 2013).

The Surface Water Ocean Topography (SWOT) mission,

launched on 16 December 2022 through collaboration among

NASA, CNES, the Canadian Space Agency, and the UK Space

Agency, promises to expand on the capabilities of existing nadir

altimeters. It will facilitate two-dimensional mapping at a

significantly enhanced effective resolution, down to wavelengths

as small as 20 km (e.g., Fu and Ferrari, 2008; Fu et al., 2009). This

advancement will be realized through both a nadir altimeter and a

Ka-band Radar Interferometer (KaRIn). With a swath width of 120

km, the spatial coverage will span nearly the entire globe every 21

days. Although SWOT will furnish highly detailed observations

along its swaths, it will overlook the evolution of high-frequency

signals (with periods less than 21 days). Integrating SWOT data

with that from conventional along-track altimeters (e.g., Pujol et al.,

2012) and very high-resolution models (with resolutions of a few

kilometers) present a significant challenge, necessitating

dynamic interpolation.

Observing System Simulation Experiments (OSSEs; Halliwell

et al., 2014) is a prevalent approach for assessing the impact of new

observations on analysis and forecasting systems. It entails

simulating the “true” ocean using a numerical model and

subsequently determining instrument sampling and errors using
02
predefined parameters. This method facilitates the evaluation of

how future measurements could augment existing analyses and

forecasts based on assimilation systems, and guides the design of

observation networks to enhance ocean state sampling at specific

spatial and temporal scales. Given the potential importance of the

SWOT mission, studies of various complexity have begun to assess

how to best make use of this new type of observation. Simplified

models such as Quasi-Geostrophic and Surface Quasi-Geostrophic

models have been employed to assess SWOT observability and

estimate critical ocean state features such as vertical velocity fields

(e.g., Klein et al., 2009; Qiu et al., 2016). While advantageous due to

their conceptual simplicity compared to Primitive Equation (PE)

models, these simplified models do not encapsulate the full

spectrum of oceanic regimes. Thus, preparing to employ SWOT

observations with more complex ocean models is imperative.

Recently, Carrier et al. (2016) conducted an OSSE utilizing

SWOT observations and a PE model of the Gulf of Mexico,

showcasing improved forecast scores and representation of

mesoscale features compared to assimilation of data from

conventional altimeters. Benkiran et al. (2021) and Tchonang

et al. (2021) investigated and analyzed the impact of SWOT

observations over the global oceans using a different version of

their 1/12th resolution model as “truth” and found significant

improvements in SSH and surface current errors. Souopgui et al.

(2020) quantified improvements in ocean state estimation through

the assimilation of simulated SWOT observations by using a multi-

scale 3DVAR approach with an OSSE. This approach effectively

enhances skill metrics across spatial scales by initially creating large-

scale analyses and incrementally incorporating smaller-scale

corrections, with significant improvements in mixed layer depth

estimates. Zhou et al. (2024) introduced a novel multi-scale Four-

Dimensional Variational Data Assimilation (4DVAR) system to

enhance the assimilation of high-resolution SWOT SSH within the

Regional Ocean Modeling System (ROMS), demonstrating

significant improvements in model accuracy and fine-scale

feature representation.

This paper uses an approach similar to that of Benkiran et al.

(2021) and extends previous studies in three ways. First, the Nature

Run (from which the synthetic observations are taken) is a higher-
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resolution (1-km horizontal grid) configuration that includes

greater energy at small spatial scales than the assimilation model.

This additional variability simulates the unresolved scales present in

real world. Second, the ocean model used in the OSSE contains

external tidal forcing, which also increases the complexity of online

filtering required in the assimilation of sea surface height data.

Finally, we also confirm the impact of SWOT using Observing

System Experiments with early-release measurements over a

roughly 2-month period.

The paper’s structure is as follows: Section 2 focuses on

the Nature Run description and provides details concerning the

production of synthetic observations. Section 3 presents the

assimilation system, highlighting changes made to the data

assimilation scheme for the OSSEs, followed by the OSSE

design. In Section 4, the impacts of the assimilation for the Sea

Surface Height (SSH) and Velocity field are evaluated. In Section

5, we focus on the wavenumber analysis of the impacts of the data

assimilation by showing the SSH error spectrum and coherence,

while Section 6 concentrates on data withholding experiments

using early-release SWOT data over the North Atlantic and Arctic

Oceans for two months. Section 7 draws conclusions regarding the

impacts of the data assimilation experiments and presents

future perspectives.
2 Data

2.1 NATL60 nature run simulation

The NATL60 simulation (referred to hereafter as the Nature

Run (NR) simulation), based on the NEMO framework (Madec et

al., 2019), features a horizontal grid with variable spacing from 1.6
Frontiers in Marine Science 03
km at 26°N to 0.9 km at 65°N. The grid is tailored to capture the

scales of motion targeted by the SWOT altimetric mission. For

initial and boundary conditions, the model employs the

GLORYS2v3 ocean reanalysis (Masina et al., 2017), incorporating

a relaxation zone at the northern boundary to manage sea ice

concentration and thickness. Vertically, the model includes 300

levels, with the finest resolution of 1 m in the uppermost layers.

