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Black shales have attracted the attention of numerous researchers not only due

to their high potential as hydrocarbon source rocks and shale gas reservoirs, but

also to the enrichment of critical metal elements in black shale series. Black

shale of the Cambrian Shuijingtuo Formation is one of the most important black

shales in the Yangtze platform. This paper conducts integrated research on

the mineralogical and geochemical characteristics of this black shale from the

Luojiacun section inWestern Hubei Region, aiming at elaborating the enrichment

mechanism of elevated critical metal elements in the Shuijingtuo black shale.

Minerals in the Shuijingtuo black shale are predominantly composed of quartz

(avg. 43.0%) and clay minerals (avg. 32.5%), with small proportions of calcite,

albite, clinochlore, and pyrite. The Shuijingtuo black shale is characterized by

high total organic carbon (TOC, avg. 3.9%) content and enriched in V-Ni-Cr-U

and Sr-Ba critical metal assemblages. The elevated V, Cr, Ni, and U present

dominant organic affinities, while Sr and Ba are closely correlated to calcite and

pyrite, respectively. The enrichment of V-Cr-Ni-U critical element assemblages

in Shuijingtuo black shale are ascribed to the high primary productivity, anoxic

depositional conditions, marine biologic production, and low-temperature

hydrothermal activities. The enrichment of Sr and Ba is related to the high

primary productivity and anoxic depositional conditions, respectively.
KEYWORDS

critical elements, enrichmentmechanism, palaeoredox environment, organic-rich black
shale, Shuijingtuo Formation, Western Hubei region
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1 Introduction

Black shales are commonly considered as potential

hydrocarbon source rocks and shale gas reservoirs because of the

high total organic carbon (TOC) content (Gao et al., 2019; Yan

et al., 2021), which contribute to large proportions of Proterozoic

and Palaeozoic hydrocarbons and play important roles in oil and

gas development worldwide (Luning et al., 2000; Wu et al., 2015).

Moreover, a variety of important elements, including V, Mn, Ni,

Mo, U, Ba, and P are significantly enriched with high grade and

large scale in these black shale series in some areas (Ye and Fan,

2000; Fathy et al., 2024), which have a promising economic

potential. Consequently, research on black shales is of important

economic significance for both hydrocarbon and polymetallic

extraction. Furthermore, due to the occurrence of several

particular geological events (e.g., mass extinctions, biodiversity

change, oceanic anoxia, and continental glaciation) during the

deposition process of black shales (Armstrong et al., 2009;

Delabroye and Vecoli, 2010; Yan et al., 2010; Sheets et al., 2016;

Trela et al., 2016; Pohl et al., 2017), research on black shales is of

important theoretical significance as well , which can

correspondingly provide valuable information for these geological

events (Ghosh and Sarkar, 2010; Dai et al., 2018; Yan et al., 2021).

Black shale of the Niutitang Formation (corresponding to the

Shuijingtuo Formation in this paper) is a set of shale with great gas

potential in South China. A large number of scholars have carried

out studies on the evaluation of pore characteristics and gas

potential, sources of organic matter, geochemical characteristics

of rare earth elements and restoration of sedimentary environment

in the Niutitang Formation black shale (Yin et al., 2017; Wan et al.,

2018; Xi et al., 2018; Tian et al., 2019; Liu et al., 2020; Wu et al.,

2020; Zhang et al., 2021; Awan et al., 2022; Li et al., 2022;

Wei et al., 2022). In particular, research on mineralogical and

geochemical characteristics of the Shuijingtuo black shale

composition is of crucial significance because they have been

widely used as important indicators for ancient seawater

chemistry, palaeomarine environment conditions, and source

compositions of detrital sediments (Algeo and Maynard, 2004;

Algeo and Rowe, 2012; Dai et al., 2013b) due to their predictable

behavior during different geological processes (Ghosh and Sarkar,

2010; Dai et al., 2014, 2017).

