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Underwater image restoration
via attenuated incident
optical model and
background segmentation
Sen Lin*†, Yuanjie Sun † and Ning Ye

School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, China
Underwater images typically exhibit low quality due to complex imaging

environments, which impede the development of the Space-Air-Ground-Sea

Integrated Network (SAGSIN). Existing physical models often ignore the light

absorption and attenuation properties of water, making them incapable of

resolving details and resulting in low contrast. To address this issue, we

propose the attenuated incident optical model and combine it with a

background segmentation technique for underwater image restoration.

Specifically, we first utilize the features to distinguish the foreground region of

the image from the background region. Subsequently, we introduce a

background light layer to improve the underwater imaging model and account

for the effects of non-uniform incident light. Afterward, we employ a new

maximum reflection prior in the estimation of the background light layer to

achieve restoration of the foreground region. Meanwhile, the contrast of the

background region is enhanced by stretching the saturation and brightness

components. Extensive experiments conducted on four underwater image

datasets, using both classical and state-of-the-art (SOTA) algorithms,

demonstrate that our method not only successfully restores textures and

details but is also beneficial for processing images under non-uniform

lighting conditions.
KEYWORDS

underwater image restoration, attenuated incident optical model, background
segmentation, new maximum reflection prior, background light layer estimation
1 Introduction

Underwater images play a significant role in fields such as the exploration of marine

resources, environmental protection, and disaster warning systems. In recent years, Space-

Air-Ground-Sea Integrated Networks (SAGSIN) have provided new solutions for underwater

image processing by integrating various resources, enabling efficient image acquisition,

transmission, and processing (Guo et al., 2021; Cheng et al., 2020). However, due to the
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unique characteristics of the underwater environment, image clarity

remains a critical issue to address, and high-quality underwater

images are particularly important in applications such as those

within the SAGSIN (Deng et al., 2019; Lei et al., 2022; Liu

et al., 2022b).

In recent decades, many enhancement (Wang et al., 2023b; Zheng

et al., 2024; Bi et al., 2024; Liu et al., 2024; Wang et al., 2023a, Wang

et al., 2024c, b) and restoration (Ali and Mahmood, 2022; Zhou et al.,

2022a; Li et al., 2022; Liang et al., 2021) methods have been developed

to improve underwater image quality. Yet, current underwater image

processing methods still have some limitations that require further

research. These methods typically rely on strict assumptions, such as

uniform lighting conditions for underwater imaging, resulting in

partially restored images with insufficient contrast and inaccurate

color information. Furthermore, most existing methods only treat

the global background light as a constant value, leading to

unsatisfactory results when handling underwater images under

complex lighting conditions (Raveendran et al., 2021).

This paper enhances on the classical imaging model by fully

considering the absorption and attenuation properties of light in

water, thus effectively addressing the issue of non-uniformly

attenuated incident light. In this paper, we propose a novel

underwater image restoration method to solve the problems

caused by the imaging process. The main contributions are

as follows:
Fron
(1) We propose a new maximum reflection prior estimation of

the background light layer and introduce the background

light layer into the attenuated incident optical model, which

fully accounts for the absorption and attenuation properties

of light in water.

(2) We utilize the gradient, chromatic aberration and area

features of the image to distinguish between the foreground

and background, thereby effectively avoiding the issue of

inaccurate color information recovery.

(3) We propose a depth map estimation model based on

features prior to generating transmission maps. This

model effectively enhances the details and successfully

recovers the texture.
The remainder of the paper is organized as follows: Section 2

presents the existing underwater image processing methods. Section

3 provides a detailed description of the proposed approach. Section

4 reports the experimental results, and Section 5 presents

the conclusions.
2 Related work

2.1 Underwater imaging model

Underwater optical images are subject to a certain degree of

attenuation due to the complexity of the underwater imaging process.

The Jaffe-McGlamery underwater imaging model (Hu et al., 2022)
tiers in Marine Science 02
accounts for the way light propagates to provide a comprehensive

characterization of the imaging process. In this model, the image

received by the underwater imaging system is composed of a linear

combination of three components: a direct component, a forward

scattering component, and a backscattering component. The

scattering intensity of the ambient light increases with distance due

to the increasing number of scattering media (scattering volume

function), leading to an augmented backscattering component. When

the distance between the object and the camera is small, the forward

scattering component becomes negligible. Therefore, the simplified

underwater imaging model primarily consists of the direct

component and the backscattering component, which can be

expressed as:

Ic(x) = Jc(x) + Bc � (1 − t(x)) (1)

Where, Ic(x) is the degraded image obtained by the imaging

device, Jc(x) is a clear image of the restored, Bc is the underwater

background light, t(x) is the transmittance of the medium, x

represents the position of a pixel. The ultimate goal of

underwater image clarity is to recover Jc(x) from Ic(x).

A schematic diagram of an underwater imaging model is shown

in Figure 1.
2.2 Underwater image processing methods

Currently, underwater image processing methods can be

categorized into traditional methods and deep learning methods.

Traditional methods can be further subdivided into model-free

underwater image enhancement methods and model-based

underwater image restoration methods, based on whether the

imaging process is considered or not.