Atmospheric conditions are determined using the DFS5.2 dataset

(Dussin et al., 2018). Grid structure and bathymetry are aligned

with the specifications outlined by Ducousso et al. (2017). To

dynamically adjust lateral viscosity and diffusivity according to

flow characteristics, a third-order upwind advection scheme is

employed for both momentum and tracers. The model undergoes

a 6-month spin-up phase followed by a detailed 1-year simulation

the period covering from October 1, 2012, to September 30, 2013,

the results of which have been referenced in recent publications

(Amores et al., 2018; Buckingham et al., 2019; Ajayi et al., 2020).

Unlike OSSE simulations (described in Section 3), NATL60 does

not include tidal forcing. A more recent simulation by this model

(referred to as eNATL60) does include tides but is only available for

a shorter period. As a result, we prefer to use NATL60. Figure 1

shows the NATL60 domain and the SSH snapshot on August 1,

2013. The spectral and coherence analyses are conducted in the

nested black rectangular region (Gulf Stream) in Section 5.
2.2 Generation of synthetic observations

To accurately assess the impact of assimilating SWOT data, we

need to generate synthetic observations for both the conventional

observing network and the estimated measurements from SWOT.

Since the Nature Run (NR) is a model simulation that doesn’t
FIGURE 1

NATL60 domain and the daily-mean SSH (m) snapshot for August 1, 2013. The black nested rectangle delineates the dynamic Gulf Stream region,
with a side length of 1000 kilometers and centered at coordinates (-57.5, 38.5).
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exactly match the real ocean state, producing these synthetic

observations ensures consistency between the observations and

the NR. This approach allows us to evaluate the impact of

assimilating SWOT data without the confounding effects arising

from discrepancies between the NR and real-world observations. It

is also important to add Gaussian noise to the synthetic

observations to simulate observational error. Details concerning

both these datasets and noise characteristics are provided below.

2.2.1 Conventional observations
Synthetic observations are produced for conventional

observations currently assimilated in RIOPS (as described in

Section 3). These observations include nadir altimetry, gridded

Sea Surface Temperature (SST), and vertical profiles of

temperature and salinity. Synthetic observations were extracted

from the NATL60 simulation, and these observations were

collected over a period of 12 months (from October 1, 2012 to

September 30, 2013) which includes the period covered by the

OSSEs. The daily-mean SST was directly extracted from the NR

over the full grid to simulate the Level-4 SST product usually

assimilated in RIOPS. A random error of 0.5°C was applied to the

SST. This value corresponds roughly to the nominal error of Level-4

SST analyses (as used in the operational version of RIOPS). Errors

applied to the nadir altimeters are described in Section 2.2.2 below.

The temperature and salinity (T/S) profiles were extracted at the

same points and dates as the real in situ profiles observed as found

in the CORA4.1 database provided by the Coriolis and CMEMS in

situ data center (Cabanes et al., 2013). Observations include profiles

from the Argo Array, field campaigns, gliders and moorings. 3D

daily mean temperature and salinity fields from the NR were used to

simulate this in situ data as instantaneous outputs were not

available. This is expected to lead to a somewhat reduced variance

of synthetic profile observations as compared to the real world for

coastal observations (e.g. gliders), although this is not expected to

impact the sensitivity of the system to the assimilation of wide-

swath altimetry. To simulate instrument error, we applied a random

error with a standard deviation of 0.05°C for temperature and 0.01

psu for salinity. We did not explicitly include representativeness

error because it is implicitly accounted for by using a high-

resolution Nature Run (NR) to generate the synthetic observations.

2.2.2 Simulated nadir data
The along-track nadir pseudo-observations datasets contain

noise-free SSH data, which is the direct interpolation of the

hourly model SSH onto the nadir track. And the SSH data with

simulated noise is obtained using the “SWOT simulator” (Esteban-

Fernandez et al., 2017). As explained in the SWOT simulator

reference manual, the simulated noise for the nadir altimeter

follows a spectrum of error consistent with global estimates from

the Jason-2 altimeter. The along-track point spacing is 7 km for

Jason-2 and Cryosat-2, 7 km for the SWOT nadir observations.

2.2.3 Simulated SWOT data
Surface Water Ocean Topography provides global SLA

observations under a 120 km wide-swath with a middle gap of 20
Frontiers in Marine Science 04
km. In this study, we considered the SWOT data as two-

dimensional fields under the swath with a regular along-track and

across-track resolution of 7 km. The pseudo-SWOT observations

were simulated from hourly outputs of the NR using the “SWOT

Simulator” developed at the Jet Propulsion Laboratory (Gaultier

et al., 2016), which is used to generate observations with the

expected SWOT sampling and error budget. The along-track and

cross-track point spacing is 7 km for the SWOT KaRIn

observations. The SWOT simulator models the most significant

errors that are expected to affect the SWOT data, i.e., the KaRIn

noise, roll errors, phase errors, baseline dilation errors, and timing

errors. It produces random realizations of uncorrelated noise and

correlated errors following the spectral descriptions of the SWOT

error budget document (Esteban-Fernandez et al., 2017).

In our experiments, we only used the KaRin noise for two

reasons: (i) the simulator models the worst expected case and (ii)

the observation distribution centers are planning to filter the data

from most of these errors. Consequently, as the final error budget is

still uncertain and as this was our first effort to assimilate such data

in a North Atlantic model, we preferred to use a more optimistic

error budget. The same simulator was used to simulate the nadir

data of SWOT.