However, due to the heterogeneity in chemical composition of

black shales, the mineralogical and geochemical characterization of

these shales remains contentious, let alone the enrichment

mechanism of strategic metal elements in black shales

(Han et al., 2018). In the current study, the mineralogical and

geochemical characteristics of black shales of the Cambrian

Shuijingtuo Formation from Western Hubei Region are

elaborated, with emphasis on the abundance, occurrence and

genesis of potential elevated strategic metals in black shales. This

research will provide not only essential mineralogical and

geochemical evidences for the provenance composition and

depositional paleoenvironment of black shales, but also an

objective evaluation on the enrichment of potential strategic

metal element resources in black shales.
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2 Geological setting

A set of black mudstones and black siliceous rocks with extremely

high organic matter content were widely developed and well preserved

in the Yangtze platform in the Early Cambrian. The Yangtze platform

generally transited from a shallow water platform area to a slope and

deep-water basin during the Early Cambrian. Consequently, during

this period, the Yangtze platform was roughly divided into four

sedimentary facies areas from NW to SE, viz., the inland shelf

shallow water platform, the outer shelf depression, the shelf edge

upper slope area, and the deep-water basin area (Och et al., 2013;

Cremonese et al., 2014; Fu et al., 2016; Zhang et al., 2016).

The western Hubei Region is geotectonically located on the

southeast slope of Huangling Uplift in the northwest of the middle

of the Yangtze Platform, known as the Yichang slope belt, where the

black shales of the Early Cambrian Shuijingtuo Formation are

widely distributed (Figure 1A). In the Yichang slope belt, there is

a double-layer basement composed of the Kongling complex in the

Paleoproterozoic and the intruding Neo-Proterozoic Huangling

granite and Xiaofeng basic-ultrabasic rocks, which is held by the

western Hubei fold.

The black shales of the Early Cambrian Shuijingtuo Formation

were the primary hydrocarbon source rocks and shale gas reservoirs

in the studied area, which were mainly deposited in a transitional

sedimentary environment from shallow water platform area to the

shelf edge upper slope and deep-water basin facies area of the

Yangtze platform (Zhu et al., 2015). The Shuijingtuo Formation was

lithologically composed of black shales, and unconformably overlay

the black mudstones of the Lower Cambrian Yanjiahe

Formation (Figure 1B).
3 Sampling and analytical methods

The black shale samples in this study were collected from the

lowest part of the Shuijingtuo Formation of the Luojiacun section,

which is geographically situated in Zigui county, Yichang city in the

Western Hubei Region (Figure 1A). Twenty-six bulk black shale

samples were taken with a sampling interval ranging from tens of

centimeters to 2 meters (Figure 1B). Each sample was ground to 200

mesh with an agate mortar for mineralogical and geochemical analysis.

The mineral composition of black shale samples was

determined by X-ray diffraction analysis (XRD, Bruker D8 A25

Advance), which was carried out on powder diffractometer with

monochromatic Cu, Ka radiation. The quantitative content of

minerals was subsequently analyzed based on the X-ray

diffractograms using Software Jade 6.5.

The morphological characteristics of typical minerals and

occurrence of some trace elements in black shales were observed

by field emission scanning electron microscope (FE-SEM, FEI

Quanta 450 FEG) in conjunction with an energy dispersive X-ray

spectrometer (SEM-EDS), which can realize the integrated analysis

function of image, composition and structure. SEM images of

typical minerals were captured by a retractable solid-state

backscatter electron detector.
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The TOC content of black shale samples was determined by a

Vario EL III element analyzer with the standard deviation of

measurements below ±0.10%. Prior to determination, the black

shale samples were first treated by 4 M HCl at 60°C for at least 24 h

to remove the carbonate minerals.

The major and trace element concentration of black shale

samples was respectively determined by X-ray fluorescence

spectrometer (XRF, Primus II) and inductively coupled plasma

mass spectrometer (ICP-MS, Agilent 7700e) at the Wuhan Sample

Solution Analytical Technology Co., Ltd.

Before XRF analysis, all samples were dried at 105°C for

12 hours, and then no less than 5.0g of each sample was ashed at

815°C using a muffle furnace. The major elements oxides in the

sample were determined by the melt plate method. Precision for

determination of major elements oxides concentrations is better

than 2.5%.