2.2.1 Model-free method
Model-free underwater image enhancement methods utilize

digital image processing or machine learning techniques to

highlight key information in an image while suppressing redundant

information according to specific needs. Ghani et al. (Ghani and Isa,

2017) enhanced the contrast by recursively segmenting the image and

adaptively adjusting the sub-block histogram to solve the problems of

over-enhancement and noise amplification that occur in traditional

histogram equalization algorithms. Zhang et al. (Zhang et al., 2021)

designed a method to compensate for the RGB channel using

fractional compensation, combined with background stretching and

foreground stretching, to enhance the image contrast. Yuan et al.

(Yuan et al., 2020) enriched the image details through multiple

morphological operations, stretched the detail enhancement results,

and corrected the distorted colors. Zhou et al. (Zhou et al., 2022b)

extracted the irradiation component using a multi-scale Retinex

algorithm and introduced a color recovery factor to correct the

color channels. The above image enhancement methods for

underwater environments improve the image color and contrast to

a certain extent, but they still cannot completely restore the true color

and are difficult to apply to all types of underwater scenes.
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2.2.2 Model-based method
The physical model-based underwater image restoration

methods fully consider the propagation characteristics of light in

water. They establish an imaging model based on the underwater

image degradation process, estimate the model parameters based on

priori assumption information, and invert the model to obtain the

ideal clear image. He et al. (He et al., 2010) presented a Dark

Channel Prior (DCP) algorithm based on a large number of outdoor

clear image statistical laws. Drews et al. (Drews et al., 2016)

presented the Underwater Dark Channel Prior (UDCP) by

verifying the two hypotheses that the blue-green channel of

underwater images contains the main visual information and that

the DCP algorithm when applied to the blue-green channel.

Akkaynak et al. (Akkaynak and Treibitz, 2018) verified that the

attenuation coefficients of the direct-incidence and backscattering

components are different, and proposed the Akkaynak-Treibitz

model to solve the problem of instability in underwater imaging

models. Hou et al. (Hou et al., 2020) developed an Underwater

Total Variation (UTV) model based on the UDCP to effectively

remove underwater noise interference. Li et al. (Li and Li, 2019)

combined the diagonal gradient operator and underwater light

attenuation to estimate the scene depth prior and used quadtree

subdivision to estimate the background light and recovered the

scene brightness based on an underwater imaging model. Li et al. (Li

et al., 2016) estimated the ambient light based on Minimum

Information Loss Prior (MILP) and adjusted the brightness, color

and contrast of the image by using the histogram of a naturally clear

image as a reference. Zhou et al. (Zhou et al., 2023b) combined a

comprehensive imaging formation model with prior knowledge and

unsupervised techniques to adopt an unsupervised approach to

improve the accuracy of monocular depth estimation and reduce

the effects of artificial lighting. While the above methods improved

image visibility and clarity with high efficiency, their results were

affected by the accuracy and availability of prior information, and

their generalization ability and adaptability are limited.
Frontiers in Marine Science 03
2.2.3 Deep learning-based method
Deep learning is a dataset-based training method for the recovery

and enhancement of degraded images, achieved by learning the non-

linear relationship between real and degraded images. Li et al. (Li

et al., 2021) presented the underwater image enhancement network

(Water-Net), which uses three preprocessed resultant images—white

balance, gamma correction, and histogram equalization of degraded

images—as inputs to a gated fusion network, combined with three

confidence maps to obtain the fusion results. Liu et al. (Liu et al.,

2022a) proposed a supervised learning-based adaptive learning

attention network (LANet) for underwater image enhancement.

This network utilizes a multi-scale fusion module to combine

different spatial information and introduces an asynchronous

training mode to improve the performance of the network’s

multinomial loss function. Chen et al. (Chen et al., 2021) proposed

an underwater image enhancement algorithm based on deep learning

and imaging models. This algorithm reconstructs clear underwater

images using convolutional neural networks to simulate the image

formation process, by integrating the features of local texture and the

features of the depth map. Zhou et al. (Zhou et al., 2023a) proposed

an efficient Fully Guided Information Flow Network (UGIF-Net).

This network accurately approximates the color information by

integrating the features of two color spaces within a unified

framework, and simultaneously adaptively senses the critical color

information. Chen et al. (Chen and Pei, 2022) introduced

Underwater Image Enhancement via Content and Style Separation

(UIESS), a framework that separates coded features into content and

latent styles, distinguishes different domain latent styles, and

performs domain adaptation and image enhancement. Wang et al.

(Wang et al., 2024a) proposed a human visual perception-driven

image enhancement paradigm for underwater scenes based on

reinforcement learning, overcoming the limitations of deep models.