2.2.4 Real SWOT data
Section 6 presents data withholding experiments performed

using early-release SWOT observations. The observations used were

the AVISO v0.3 Level 3 product made available in December 2023.

The observations used cover the period 2023-09-06 to 2023-11-22.

KaRIn measurements are provided with 2-km spacing both along

and cross track. As this is higher resolution than the RIOPS model

grid it is necessary to decimate the observations. As a result the

observations are averaged using a 9-pt stencil to provide one point

every 6 km (AVISO/DUACS, 2024). This approach provides a

straightforward means to decimate the data without any a priori

knowledge about relative errors of different pixels.
3 Ocean assimilation system and
OSSE setup

3.1 Ocean assimilation system

The System d’Assimilation Mercator version 2 (SAM2), a

multivariate, reduced-order Extended Kalman Filter, plays a

crucial role in constraining oceanic fields toward observations and

reducing forecast error. This scheme is specifically deployed for the

assimilation of sea level anomaly (SLA), sea surface temperature

(SST), and in situ data related to temperature and salinity profiles,

as detailed by Wong et al. (2020). For a thorough understanding of

SAM2, one can refer to the extensive descriptions by Lellouche et al.

(2013) and Lellouche et al. (2018), including its specialized

adaptations for RIOPS outlined in Smith et al. (2016, 2021, 2024).

Below is a concise overview of the pertinent aspects.

The background error of the model is specified through static

multivariate fields derived from sub-monthly anomalies recorded
frontiersin.org
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over a decade of hindcasts. RIOPS analyses are produced using a 7-

day assimilation period, distributing analysis increments uniformly

via an Incremental Analysis Updating method (IAU) as described

by Bloom et al. (1996) and Benkiran and Greiner (2008). A multi-

scale technique adjusts temperature and salinity fields by

implementing large-scale increments from a 3DVar analysis based

on average innovations over the last four cycles. The Mean

Dynamic Topography (MDT) used in the observation operator

for SLA is a hybrid variant discussed in Lellouche et al. (2018),

merging the CNES-CLS13 MDT (Rio et al., 2014) with average

innovations from ocean reanalysis (Smith et al., 2024).

Furthermore, an online sliding-window harmonic analysis

excludes tidal effects within the SLA observation operator,

accommodating non-stationary tides influenced by seasonal sea ice,

a method detailed in Smith et al. (2021). Additionally, the inverse

barometer effect is removed to account for the local model’s

atmospheric pressure responses. SLA observations include those

typically assimilated within operational frameworks, specifically

from satellites like Cryosat2, Jason3, Saral/Altika, and Sentinel 3a/3b.

Regarding SST, ECCC’s gridded Level-4 analyses are utilized

(Brasnett and Colan, 2016). A 3DVar ice analysis produced on a 5-

km grid is used to constrain sea ice concentration (Buehner et al.,

2013, 2016). The ice analysis is blended with the ocean analysis

using the Rescaled Forecast Tendencies method from Smith et al.

(2016) to modify the ten ice thickness categories based on total ice

concentration increments.
3.2 OSSE setup

In an operational context an MDT field is removed from model

SSH to provide the model equivalent of SLA observations. As noted

above, the MDT field is based on a combination of observations

together with mean model innovations. As a result, its use

introduces additional errors to the assimilation of SLA which are

accounted for through use of an MDT error field with values of up

to 20 cm (Lellouche et al., 2018; Smith et al., 2024). Since synthetic

observations for the OSSEs are taken from a model, there is no need

for an MDT and SSH can be assimilated directly. We have

nonetheless kept the MDT error field unchanged to maintain

consistency with operational settings and because it also accounts

for representative error due to unresolved features. This approach

may underrepresent somewhat the errors associated with

assimilating SWOT. An instrumental error of 3 cm is used for

SWOT data. While this is somewhat higher than estimates of KaRIn

error for SWOT, it provides a conservative value that allows for

incomplete filtering of other observations errors (e.g. roll, phase).

This is also similar to the error value used for most nadir altimeters.

We feel that this improves the ‘fairness’ of the comparison with the

impacts found for OSSEs using nadir altimeters (i.e. we avoid over-

fitting to SWOT due to an overly small and possibly

unrealistic error).

As a daily-mean SST is assimilated, the SST observation

operator is changed to use a daily mean as well, instead of the

nocturnal SST normally used. Note also that since the domain of

RIOPS is larger than that for NATL60, for regions outside the
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NATL60 domain no observations are assimilated. As a result, the

blending with the 3DVar ice analysis is not used. Additionally, the

3DVar bias correction for temperature and salinity profile

observations is not used as it has a long spin-up time (on the

order of a year) and thus would not have time to adjust over the

limited OSSE period. Finally, RIOPS usually uses fields from

the Global Ice Ocean Prediction to specify open boundary

conditions. However, these were not available for this period. As

a result, open boundary conditions were produced using fields from

the GLORYS12 reanalysis (Lellouche et al., 2018). Initial conditions

were also obtained from GLORYS12 fields using a bi-linear

interpolation of temperature, salinity and velocities from the 0.08°

resolution grid upon which the GLORYS12 fields are disseminated.