Prior to ICP-MS determination, each black shale sample was

acid-digested according to the following process: Dry the

samples at 105°C for 12 hours. 50 mg of each sample was

digested with 1 ml HNO3 and 1 ml HF, and heated at 190°C

for more than 24 hours. Cool the digestion solution down, and

evaporate it at 140°C on an electric heating plate until dry, then

digest the residue with 1 ml HNO3 and evaporate it to dry again.

Thereafter, the residue was digested with1 ml HNO3, 1 ml MQ

water and 1 ml of internal standard In (the concentration is 1 mg/
g) and heated at 190°C for more than 12 hours. Subsequently, the

solution was diluted with 2% HNO3 for ICP-MS determination.

Multi-element standard sample (BHVO-2、BCR-2 and RGM-2)

was used for calibration of trace element concentrations.

Precision for determination of trace element concentrations is

better than 5.0%.
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4 Results

4.1 Mineralogical characteristics of
black shales

Minerals in the Shuijingtuo black shales from the Luojiacun

section are mainly composed of quartz and clay minerals, with small

proportions of calcite, albite, clinochlore, and pyrite, aswell as traces of

siderite and gypsum (Table 1). Quartz is the most abundant mineral

(21.1%-68.9%, avg. 43.0%) in the Shuijingtuo black shale. In some

cases, quartz occurs with sharp edges and corners and large particles

(Figure 2A), indicating a terrigenous origin (Dong et al., 2021; Chen

et al., 2022;Ye et al., 2022;Gao et al., 2023). Inother cases, quartz occurs

as crystals of different sizes with better roundness, which is usually

smaller than terrigenous quartz (Figures 2B, I), indicating an

authigenic origin. The authigenic quartz was possibly formed from

transformationof clayminerals, alterationof clasticminerals (feldspar,

mica), dissolution of siliceous biological skeleton, pressure dissolution,

or devitrification of volcanic ash (Zhang et al., 2018; Yan et al., 2021).

Illite is the primary clay mineral in the Shuijingtuo black shale

(9.7%-52.3%, avg. 29.1% Table 1). Illite occurs in the form of long strips

(Figures 2B, C) and pore infillings (Figures 2D, E). The former more

likely indicated a terrigenous origin from shallow water shelf or slope

sedimentary environment with low TOC content (Zhang et al., 2017).

The latter was more likely to represent an authigenic origin, which was

probably derived from the alteration of clastic feldspar minerals, the

transformation of montmorillonite or mixed layer minerals, or from

the precipitation of diagenetic solution (Zhang et al., 2018).

Carbonate minerals in the Shuijingtuo black shale mainly consist of

calcite and dolomite, the content of which respectively ranges from

1.0% to 38.0% (avg. 10.8%) and from 1.1% to 6.0% (avg. 3.2%). Calcite
FIGURE 1

(A) Regional geological map of the study area (modified from Chen, 2018); (B) sampling column of the Shuingtuo Formation.
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mostly exists in the form of fracture- or pore-infillings (Figures 2C, F),

while dolomite mainly occurs as single crystals and calcareous

cementation (Figure 2C), both indicating an authigenic formation

process during the late diagenesis (Shao et al., 1998; Dai et al., 2015).

Pyrite is ubiquitously distributed in the Shuijingtuo black shale

(0.7%-8.7%, avg. 2.5%). It mainly occurs in the form of single subhedral

crystals (Figure 2H), and framboidal aggregate (Figure 2G), which is

indicative of syngenetic origin (Chou, 2012). In a few cases, pyrite also

occurs in the form of fracture infillings, filling in cracks of quartz and

albite in granular or veinlet form during an epigenetic process

(Figures 2A–C).

Albite is the primary feldspar mineral in the Shuijingtuo black

shale (3.9%-21.2%, avg. 12.1%), which occurs in the form of long
Frontiers in Marine Science 04
strips (Figure 2H) and subhedral crystals (Figures 2B–E), indicating

terrigenous origin and an authigenic origin, respectively. In addition,

phosphate minerals, e.g., apatite were also observed under the

scanning electron microscope. Apatite is mainly present in the

form of authigenic euhedral to subhedral particles (Figures 2A, I).
4.2 Geochemical characteristics of
black shales

4.2.1 Major and trace element concentration
Based on the XRF analysis, SiO2, Al2O3 and CaO are the

predominant major element oxides in the Shuijingtuo black shale,
TABLE 1 Mineral composition and content of black shales of Shujingtuo Formation in Luojiacun, western Hubei Province (%).