Deep learning methods are relatively intuitive, offering high efficiency

and interpretability. Nevertheless, they require substantial amounts of

paired training data. Acquiring paired clear and fuzzy image datasets
FIGURE 1

A schematic diagram of an underwater imaging model.
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in an underwater environment is extremely challenging, which may

impede the training process and result in limited performance for

underwater image enhancement or restoration tasks.
3 Methodology

This paper presents an underwater image restoration method

based on an attenuated incident optical model and incorporates

background segmentation. The proposed methodology is

summarized in Figure 2. Specifically, by analyzing the complex

light characteristics underwater, the method segments the

background and foreground regions using three effective features:

gradient, chromatic aberration, and area. Each region is then

enhanced and restored separately. Subsequently, the attenuated

incident optical model is refined by introducing a background

light layer to solve the problem of non-uniform incident light.

Meanwhile, a new maximum reflection prior is employed to

estimate the color and intensity images of the background light

layer. Finally, the restored image is solved inversely for the

foreground region with the background light layer removed, and

the saturation and brightness of the background region

are stretched.
3.1 Background segmentation

The background region of an underwater image typically

contains fewer scene objects and exhibits less texture and edge

information compared to the foreground region. Moreover, as the
Frontiers in Marine Science 04
background region is prone to more severe color deviation,

applying the attenuated incident optical model restoration

directly to this region can exacerbate the color deviation.

Therefore, we segment the foreground and background regions

based on three effective image features: gradient, chromatic

aberration, and area.

Assuming that the pixel gradient of the background region is

smaller than that of the foreground region, the gradient value can be

used to determine the region to which the pixel point belongs.

Specifically, assuming that the gradient value of the background

region is close to 0, the edges of the image in all directions are

extracted using multi-directional diagonal gradient operator, as

shown in the multi-directional oblique gradient operator template

in Figure 3(I), which takes into account skewed edges in addition to

the horizontal and vertical edges. Gx and Gy are obtained by

converting this template with the domain of each pixel point of

the image:

Gx = 8 (2)

Gy = o
8

k=1

(Ic − Ik) (3)

Compute the image gradient channel expression:

Gdxt = ∇I(x, y)j j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x + G2

y

q
(4)

Gaussian filter enhancement is applied Gdxt . Edge detection of

enhancement results using Canny operators; the edge detection

results are then binarized using the morphological expansion

operation. The binarization Bs1(x) is the result of gradient
FIGURE 2

Overview of the proposed method.
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segmentation with pixel value 0 in the background region and 1 in

the foreground region with the expression:

Bs1(x) =
0, x ∈ OB

1, x ∈ OF

(
(5)

Where,OB is the background region,OF is the foreground region.

Due to the selective absorption of light by water, light of

different wavelengths will exhibit varying degrees of attenuation

with increasing depth, and the attenuation rate of the red channel is

faster than that of the blue and green channels. In the foreground

region, the attenuation of the channels is weak and the difference in

intensity is not significant. In the background region, the red

channel decays rapidly, and its intensity value differs greatly from

that of the blue-green channel; the difference in pixel values of the

three channels can be used to determine the area to which the pixel

point belongs:

C(x) = max 
x∈W

(Ig(x), Ib(x)) −max 
x∈W

(Ir(x)) (6)

k = 0:4(max 
x∈W

(Ig(x), Ib(x))) (7)

Setting the threshold k . The pixel point difference in the

background area is greater than the threshold and the binarization

result is 1. The pixel point difference in the foreground region is

less than the threshold value, the binarization result is 0. The

expression is:
Frontiers in Marine Science 05
Bs2(x) =
1, C(x) > k , x ∈ OB

0, C(x) < k , x ∈ OF

(
(8)

To avoid phenomena such as mistaking objects with smooth

surfaces for the background and highlights for the foreground, the

error regions are excluded based on the percentage of the

region’s area.

Finally, the initial segmentation, characterized by low gradient

and large color difference, is subjected to morphological processing

to eliminate scatter and fill in gaps. Subsequently, the background

region whose area is not less than 5% of the whole image is retained,

and the final segmentation, where the pixel value of the background

region is 1 and the pixel value of the foreground region is 0. The

expression is:

Bs3(x) =
0, x ∈ OB

1, x ∈ OF

(
(9)

A diagram of the segmentation process is shown in Figure 3(II).
3.2 New maximum reflection prior

Currently, further research is needed on underwater non-

uniform incident light. However, the foggy environment at night

has similarities to the underwater environment. The Maximum

reflection prior(MRP) (Zhang et al., 2017), which is based on the
FIGURE 3

(I). The multi-directional oblique gradient operator template. (II). Background region segmentation process. (a1) Raw image. (a2) Restore image. (b1)
Gradient feature image. (b2) Result after Gaussian filter enhancement. (b3) Edge detection image. (b4) Gradient image after binarization. (c1)
Chromatic aberration image. (c2) Chromatic aberration image after binarization. (d1) Area feature image. (d2) Final Segmentation.
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statistical characteristics of a large number of clear outdoor images,

effectively achieves deblurring in uneven lighting environments.

Therefore, we improve the MRP to solve the problem of blurring in

the underwater non-uniform incident light environment. The MRP

reveals that the intensity values of each color channel are high in

most of the image blocks. Definition:

MWx
c = max 

y∈Wx

Ic(y) = max 
y∈Wx

(A(y)Rc(y)) (10)

Where,MWx
c is the maximum intensity in the Ωx neighborhood

of the color channel c, A(y) is the incident light, Rc(y) is the

reflectance. The incident light of a clear image can be considered

uniform (i.e., with a value of 1). Then the maximum intensity MWx
c

within each color channel is mainly determined by the reflectivity

Rc(y).