Starting from the simulated data obtained from the NR, three

OSSEs were carried out using a different NEMO configuration but

the same spatial resolution of 1/12° (~7 km). An additional

experiment was performed, called the Free Run (FR), in which no

observations are assimilated. This simulation is used to assess the

relative performance of the assimilative experiments. To assess the

impact of SWOT data, it was compared with assimilation of

conventional altimeter data from two nadir altimeters Jason-2

and Cryosat-2. The data assimilated in the different OSSEs are

detailed in Table 1. The OSSE0 (FREE) is a free run with no data

assimilation. OSSE1(STD) is the standard data assimilation of

conventional observations including Cryosat-2, Jason-2, T&S

profiles and SST. OSSE2 (SWOT) includes the assimilation of

data from SWOT, together with T&S profiles and SST. Finally,

OSSE3 (SWOT+NADIR) assimilates data from SWOT in addition

to conventional data (Cryosat-2, Jason-2, T&S profiles and SST).

The simulations start from a free model state on October 3,

2012. A 12-month simulation (until 25 September 2013) was

carried out with assimilation of SSH, temperature and salinity as

presented in Table 1. This period was determined by the availability

of the NATL60 data.
3.3 Validation of OSSE method

When setting up an OSSE framework it is important to verify

that the impact of assimilating the synthetic observations is similar

to that obtained from real observations. Therefore, as an initial step

a three-month experiment is performed whereby the standard set of

real conventional observations are assimilated (i.e. equivalent to

OSSE1 but using real observations). The reduction in innovations
TABLE 1 OSSE Setup.

OSSE Setup SWOT Cryosat-2
and

Jason-2

T&S profiles,
SST

OSSE0 (FREE)

OSSE1 (STD) × ×

OSSE2 (SWOT) × ×

OSSE3
(SWOT+NADIR)

× × ×
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statistics for this run as compared to the free run (OSSE0) is then

assessed together with differences in innovations statistics between

OSSE1 and OSSE0. A similar sensitivity is found for innovations of

SLA, SST and temperature and salinity profiles. For example, root-

mean-squared (RMS) SLA innovations for Jason 2 were found to

decrease from 13.2 cm to 9.4 cm (29% reduction) using real

observations and from 13.4 cm to 8.8 cm (34%) using

synthetic observations.
4 Impact of assimilating synthetic
observations on model fields

4.1 SSH impacts

The objective of this section is to investigate the impacts of

assimilating SSH data from SWOT versus two nadir altimeters.

Over a one-year period, the RMS difference of SSH between the

Nature Run (NR) and the Observing System Simulation

Experiments (OSSEs) is calculated and displayed in Figure 2. This

figure highlights significant variability in highly dynamic areas such

as the Gulf Stream (GS). The impact of assimilating conventional

observations (as compared to a free run) can be clearly seen when

comparing OSSE1 to OSSE0, with a nearly 40% improvement in

domain averaged RMSE (values of 11.38cm and 7.95 cm

respectively for OSSE0 and OSSE1). When SWOT is assimilated

in place of conventional nadir altimetry (OSSE2) a notable
Frontiers in Marine Science 06
improvement in the Gulf Stream can be seen with a domain-

averaged decrease in RMS differences down to a value of 7.08 cm

(11% improvement). Among the OSSEs, OSSE3 (assimilating all

observations) exhibits the most accurate performance, with the

lowest domain-averaged RMSE value of 6.81 cm (14%

improvement). Generally, the RMS errors indicate that

discrepancies predominantly occur over the GS across all OSSE

scenarios. As a reference, the domain-averaged RMS of the Mean

Dynamic Topography (MDT) and the RMS of the Sea Level

Anomaly (SLA) for OSSE0 are 22 cm and 9.2 cm, respectively,

both of which are greater than the RMSE values for OSSE1-3.

To provide context in terms of the amplitude of the errors, it is

useful to compare these errors to the amplitude of the variability in

the NR itself. Figure 2E presents the RMS of the SLA for NR. We

can clearly see that while the error in OSSE0 is much larger than the

RMS of the SLA in the NR, for the OSSEs with data assimilation

(OSSE1-3) the errors appear similar to, or smaller than that for the

RMS SLA of the NR. Figure 2F displays the ratio between the RMS

of the SLA for NR and the RMS of the SSH error for OSSE3

(domain-averaged value of 1.1). For most of the Gulf Stream and

downstream regions, the ratio is bigger than 1, indicating that the

errors are smaller than the variability of the NR.

Figures 3A, B visually demonstrate the effects of data

assimilation from SWOT and nadir altimeters on the RMS of

SSH errors. Specifically, Figure 3A is dominated by blue hues,

particularly over the Gulf Stream and its northern extensions,

illustrating significant reductions in RMS errors for OSSE3
FIGURE 2

RMS of SSH error comparing the NR and OSSEs: (A) OSSE0 (FREE), (B) OSSE1 (STD), (C) OSSE2 (SWOT), (D) OSSE3(SWOT+NADIR). (E) RMS of the
SLA for NR (Unit:m) and (F) the Ratio between RMS of SLA for NR and RMS of SSH error for OSSE3.
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compared to OSSE1 (with a domain-averaged difference of 1.14

cm). This indicates that incorporating SWOT data markedly

improves accuracy in these dynamically complex regions. There

are also some small isolated red areas spread throughout the

domain indicating slightly higher errors in OSSE3 relative to

OSSE1. But these are likely just noise. Additionally, Figure 3B

compares the RMS of SSH errors between OSSE3 and OSSE2,

revealing that nadir altimetry has a less significant impact when

SWOT data is assimilated (domain-averaged difference of 0.27 cm).