Sample Illite Clinoch Quartz Calcite Dolomite Siderite Pyrite Gypsum Albite

SJT-1 29.1 / 68.9 / 1.1 / 0.9 / /

SJT-2 29.4 / 46.4 9.4 5.1 / 1.9 / 7.7

SJT-3 24.6 / 50.8 4.8 3.8 / 3.9 / 12.2

SJT-4 36.7 / 42.9 3.1 3.7 / 2.5 / 11.2

SJT-5 32.6 / 46.2 3.6 2.5 / 2.4 / 11.9

SJT-6 21.4 / 47.1 3.9 3.6 / 8.7 / 15.2

SJT-7 28.3 / 43.5 6.1 3.9 / 6.0 / 12.2

SJT-8 35.6 / 42.6 6.5 1.5 / 2.5 0.5 10.9

SJT-9 20.6 / 55.2 9.6 2.7 / 2.3 / 9.6

SJT-10 14.4 / 59.6 8.3 4.0 / 3.3 / 10.4

SJT-11 22.2 / 53.0 6.7 3.1 / 3.0 0.7 11.4

SJT-12 31.2 / 48.0 2.7 1.6 / 2.4 1.6 12.6

SJT-13 17.9 / 52.9 11.3 3.1 / 2.5 / 12.3

SJT-14 9.7 / 51.5 18.0 5.0 / 3.8 / 12.1

SJT-15 20.1 / 54.5 12.5 2.0 / 1.8 / 9.1

SJT-16 18.0 / 57.1 10.1 3.2 / 2.2 / 9.5

SJT-17 31.4 0.9 32.8 8.2 3.2 0.6 1.8 / 21.2

SJT-18 32.0 2.6 25.3 16.4 5.0 / 2.6 / 16.1

SJT-19 35.5 4.0 30.8 13.3 1.7 / 1.7 / 12.9

SJT-20 20.0 1.2 29.7 27.6 6.3 / 2.1 / 13.0

SJT-21 30.1 3.8 21.1 38.0 1.9 / 1.2 / 3.9

SJT-22 19.8 7.6 34.6 17.4 2.7 / 1.7 / 16.2

SJT-23 41.9 10.4 28.6 3.6 1.2 / 1.3 / 13.0

SJT-24 29.2 7.5 33.1 10.4 2.7 / 1.3 / 15.7

SJT-25 35.5 8.5 38.7 1.0 1.2 / 1.8 / 13.3

SJT-26 34.6 8.1 22.9 17.7 6.2 / 0.7 / 9.9

MIN 9.7 / 21.1 1.0 1.1 / 0.7 / 3.9

MAX 41.9 10.4 68.9 38.0 6.3 0.6 8.7 1.6 21.2

AVE 27.0 5.4 43.0 10.8 3.1 0.6 2.5 0.9 12.1
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followed by Fe2O3, K2O and MgO (Table 2). The content of SiO2,

Al2O3 and CaO varies from 37.3% to 65.2% (55.9%), 6.3% to 18.2%

(avg. 10.3%), and 1.5% to 22.1% (avg. 8.2%), respectively.

Secondarily, the content of Fe2O3, K2O and MgO is respectively

2.3-6.0% (avg. 4.0%), 1.7-4.1% (avg. 2.8%), and 1.1-2.6% (avg.

1.8%). The content of other oxides (TiO2, Na2O, MnO and P2O5)

is less than 1%. Compared with the major element oxide content of

North American shale (NASC), CaO content of the Shuijingtuo

black shale is slightly enriched (2.26 times higher), while the content

of other major elements is similar or depleted. Compared with the

average composition of post Archean Australian shale (PAAS), CaO

content of the Shuijingtuo black shale is significantly enriched (6.25

times higher), and the content of other major elements is also

similar or depleted. The elevated CaO content is ascribed to the

relatively high calcite content of the Shuijingtuo black shale.