Since light propagating in water is selectively absorbed by the

water column, resulting in attenuation of the incident light, direct

use of the maximum reflection prior for underwater image

restoration will amplify the noise. In light of this, we propose a

new maximum reflection prior.

Figure 4(I) shows the underwater images and their

corresponding maximum reflectance maps, from which it can be

seen that the maximum reflectance maps have high pixel values and

presents different color tones. Regardless of whether the lighting is

uniform or non-uniform, the maximum reflective intensity is

higher in well-illuminated areas. The above analysis indicates that

the maximum reflection map is strongly correlated with the lighting
Frontiers in Marine Science 06
environment during imaging, and can reflect variations in non-

uniform incident light intensity and color change. Therefore, the

attenuated light can be roughly estimated based on the

reflection map.

For an unattenuated underwater scene, where the light is not

attenuated and is uniform, A(y) can be considered as representing

the background light intensity and is assumed to be 1. The

underwater maximum reflection map is defined as follows:

MWx
c = max

y∈Wx

 A(y)Rc(y) = max
y∈Wx

 Rc(y) (11)

We selected 400 uniformly illuminated images and 400 non-

uniformly illuminated images in the current publicly available

dataset for statistical purposes. From Figure 4(II) and the analysis

above, it can be seen that the maximum intensity value for each

color channel of the image block tends to 1 in most normalized

images, which represents the new maximum reflection prior value:

MWx
c → 1 (12)
3.3 Attenuated incident optical model

The traditional model is based on the assumption of uniform

incident light. However, the degree of spectral absorption

attenuation by the water is affected by factors such as water

turbidity and underwater depth during the propagation of light
FIGURE 4

(I). Maximum reflection maps of underwater degradation images. (A–C) Uniformly illuminated images. (D–F) Non-uniformly illuminated images. (II).
Maximum reflection maps of underwater degradation images. (A–C) Uniformly illuminated images. (D–F) Non-uniformly illuminated images.
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underwater. The light source in shallow water is mainly generated

by the sunlight above the water surface (uniform illumination),

while artificial light sources are often used in deep water areas where

there is a severe shortage of light. Artificial light sources do not

illuminate the underwater scene uniformly, resulting in reduced

image contrast and different color deviations.

Therefore, it is inaccurate to assume that the global background

light is a constant value. In underwater complex imaging

environments, the lighting situation is influenced by a

combination of natural and artificial light sources, resulting in

variable background light. Taking into account the effect of non-

uniform incident light, a background light layer is introduced into

the conventional underwater imaging model, and the attenuated

incident light imaging model is defined as:

Ic(x) = Bc(x)Rc(x)tc(x) + Bc(x)(1 − tc(x)) (13)

Where, Bc(x)Rc(x) is the scene reflection. According to Retinex

theory (Fu et al., 2023), an underwater image can be represented as

the product of the object reflection component and the irradiation

component, decomposing the scene reflection into two images, the

background light layer and the scene reflection component.

The background light layer can be expressed as the product of

the background light color layer and the background light intensity

layer with the expression:

B(x) = Li(x)wc(x) (14)

Where, Li(x) is the background light intensity layer, and wc(x)

is the background light color layer. Substituting Equation 14 into

Equation 13 yields:

Ic(x) = Li(x)wc(x)Rc(x)tc(x) + Li(x)wc(x)(1 − tc(x)) (15)

Assuming that i(x), wc(x) and tc(x) are constants within a

certain localized block of pixels Ωc (x), the maximization is

obtained for each localized block:

MWx
c      = max

y=Wx

Ic(y)

            = max
y=Wx

(LiWxwWx
c Rc(y)t

Wx
c + LiWxwWx

c (1 − tWx
c ))

            = max
y=Wx

Rc(y)(Li
WxwWx

c tWx
c ) + LiWxwWx

c (1 − tWx
c ))

(16)

There is by the new maximum reflection prior: max
y=Wx

Rc(y) = 1.

Substituting into Equation 16 yields:

MWx
c   = max

y=Wx

Rc(y)(Li
WxwWx

c tWx
c ) + LiWxwWx

c (1 − tWx
c ))

            = LiWxwWx
c tWx

c + LiWxwWx
c (1 − tWx

c ))

            = LiWxwWx
c

(17)

Thus, the background light color layer can be obtained:

wWx
c = MWx

c =LiWx (18)

The maximum value of MWx
c in the three color channels is the

background intensity light LiWx . The background light color layer,

with its light intensity removed and refined through guided filtering,
Frontiers in Marine Science 07
is denoted as wc(x).To remove the effect of the background light

color layer from the underwater image, the expression is:

I
0
c(x)  = Ic(x)=wc(x)

      = Li(x)Rc(x)tc(x) + Li(x)(1 − tc(x))
(19)

Where, I
0
c(x) is the effect of removing the background light color

layer in the background.