Together, these figures underscore the benefits of assimilating

SWOT data in improving the precision of SSH predictions,

especially in highly dynamic oceanic environments.

In an operational context it is not possible to compare errors

over a full field, rather errors are often assessed in terms of

differences with observations. As a result, the “domain-averaged”

errors reflect the particular sampling of the observations used. For

reference in Section 6 when early-release SWOT data are

assimilated in an operational context, it is useful to compare full

field statistics provided here with those obtained using
Frontiers in Marine Science 07
observational sampling. As compared to synthetic observations

for Cryosat2 only, we obtain RMS differences of 14.33 cm, 8.66

cm, 7.56 cm and 7.34 cm for OSSE0-3 respectively. These values

imply an improvement of RMS error for OSSE2 and OSSE3 (as

compared to OSSE1) of 13% and 15% respectively. These values are

similar to those obtained using the full SSH field noted above (i.e.

11% and 14% respectively). In consequence, we conclude that

Cryosat2 sampling provides a similar assessment of the domain-

averaged error, allowing a comparison of results between OSSEs

and OSEs.
4.2 Impacts on velocity

This section analyzes the impact of SWOT data on representing

the upper ocean currents (at 15 meters depth). Considering the

significance of ocean currents, it is intriguing to examine how their

accuracy improves with the assimilation of SWOT data. The RMSE

over 1 year for the amplitude of velocity at 15 m depth (referred to
FIGURE 4

(A) RMS error in the velocity magnitude (15-m depth) comparing the NR and OSSE3. (B) Difference in RMS velocity error between OSSE3 and OSSE0.
(C) RMS velocity for the NR (unit: m/s). (D) Ratio of RMS velocity for NR to RMS velocity error for OSSE3.
FIGURE 3

(A) shows the difference of the RMS of SSH error between OSSE3 and OSSE1, (B) difference of the RMS of SSH error between OSSE3 and OSSE2
(Unit:m).
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hereafter simply as velocity) between the NR and the OSSE3 is

calculated and displayed in Figure 4A. In all the simulations, the

highest errors are concentrated around the Gulf Stream and its

extension into the North Atlantic, where the dynamical complexity

is most pronounced. The domain-averaged RMS velocity errors

show that OSSE3 achieves the best accuracy, with an error of 11.1

cm/s. When compared to OSSE1, which has an error of 11.8 cm/s,

OSSE3 demonstrates a 6.2% improvement. Finally, compared to

OSSE2, which has an error of 11.7 cm/s, OSSE3 shows a 4.9%

improvement. These results highlight how OSSE3, with more

comprehensive assimilation of SWOT data, enhances the

accuracy of upper ocean current representations compared to the

other OSSE simulations. Figure 4B shows the difference of the RMS

of velocity error between OSSE3 and OSSE0 with a domain-average

number of -0.91 cm/s. Additionally, for reference, the RMS of

velocity for the Nature Run is shown in Figure 4C with a domain-

average number of 17.68 cm/s.

Figure 4D shows the ratio between the RMS of velocity for NR

and the RMS of velocity error for OSSE3. We can see that the RMS of

velocity error is less than the RMS of velocity for NR generally with a

domain-average number of 1.97. This demonstrates that there is a

relatively good accuracy of the velocity field in OSSE3, as the errors

are significantly smaller than the actual RMS of velocity for NR,

enhancing our confidence in the overall model performance.

As shown, the differences among the OSSEs are shown in

Figure 5. OSSE3 exhibits the most accurate performance, with

OSSE2 performing marginally better than OSSE1, which can be

clearly detected in Figure 5. Here, Figure 5A illustrates the reduction

in RMS of velocity error between OSSE3 and OSSE1, indicating that

assimilating SWOT data decreases the error compared to scenarios

without SWOT data assimilation. Moreover, Figure 5B compares

the RMS of SSH error between OSSE3 and OSSE2. This reveals that

incorporating data from both altimeters modestly enhances the

predictive accuracy. The domain-average of Figure 5A is -0.73 cm/s

and -0.56 cm/s for Figure 5B.

Figure 6 shows the temporal evolution of velocity error variance

at a 15-meter depth over the whole year. OSSE0 (dashed black line),

which is the free run, shows the highest RMS of SSH error, starting

above 200 cm²/s² and gradually decreasing but remaining above 160

cm²/s². All the OSSE1–OSSE3 simulations exhibit similar seasonal

variations. OSSE1 (dashed red line) starts with an RMS of SSH error

around 180 cm²/s², dropping sharply in the first few weeks, then
Frontiers in Marine Science 08
fluctuating between 120 and 150 cm²/s². OSSE2 (dashed blue line)

follows a similar trend to OSSE1 but generally has a lower RMS of

SSH error, ranging between approximately 110 and 140 cm²/s².