With respect to the trace elements in the Shuijingtuo black shale,

their enrichment degree is evaluated by the concentration coefficient

(CC) proposed by Dai et al. (2015). In order to eliminate the influence

caused by the change of sedimentary rock composition, the Al-

normalized concentration coefficient is used to quantify the
Frontiers in Marine Science 05
enrichment degree of trace elements in this paper (McLennan,

2001a; Piper and Perkins, 2004; Li et al., 2017a, b, c), and the

calculation formula is as follows: CC=(X/Al)sample/(X/Al)UCC, where

X represents a given element in the sample and/or upper crust

content (UCC). Compared with the trace element concentration in

UCC (Taylor and McLennan, 1995), U is significantly enriched

(CC>10), and Ba is enriched (5<CC<10) in the Shuijingtuo black

shale (Supplementary Table 1; Figure 3). Uranium and Ba

concentration respectively varies from 5.2 mg/g to 68.4 mg/g (avg.

32.4 mg/g) and 708 mg/g to 35156 mg/g (avg. 2846 mg/g). In addition,

V, Cr, Ni and Sr are slightly enriched (2<CC<5), the concentration of

which respectively ranges from 105 mg/g to 1446 mg/g (avg. 255 mg/g),
97.5 mg/g to 240 mg/g (avg. 165 mg/g), 38.2 mg/g to 216 mg/g (avg. 90.8
mg/g), and 155mg/g to 2583 mg/g (avg. 703 mg/g). The other trace

elements (e.g., Li, Be, Sc, Co, Zn, Ga, Rb, Y, Zr, Nb, Sn, Cs, La, Ce, Pr,

Nd, Hf, Ta, Tl, Pb and Th) in the Shuijingtuo black shale show similar

or depleted concentrations compared to the average concentration of

corresponding elements in UCC (CC<2).

The total concentration of rare earth elements (REE) in the

Shuijingtuo black shale is 128 mg/g on average (80.9-201 mg/g)
FIGURE 2

Modes of occurrence of minerals in the Shuiijingtuo black shale. (A) clastic quartz and apatite in sample No.7; (B) authigenic quartz, albite and illite in
sample No.7; (C) illite, albite, calcite and dolomite in sample No.7; (D) authigenic illite and albite in sample No.9; (E) Mutually metasomatized illite
and albite in sample No.7; (F) calcite vein in sample No.21; (G) framboidal pyrite in sample No.9; (H) single subhedral crystals pyrite and albite in
sample No.7; (I) authigenic quartz, albite and apatite in sample No.7.
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(Supplementary Table 1), which is lower than that of the UCC (146.4

mg/g), NASC (160.1 mg/g) and PAAS (184.8 mg/g). The total

concentration of light rare earth elements (LREE; e.g., La, Ce, Pr,

Nd, Sm, Eu, Gd) and heavy rare earth elements (HREE; e.g., Tb, Dy,

Ho, Er, Tm, Yb, Lu) respectively ranges from 73.3 mg/g to 190 mg/g
(avg. 118 mg/g) and 7.2 mg/g to 14.1 mg/g (avg. 10.3 mg/g), accounting
for 92% and 8% of the total REEs. The LREE/HREE ratio ranges from

9.5 to 16.1 (avg. 11.4), higher than that in NASC (9.7), indicating an
Frontiers in Marine Science 06
enrichment of LREE in the Shuijingtuo black shale. Furthermore,

according to the chondrite-normalized REE distribution pattern

(Figure 4A), the LREE part shows an obvious rightward trend,

while the HREE part shows a relatively flat slope, further indicating

the high fractionation between LREE and HREE and the enrichment

of LREE. When normalized to the REE values of NASC, the

Shuijingtuo black shale presents a flat REE distribution pattern

(Figure 4B), reflecting a consistent provenance and stable tectonic
TABLE 2 The content of major element in the blak shales of Shuingtuo Formation in Luojiacun, western Hubei Province (%).