Although the background light color layer has been eliminated,

the background light intensity layer still exists, and correction of the

background light intensity layer is achieved through white balance,

yielding the ~Ic(x) that effectively removes the influence of the

background light layer. Subsequently, the image with the

background light layer removed is applied to the foreground

region, resulting in:

fIOF
c (x) = LJOF

c tc(x) + L(1 − tc(x)), x ∈ OF (20)
3.4 Transmission map estimation

In response to the limitations of the classical dark channel prior

algorithm, where bright pixel points, such as white objects, may lead

to errors in the depth of field information obtained from the dark

channel map, a combination of low-pass filtering and UDCP is

utilized for background light estimation. Low-pass filtering is

employed to obtain low-frequency components related to water

background light, thus avoiding the estimation of white objects as

background light. Subsequently, UDCP is used to obtain the dark

channel diagram. Taking the first 0.1% of pixel points to calculate the

background light is more accurate and prevents overcompensation of

the image due to the attenuation of light absorption in water. This

approach is specifically expressed as follows:

Jdark(x) = min
y∈W(x)

min
c∈ g,bf g

G½eIc(y)�� �� �
(21)

L = avg(eIc(x)), x ∈ b0:1% (22)

Where, G½:� is a Gaussian low-pass filter. The convolutional

kernel is used to calculate the average value of the center pixel and

its neighborhood pixels to achieve the purpose of smooth filtering,

Ω (x) is a rectangular window centered on x, b0:1% is the set of

pixels that satisfy the requirement. In order to prevent the block

effect of the obtained dark channel graph, guided filtering is used to

further refine it.

Refer to (Zhou et al., 2023c). Based on the analysis of the feature

prior, a new depth map estimation method is proposed.

Subsequently, the transmission map is obtained according to the

Lambert-Beer law. Since more distant scenes exhibit higher fog

density and a higher luminance component, we opted to utilize the

dark channel and the brightness map in the Lab for the estimation

of the transmission map.

We compensate for the red channel by inverting its value to

obtain a depth map dr(x) based on the dark channel:
frontiersin.org
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dr(x) = min 

min
y∈W(x)

(1 − eIr(x)),
min
y∈W(x)

(eIg(x)), min
y∈W(x)

(eIb(x))
0B@

1CA (23)

We can convert RGB to Lab color space to obtain a brightness

map. The depth map dl(x) related to brightness is shown below:

l(x) = min
x∈W

~l(x) (24)

dl(x) = min
y∈W(x)

l(x) (25)

Where, ~l(x) is the intensity channel of the input image in the

Lab color space.

We obtain the adaptive parameters based on the sigmoid

function to estimate the depth map d(x).

a =
1

1 + exp ( − (avg(~Igray) − dm)))
(26)

d(x) = (1 − a) � dr(x) + a � dl(x) (27)

Because the brighter the scene, the greater the gray value of the

image, a grayscale image ~Igray is selected to obtain adaptive

parameters. We conducted extensive experiments on UIEB dataset

(Li and Li, 2019) to verify the accuracy of the depth map estimation

for different values of dm in the range of 0.1-0.9 (with a step size of

0.1). Figure 5 shows several examples. We can observe that when the

depth maps (a)-(e) in Figure 5 are inaccurately estimated, some

details are lost. At this point, dm takes values in the range of 0.1-0.4.

Simultaneously, smaller values of dm lead to excessively large values of

a . When dm > 0:5, the depth maps (g)-(h) in Figure 5 incorrectly

estimate the foreground as the background. However, when dm =  0:5

, both the foreground and the background are correctly described,

and the depth maps are more detailed.

The transmission map is obtained from the Lambert-Beer law.

tr(x) = exp  ð− brd(x ÞÞ (28)

tg(x) = exp  ð− bgd(x) = (exp  ð− brd(x) ÞÞb
g

br = (tr(x))lg (29)
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tb(x) = exp  ð− bbd(x) = (exp  ð− brd(x) ÞÞb
b

br = (tr(x))lb (30)

Where, tc(x) is the transmission map of the image eIc(x), bc is the

attenuation coefficient. Refer to (Peng and Cosman, 2017), br = 1
7,

lg = 540nm, lb = 450nm.

After obtaining the background light and transmission images,

the image is restored according to the attenuated incident optical

model for the foreground region, with the background light layer

removed.

JOF
r (x) =

fIOF
r (x) + L(1 − tr(x))

Ltr(x)
, x ∈ OF (31)

JOF
g (x) =

fIOF
g (x) + L(1 − tg(x))

Ltg(x)
, x ∈ OF (32)

JOF
b (x) =

fIOF
b (x) + L(1 − tb(x))

Ltb(x)
, x ∈ OF (33)
3.5 Background region stretched
and superposition

The background region is stretched using the saturation and

brightness components. The final image is obtained by blending the

background region with the foreground region, and then the boundary

between the two regions is smoothed tomake the resulting image more

natural. Specifically, the segmented image is first converted into HSV

color space. Then, the saturation and brightness components are

stretched using histogram equalization (Rao, 2020) to enhance the

visual quality of the background region. Afterward, the stretched image

is converted back into RGB color space.