OSSE3 (dashed green line) shows the lowest RMS of SSH error

overall, starting around 160 cm²/s² and steadily decreasing, often

falling below 100 cm²/s² towards the end of the observation period.

The temporal evolution of velocity error variance clearly

demonstrates that OSSE3 consistently maintains the lowest error

variance, as expected, because it assimilates all available data,

including both SWOT and nadir altimeters. While OSSE2

(SWOT-only) shows lower error than OSSE1 (using two nadir

altimeters), indicating that if we had to choose between two nadir

altimeters and one SWOT, we should choose SWOT. Thus, OSSE3

remains the best scenario overall because it assimilates all

data sources.

It is also interesting to note that when the data assimilation is

first activated the increments are quite large and despite the IAU a

shock occurs in all experiments that results in a net degradation in

velocity statistics for the first cycle. Following this initial shock the

velocity improves quite quickly over the first few cycles. This

improvement is mostly related to the path of the Gulf Stream,

and to second order, to the constraint of the data assimilation

system on mesoscale features. This analysis is only possible due to

the OSSE framework that allows a comparison of full-field

velocities. Further analysis regarding this initial shock is underway.
5 Spectral analysis and coherence

In this section, we compute and analyze the wavenumber Power

Spectral Density (PSD) and the spatial and temporal coherence for

each OSSE simulations in comparison with the Nature Run (NR),

specifically over the Gulf Stream, where significant discrepancies are

observed. We utilize the wavenumber PSD and spectral coherence

to assess the spatial structure of SSH forecast errors in this region.

The wavenumber spectra, as detailed by Dufau et al. (2016), are

derived from daily zonal SSH error fields spanning the period from

October 1, 2012, to September 30, 2013, using a Fast Fourier

Transform (FFT). To minimize spectral leakage, a Hanning

window was applied to the data. Subsequently, the spectra were

averaged both meridionally and temporally. Additionally, to

evaluate how the spatial scales of SSH signals are resolved in the
FIGURE 5

(A) shows the difference of the RMS of velocity error between OSSE3 and OSSE1, (B) difference of the RMS of velocity error between OSSE3 and
OSSE2(unit: m/s).
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FIGURE 7

SSH error spectrum over the Gulf Stream for the OSSE simulations.
FIGURE 6

Temporal evolution of velocity error variance (at 15-meter depth) over the Gulf Region. Dashed black is RMS of SSH error for OSSE0 (free run),
dashed red is RMS of SSH error for OSSE1, dashed blue is RMS of SSH error for OSSE2, and dashed green is RMS of SSH error for OSSE3.
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different OSSEs, the spectral coherence is calculated, following the

methodology of Thomson and Emery (2014). This spectral

coherence quantifies the correlation between two signals as a

function of wavelength, as described by Ubelmann et al. (2015).

Within this study, the spectral coherence between the SSH signals of

the OSSEs and the NR is represented as ‘Coh’ and is defined as

follows:

Coh =
CSD(NR,OSSEj)
�
�

�
�2

SD(NR)SD(OSSEj)
(1)

where CSD represents the cross-spectral density, SD represents

the spectral density and j refers to the j-th OSSE experiment

(Equation 1). Both SSH error spectrum and coherence are

calculated in the box as shown in Figure 1.

Figure 7 illustrates the SSH error spectrum over the Gulf Stream

for the OSSE simulations. All OSSEs exhibit a peak in the error

spectrum around the 300 km wavelength. Note that while the

specific wavelength at which this peak occurs is sensitive to

details of the PSD calculation (e.g. resolution in wavenumber

space), a peak value in the range of 200-400 km is consistent with

the errors being dominated by mesoscale variability which

dominates the SSH variance in the Gulf Stream. As compared to

the free run (OSSE0), the assimilation of conventional observations

provides an improvement for all scales greater than about 200 km,

with a 45% of the peak value. As compared to conventional

altimetry (OSSE1), assimilation of SWOT observations provides

an additional benefit across these same scales. Furthermore, when

SWOT is assimilated together with conventional altimetry (as

would be the case if SWOT were to be added to the operational

system), the errors are further reduced, with peak values reduced by

33% (OSSE3 compared to OSSE1). However, for wavelengths less

than 200 km, it is difficult to discern the impact of the OSSEs on the
Frontiers in Marine Science 10
error spectrum as the errors are dominated by large mesoscale

variability. To shed more light on the impact on smaller scales we

now assess the spectral coherence.

Figure 8 shows the spectral coherence between the NR and

OSSE simulations. Here we consider a value of 0.5 as the threshold

for acceptable performance that determines the limit of

constrained variability (Ubelmann et al., 2015). First, we can see

clearly that the free run (OSSE0) with no data assimilation

contains uncorrelated variability with respect to the NR (i.e.

coherence values well below 0.5 at all scales). The assimilation

of conventional observations (OSSE1) shows high values of

coherence demonstrating that the data assimilation system is

able to constrain variability, but only for scales above 280 km.