The output image is obtained by superimposing the stretched

background and restored foreground, and bilateral filtering is used

to smooth the image while maintaining edge sharpness. The

solution procedure for the reduction method proposed in this

paper is presented in Algorithm 1.
FIGURE 5

Determination of adaptive parameter values. (A) Raw images. (B–J) Depth maps for different parameter values (0.1-0.9, step size 0.1). (K)
Restore images.
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Fron
Input:Ic(x)

1. Split Ic(x) into IOF
c (x) and IOB

c (x)

2. Establish an attenuated incident optical model as

Equation 13

3. Compute wWx
c , LiWx via Equations 16–18

4. Remove the background light layer from Equation (19)

5. Compute L via Equation (22)

6. Compute tc(x) via Equations 28–30

7. if x ∈ OF do

8. Compute the recovered image JOF
c (x) via Equations 31–33

9. else if x  ∈  0B do

10. Convert IOB
c from RGB apace to LAB

11. Obtain JOB
c by stretched IOB

c by the saturation

and brightness

12. end
Algorithm 1. Underwater image restoration.
4 Experimental results and analysis

4.1 Experiment settings

4.1.1 Test environment
The algorithm was run on MATLAB R2022b software under

Windows 10 operating system, and the computer configuration was

as follows: Intel I5-9300 CPU @ 2.40 GHz and 64 GB RAM.

4.1.2 Dataset
To validate the performance of the algorithm, we choose

to perform comparative experiments on the Color-Check7

(Lin et al., 2023), RUIE (Liu et al., 2020),UIEB and Ocean-dark

(Porto Marques et al., 2019) open datasets. The Color-Check7

dataset contains 7 different underwater scenes for evaluating the

color deviation calibration of underwater images. The UIEB dataset

contains 890 raw images and 60 challenge images containing

underwater images of varying quality. The RUIE dataset contains

three large-scale subsets of real underwater imagery: UCCS, UIQS,

and UTTS, we chose UCCS and UIQS for our evaluation. The

Ocean-dark dataset consists of 183 low-light underwater images

taken with artificial lighting.

4.1.3 Comparison algorithm
We selected 8 algorithms for comparative experiments,

including both classical and state-of-the-art (SOTA) algorithms.

Specifically, UDCP, Fusion (Ancuti et al., 2017), DRDCP

(Wang et al., 2019), FUnIE-Gan (Islam et al., 2020), Shallow-

uwnet (Naik et al., 2021), MLLE (Zhang et al., 2022), UIESS and

ICSP (Hou et al., 2023). Where FUnIE-Gan, Shallow-uwnet and

UIESS are deep learning algorithms.

4.1.4 Evaluation indexes
Restricted by the current open datasets RUIE and Ocean-dark

without the corresponding clear images, we choose one image color

deviation calculation index and four no-reference indexes to evaluate
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the performance of the algorithms in this paper and the comparison

algorithms: CIEDE2000 (Lin et al., 2021). Underwater Color Image

Quality Evaluation(UCIQE) (Yang and Sowmya, 2015). Frequency

Domain Underwater Metric(FDUM) (Yang et al., 2021). Information

Entropy(IE) (Azmi et al., 2019). Colorfulness index, Contrast index

and Fog density index(CCF) (Wang et al., 2018). CIEDE2000

measures the difference between the color to measure and the

standard color, the lower the value, the stronger the color

restoration of the image. UCIQE is applied to quantify uneven

color blurring and low contrast in underwater images, with higher

values resulting in stronger image quality. FDUM fuses color,

contrast, and sharpness measurements by weighted summation,

with higher values indicating better overall image performance in

terms of color, contrast and deblurring. IE indicates the amount of

information contained in the image, larger values indicate more

detailed information. CCF fully considers the chromaticity

index related to light absorption, and the larger its value, the

better the overall performance of the image in terms of color,

contrast and defogging.
4.2 Qualitative comparison

To evaluate the effectiveness of the color correction method, it is

tested on the color-Check7 dataset. From Figure 6, we can see that

the raw image has poor brightness, low contrast and color

distortion, Fusion and MLLE algorithms improve color distortion,

but the brightness of Fusion requires improvement, the saturation

of MLLE is poor, and the color recovery of color cards is not natural,

as shown in the results of D10, T8000 and Z33 color cards. Other

contrast algorithms, such as DRDCP, FUnIE-GAN, ICSP, fail to

address the problem of color distortion and even exacerbate it. The

images recovered by the algorithm in this paper have more natural

colors with better visual effects.

To verify the performance of the algorithm in natural light, a

comparative experiment is performed on the RUIE dataset. As shown

in Figure 7, UDCP fails to correct the color deviation. The result

images from DRDCP and Fusion are gray, and the color recovery is

not sufficiently natural. The color recovery of MLLE is unrealistic and

unnatural, and the result images require improvement. The result

images from FUnIE-GAN and Shallow-uwnet display light yellow

distortion and low contrast. UIESS brings about red distortion. ICSP

fails to completely eliminate the color deviation. The algorithms

presented in this paper provide more thorough color correction,

higher contrast, effectively improved visibility, and more natural

color reproduction.

To further validate the robustness of the algorithm under natural

light, we conducted comparative experiments on the UIEB dataset.

Figure 8 shows the degraded images for several different color

deviations in the UIEB. UDCP aggravated the color distortion, and

the resulting image was dark. FUnIE-GAN, Shallow-uwnet, and

UIESS additionally introduce color distortion. DRDCP and Fusion

are inadequate for improving the visibility of low-visibility underwater

images and eliminating the foggy appearance. MLLE can effectively

enhance image visibility, but it introduces local darkness, and the

saturation needs to be enhanced. ICSP overcompensates for brightness
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and cannot completely remove color distortion. The proposed

algorithm is more thorough in removing color distortion, can

effectively improve visibility, and has better texture detail recovery.
4.3 Quantitative comparison

As shown in Table 1, the algorithm has the best index when

processing D10, Z33, and TS1 images, and the average index on the

dataset is also the best, which once again verifies the color

correction ability of the algorithm.

From Table 2, it can be seen that, compared with the proposed

algorithm, two indexes are optimal and two indexes are sub-optimal

on the RUIE dataset. Two indexes on the UIEB dataset are optimal,

and one index is sub-optimal. The combined qualitative and

quantitative evaluation results show that the proposed algorithm

has stronger contrast recovery and produces better processing

results for underwater images of different quality levels.
4.4 Experimental results for non-
uniform light

To verify the robustness of the algorithm under complex

illumination, underwater images in complex lighting environments

such as low light and artificial lighting were selected from UIEB,

Ocean-dark dataset, and reference (Treibitz and Schechner, 2008) for

comparative experiments. As shown in Figure 9, from top to bottom,
Frontiers in Marine Science 10
the images with low light, heavily disturbed by artificial light sources,

and non-uniform illumination are presented, along with their

resultant maps. For low-light images, Fusion effectively restores

brightness, but the contrast still needs to be improved, while other

algorithms fail to restore brightness and still suffer from color

deviation. For images severely disturbed by artificial light sources,

UDCP and Shallow-uwnet result in darker dark regions of the image,

and the other algorithms result in exposure in the light source region.

For non-uniform illumination environments that are seriously

disturbed by artificial light sources and have low image contrast, the

algorithm in this paper can correct the color bias and improve the

image contrast compared to other algorithms, with better visual effects.

As can be seen from Table 3, this paper’s algorithm achieves two

optimal and two sub-optimal objective indexes for the resultant

image when processing images in non-uniform lighting

environments. The combined qualitative and quantitative

evaluation results show that the algorithm has strong robustness.
4.5 Running time comparison experiment

To verify the efficiency of the algorithm, the results are shown in

Table 4. As a result of the addition of segmentation and superposition

steps in this paper’s algorithm, the running time is slightly slower

than that of other individual algorithms. However, this paper’s

algorithm achieves better qualitative and quantitative results, and it

is able to effectively deal with images under non-uniform lighting

conditions. Overall, the algorithm has better performance.
FIGURE 6

Results of color recovery. From top to bottom, the underwater color charts taken by TS1, W60, W80, D10, Z33, T6000, T8000 and the processing
results of each algorithm were respectively obtained.
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4.6 Ablation experiment

To evaluate the effectiveness of the algorithm and its individual

components, images were randomly selected from the dataset for

the ablation experiment. The experiment comprised the following

three parts: the uncorrected background light intensity layer, the

uncorrected background light color layer, and the complete

algorithm. The results of the experiment are shown in Figure 10.

As can be seen from the visual comparison in Figure 10,

compared with the original image, the uncorrected raw image of

the background light intensity layer has low contrast, fails to carry

out effective defogging, and has an unnatural color correction. The

uncorrected raw image of the background light color layer has

improved contrast and reduced color bias, but there still exists the

phenomenon of incomplete color bias correction or the

introduction of other color biases, as well as over-enhancement.
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The raw image of this paper’s algorithm with all modules included

has a natural restoration of the color, with significantly improved

contrast, clear details, resulting in the best visual effect.
4.7 Application test

To verify the application effectiveness of the proposed algorithm,

the SURF algorithm (Bay et al., 2006) is employed for feature point

matching. As shown in Figure 11(I), three typical images are selected

for experimental comparison, with the feature pointmatching numbers

of these images displayed in the upper right corner of the figure. From

Figure 11(I), it is evident that the number of local feature points in the

recovered image has significantly increased. This demonstrates the

effectiveness of the proposed method in detail augmentation and

provides reliable data support for realizing SAGSIN.
FIGURE 7

Visual comparisons on the RUIE dataset.
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4.8 Failure case analysis

Due to the extremely complex lighting conditions in

underwater environments, different depths, water qualities, and

biological communities can all affect lighting, leading to varying

degrees of color deviation. Although our method can effectively
Frontiers in Marine Science 12
correct most color deviations, there may still be some color residuals

in certain extreme or special underwater environments. During the

experiment, a few failed cases emerged occasionally. As shown in

Figure 11(II), these images exhibit low contrast, significant color

deviations, and extremely blurred object edges. From a subjective

perspective, although our algorithm corrects image color deviations
FIGURE 8

Visual comparisons on the UIEB dataset.
TABLE 1 CIEDE2000 comparison of different methods on the Color-Check7 dataset.