When conventional nadir altimetry is replaced by SWOT

(OSSE2), the limit of constrained scales is extended to a scale of

about 230 km. The synergy of SWOT and nadir together is

highlighted by the further benefit seen in OSSE3, with the limit

of constrained scales extended to 195 km. While the precise values

obtained for the limit of constrained scales is somewhat sensitive

to the threshold used, the sensitivity found in the different OSSEs

is quite robust down to a threshold of about 0.4. Below this value

all OSSEs start to be affected by a strong drop in coherence for

scales below about 180 km. This sharp transition is likely due the

combined impact of limitations in the data assimilation system

and the long (21 day) repeat time of SWOT overpasses.

While these results suggest that assimilation of SWOT

observations should help to constrain smaller scales than through

assimilation of conventional observations alone, it is not clear if it is

due to the inclusion of a wide-swath altimeter (i.e. SWOT), or

simply due to an increase in the number of observations assimilated.

This question is investigated further in Section 6 using early-release

SWOT observations in both a 2 nadir altimeter and 6-nadir

altimeter framework.
FIGURE 8

The spectral coherence between the NR and OSSE simulations.
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6 Assimilation of the early-release
SWOT data

Following the successful launch of the SWOT satellite mission

on 16 December 2022 and a calibration and validation phase, the

satellite was put in its nominal science orbit starting on 21 July

2023. An early-release SWOT Level-3 dataset (AVISO/DUACS,

2024) covering the period from 6 September 2023 to 21 November

2023 was made available in December 2023. This version is based

on beta pre-validated Level-2 data from NASA/CNES with some

known issues from the ground segment. It also has limitations due

to the use of the first generation of Level-3 algorithms (See

Dibarboure et al., 2024 for a detailed discussion). It nonetheless

provides an opportunity to assess whether the impacts found in

the OSSEs are robust and can also be detected in this short sample

of real-world SWOT data. A Level-3 dataset is required for

evaluation in RIOPS as this is what is done for other nadir

altimetry data.

In this section we present a series of Observing System

Experiments (OSEs) to assess the impact of assimilating early-

release SWOT observations with different configurations of

altimeters. As shown in Table 2, OSE1 uses the standard

operational configuration with six nadir altimeters. OSE2 is

designed to be comparable to OSSE1 whereby only two nadir

altimeters were available. OSE3 assimilates SWOT together with

two altimeters (i.e. equivalent to OSSE3). Finally, OSE4 adds SWOT

to the current constellation of 6 altimeters used in operations.

Comparison of OSE3 to OSE2 demonstrates the impact of SWOT in

the context of a two nadir altimeter constellation, as used for the

OSSEs, whereas comparison of OSE4 to OSE1 provides the expected

impact of adding SWOT to the current operational RIOPS system.

All OSE experiments are initialized from a RIOPS operational

analysis on 6 September, 2023 and run until 22 November, 2023

(11 7-day analysis cycles) using the standard operational

configuration. An important difference in the OSEs as compared

to OSSEs, is that the early-release SWOT observations cover the
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entire RIOPS domain, whereas the NATL60 simulation used for the

NR only covered the North Atlantic Ocean. As a result, the impact

of assimilating SWOT can now be assessed over a broader region

including the North Atlantic, Arctic and North Pacific Oceans.

In Section 4, it was shown that the assimilation of SWOT in

addition to conventional altimetry with two nadir altimeters

(OSSE3 compared to OSSE1) provided an improvement of 14%

in the RMS errors of SSH as compared to the experiment

assimilating conventional observations only. First, we would like

to assess whether this improvement is found using the early-release

SWOT observations. The differences in RMS innovation statistics

for SLA for the different OSEs are presented in Figure 9.

Comparison of OSE3 to OSE2 (equivalent to comparison of

OSSE3 to OSSE1) shows a significant reduction in innovations

throughout the model domain, consistent with the OSSE results

presented in Section 4. While a domain-averaged reduction in RMS

of 6.2% is found, this is somewhat smaller than found for OSSEs.

This may be due to a combination of larger errors in early-release

SWOT data and the assessment of impacts over the full domain.

Nonetheless, this notable reduction in error suggests that

approximations made as part of the OSSE setup were appropriate

and that results from the OSSEs may be transferable to real-world

applications. Additionally, reductions outside the domain of

NATL60 can now be seen as well, with smaller innovations in the

Greenland-Iceland-Norwegian Seas, the Beaufort Sea and in the

Pacific Ocean sector. Note that there are several small isolated areas

of degradation in the highly-energetic Gulf Stream region. These are

not statistically significant and may simply be spurious errors due to

the short period of the assessment.

Next, we would like to assess the impact of assimilating SWOT

observations in the present operational context using the full

constellation of six nadir altimeters. Comparison of RMS SSH

innovations for OSE3 to those for OSE2 shows that a less

prominent impact of SWOT is found (Figure 9B). Reductions in

RMS innovations are still present over many of the same areas but

with a reduced amplitude, providing a domain-averaged reduction
FIGURE 9

Difference in RMS innovations statistics for experiments assimilating early-release SWOT observations. (A) Shows the difference of the RMS
innovation statistics between OSE3 and OSE2. (B) Shows the differences of the RMS innovation statistics between OSE4 and OSE1.
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of RMS SSH innovations of only 2.0%. Moreover, some areas of

degradation can be seen in the Gulf Stream extension. As noted

above, these may simply be noise due to the short period of

assessment or due to use of the early-release SWOT data. Longer

experiments using updated processing would be beneficial to

investigate this further. Nonetheless, assimilation of the early-

release SWOT data provides generally consistent results in the

presence of a 2 nadir altimeter constellation and suggests that a

small positive improvement may also be found even with 6

nadir altimeters.
7 Conclusions and summary

In this study, we investigate the potential benefits of assimilating

wide-swath satellite altimetry from SWOT into an operational ice-

ocean prediction system for the North Atlantic Ocean using both

synthetic and early-release SWOT data. In particular, we extend

previous SWOT OSSEs by incorporating tides into a model

configuration, and by using a higher-resolution 1-km resolution

Nature Run, NATL60, to capture smaller-scale features and increase

overall variance in SSH and velocities. Early-release SWOT

observations are also assessed in a set of relatively short 3-month

long data withholding experiments.

Our OSSE results confirm earlier findings (e.g. Tchonang et al.,

2021), showing improvements in RMS errors in SSH and velocity

with the assimilation of SWOT data by 14% and 6% respectively.

The SSH error spectra indicate that improvements are most notable

around peak errors in the range of 200-400 km, with error

reductions of roughly 33% over these scales, compared to the

simulations with data assimilation of the traditional data.

Additionally, spectral coherence analysis reveals an increase in the

limit of constrained scales. In particular, the limit of constrained

scale using conventional data only is found to be 280 km. When

SWOT is assimilated in place of 2 nadir altimeters this limit is

extended by 50km down to a scale of 230 km. Finally, when SWOT

is assimilated together with conventional observations (including 2

nadir altimeters) a limit of constrained scales of 195 km is obtained

(an improvement of 85 km over conventional data only).
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The SWOT mission was anticipated to significantly enhance the

resolution of features with wavelengths below 200 km, which nadir

altimeters struggle to represent accurately (e.g., Le Traon et al., 2017).

Here, the impact of SWOT is found to reduce errors at the

predominant wavelength around 300 km and increase the limit of

constrained scales. However, a significant impact at smaller

wavelengths is not found. This may be due to the manner in which

the data assimilation system is configured (e.g. the spectral properties

of background error), the relatively long (21 day) repeat coverage of

SWOT swaths and the fact that the spectral properties of the region of

study are dominated by (larger) mesoscale features. Moreover, it is

not clear if the improvements seen when SWOT data are assimilated

are due to the nature of wide-swath altimetry itself or simply due to

an increase in the overall number of observations.

Early-release SWOT data assimilation also shows positive

impacts in OSE experiments, yielding RMS improvements in SSH

innovations of 6% across the domain when combined with two nadir

altimeters. However, when evaluated alongside six nadir altimeters,

the impact of SWOT is significantly reduced (only 2% improvement)

but remains mostly positive. This suggests that the improvements

found for the OSSEs are due in part to the number of observations

rather than the specific use of wide-swath altimetry. Moreover, the

smaller impact of SWOT together even in the 2 nadir altimeters

context, compared to the impact found in OSSEs in a similar

framework may be related to the presence of larger errors in the

early-release SWOT data (e.g. the geophysical errors, like wet

tropospheric delay correction error or sea state bias). As the OSSE

framework was validated with a companion OSE we do not believe

the differences are due to assumptions made in the OSSE framework.

Nonetheless, the OSE results presented here confirm that the

assimilation of wide-swath altimetry is possible with existing data

assimilation systems and can provide tangible improvements.

While the short evaluation period makes it challenging to

ascertain the statistical significance of these results, they

nonetheless affirm the beneficial outcomes observed during

OSSEs. This suggests that the positive impacts on near-surface

velocity observed in OSSEs may also be present (albeit of a reduced

amplitude) when assimilating real observations, holding significant

potential for various users. These results highlight the potential

benefits of assimilating SWOT observations in RIOPS and similar

ocean analysis and forecasting systems. It is noteworthy that early-

release data from an experimental mission employing a radically

new observing principle can demonstrate improvements at all. This

is achieved using an assimilation system not specifically tuned to

detect the positive impacts of SWOT, which provides infrequent 2D

snapshots of sea level and reveals details not captured by other

altimeters except on rare occasions when orbits coincide. Therefore,

a deeper analysis of the impact of real SWOT data, using longer

time series in future studies, is necessary to further validate these

findings. The operational version of RIOPS currently applies errors

to SLA observations to account for uncertainty in the MDT as well

as representativeness error on the shelf. Future studies aimed at

reducing these errors, based on error characterization using real

SWOT data, could enhance the impact of SWOT assimilation in

coastal areas even further.
TABLE 2 Observing System Experiments (OSEs) using early-release
SWOT observations.

OSSE
Setup

SWOT S3a, S3b,
S6, Al

C2, J3 T&S profiles,
SST

OSE1 × × ×

OSE2/
OSSE1

× ×

OSE3/
OSSE3

× × ×

OSE4 × × × ×
Columns indicate which observations are assimilated in each OSE, including SWOT, Sentinel
3a (S3a), Sentinel 3b (S3b), Sentinel 6 (S6), Altika (Al), Cryosat2 (C2), Jason 3 (J3), as well as
temperature (T) and salinity (S) profiles, SST and sea ice concentration (IC). OSE2 is designed
to be comparable to OSSE1and OSE3 is equivalent to OSSE3.
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