Method D10 Z33 T6000 T8000 TS1 W60 W80 Avg

UDCP 24.407 25.075 22.401 30.886 24.644 22.533 27.934 25.412

Fusion 22.699 18.947 18.596 19.517 19.342 21.303 24.544 20.707

DRDCP 22.972 23.599 25.039 19.925 22.148 22.858 19.127 22.238

FUnIE-GAN 23.990 21.212 20.294 27.015 28.295 22.416 24.527 23.964

Shallow-uwnet 21.258 18.857 18.787 27.448 27.622 20.706 25.059 22.819

MLLE 22.249 26.136 27.543 19.048 18.000 22.729 21.578 22.469

UIESS 21.111 21.309 18.880 23.545 21.461 19.367 19.633 20.758

ICSP 33.983 44.124 40.404 12.455 17.133 40.646 25.721 30.638

Ours 20.714 17.436 19.909 17.981 16.663 21.560 20.718 19.283
Optimal values are in bold and sub-optimal values are underlined.
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TABLE 2 Quantitative comparisons of different methods on the RUIE dataset and the UIEB dataset.

Method
RUIE UIEB

UCIQE↑ FDUM↑ IE↑ CCF↑ UCIQE↑ FDUM↑ IE↑ CCF↑

UDCP 0.524 0.409 6.639 28.386 0.615 0.643 7.010 47.874

Fusion 0.540 0.344 7.612 22.802 0.595 0.554 7.446 25.088

DRDCP 0.520 0.497 7.177 26.184 0.574 0.636 7.469 40.923

FUnIE-GAN 0.490 0.350 7.055 17.581 0.565 0.506 7.154 20.452

Shallow-uwnet 0.412 0.189 6.403 12.128 0.523 0.352 6.900 19.674

MLLE 0.575 0.560 7.735 41.549 0.613 0.800 7.560 61.499

UIESS 0.526 0.339 7.252 18.798 0.595 0.508 7.307 23.305

ICSP 0.462 0.529 7.250 24.397 0.515 1.045 6.862 36.037

Ours 0.640 0.638 7.641 40.727 0.649 0.843 7.422 49.535
F
rontiers in Marine Scienc
e 13
Optimal values are in bold and sub-optimal values are underlined.
FIGURE 9

Restoration results of the non-uniform lighting scene.
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and enhances image contrast, the naturalness of the image is poor,

and the edge smoothness needs to be improved.

Therefore, we will continue to optimize algorithms in future

research to improve adaptability and robustness.
5 Conclusion

In this paper, we propose an attenuated incident optical model

that accounts for the attenuation properties of light in water, with a

focus on the light absorption attenuation characteristics of water.

We propose a new maximum reflection prior to the estimation of

the background light layer, which is introduced in the attenuated

incident optical model and combined with background

segmentation to restore degraded images. Our method

successfully restores details and textures, providing reliable data

support for SAGSIN to realize cross-domain and multi-dimensional
TABLE 3 Quantitative comparisons of different methods on the non-
uniform lighting scene.

Method UCIQE↑ FDUM↑ IE↑ CCF↑

UDCP 0.631 0.546 6.272 45.142

Fusion 0.576 0.426 6.755 24.285

DRDCP 0.591 0.525 7.397 32.756

FUnIE-GAN 0.608 0.455 6.519 33.589

Shallow-
uwnet

0.571 0.353 6.735 24.575

MLLE 0.599 0.641 6.559 65.634

UIESS 0.611 0.445 6.949 24.052

ICSP 0.583 0.644 6.985 21.951

Ours 0.633 0.648 7.301 40.497
Optimal values are in bold and sub-optimal values are underlined.
TABLE 4 Running time of different methods(/s).

Method UDCP Fusion DRDCP FUnIE-
GAN

Shallow-
uwnet

MLLE UIESS ICSP Ours

times 0.781 1.481 0.438 0.482 0.116 0.106 0.623 0.134 0.447
Optimal values are in bold and sub-optimal values are underlined.
FIGURE 10

Results of ablation experiment, optimum value is marked red. From left to right: (A) Raw images. (B) Uncorrected background light intensity layer.
(C) Uncorrected background light color layer. (D) Proposed algorithm.
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information fusion and sharing. To validate the superiority and

effectiveness of our method, we conducted a comprehensive series

of experiments and performed qualitative and quantitative

comparisons with eight existing clarity approaches. Additionally,

we conducted experiments under non-uniform illumination
Frontiers in Marine Science 15
conditions to demonstrate that our method is also favorable for

processing images in such scenarios. While our method excels in

restoring non-uniform incident light, it still faces challenges when

processing images from extreme underwater environments. We

intend to address these challenges in our future work.
FIGURE 11

(I) Feature point matching. The white numbers represent the number of matched feature points. (II) Failure case analysis: the first two rows represent
the raw images and its corresponding scatter diagram, while the last two rows represent the resulting images and its corresponding scatter diagram.
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