Samples SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Al2O3/TiO2

SJT-1 61.97 0.57 10.47 3.69 0.02 1.59 4.23 1.01 3.65 0.16 18.31

SJT-2 58.96 0.45 8.39 3.07 0.04 2.05 7.71 0.80 2.88 0.14 18.53

SJT-3 59.45 0.58 10.81 4.14 0.03 1.61 4.56 1.11 3.73 0.14 18.81

SJT-4 60.53 0.62 11.47 4.35 0.04 1.97 4.19 1.11 3.79 0.13 18.62

SJT-5 63.43 0.61 11.21 3.60 0.03 1.52 3.74 1.15 3.68 0.13 18.25

SJT-6 49.82 0.46 8.53 4.73 0.00 1.55 3.72 0.93 2.78 0.16 18.59

SJT-7 62.31 0.54 9.71 3.68 0.04 1.91 4.80 1.03 3.33 0.14 17.91

SJT-8 59.76 0.54 9.57 3.78 0.03 1.28 5.99 0.98 3.24 0.14 17.75

SJT-9 60.95 0.51 9.10 3.14 0.04 1.37 7.06 0.96 2.97 0.16 17.77

SJT-10 63.40 0.54 9.24 3.51 0.03 1.24 5.46 0.99 3.01 0.14 17.15

SJT-11 60.89 0.49 8.66 3.54 0.04 1.54 6.76 0.95 2.80 0.20 17.60

SJT-12 65.16 0.54 9.55 3.49 0.03 1.08 3.65 1.00 3.10 0.22 17.62

SJT-13 59.93 0.45 7.68 3.00 0.05 1.29 8.44 0.86 2.46 0.24 17.27

SJT-14 53.40 0.41 7.30 3.61 0.08 1.67 11.30 0.89 2.28 0.24 17.72

SJT-15 61.97 0.35 6.26 2.28 0.05 1.15 9.16 0.78 1.90 0.16 17.87

SJT-16 61.84 0.38 6.66 2.89 0.07 1.45 8.15 0.85 2.01 0.20 17.75

SJT-17 54.11 0.63 12.46 4.58 0.03 1.82 8.05 1.04 2.77 0.11 19.71

SJT-18 41.73 0.49 10.94 5.10 0.04 2.59 15.15 0.83 2.36 0.10 22.36

SJT-19 48.30 0.55 11.92 4.22 0.04 1.95 12.66 0.87 2.52 0.11 21.83

SJT-20 43.38 0.54 12.23 4.05 0.04 2.49 14.86 0.64 2.74 0.12 22.68

SJT-21 37.33 0.37 8.26 3.49 0.04 1.81 22.12 0.57 1.75 0.12 22.50

SJT-22 50.20 0.51 10.10 5.03 0.05 1.94 12.53 0.85 2.02 0.15 19.89

SJT-23 57.77 0.68 14.23 5.37 0.04 2.18 5.19 1.05 2.97 0.14 20.81

SJT-24 53.15 0.53 10.95 4.79 0.05 2.21 10.63 0.93 2.18 0.13 20.54

SJT-25 56.94 0.81 18.16 6.00 0.03 2.25 1.49 0.80 4.08 0.15 22.42

SJT-26 45.44 0.55 12.65 5.04 0.05 2.52 12.74 0.62 2.70 0.12 22.96

MIN 37.33 0.35 6.26 2.28 0.00 1.08 1.49 0.57 1.75 0.10 /

MAX 65.16 0.81 18.16 6.00 0.08 2.59 22.12 1.15 4.08 0.24 /

AVE 55.85 0.53 10.25 4.01 0.04 1.77 8.24 0.91 2.83 0.15 /

PAAS 63.7 1.01 19.2 7.33 0.1 2.24 1.3 1.21 3.8 0.16 /

NASC 64.9 0.70 16.9 5.67 0.1 2.86 3.6 1.14 4.0 0.13 /

PASSN 0.88 0.52 0.53 0.55 0.35 0.79 6.25 0.75 0.75 0.95 /

NASCN 0.86 0.75 0.61 0.71 0.64 0.62 2.26 0.80 0.71 1.16 /
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activity (Yan et al., 2021). The NASC-normalized (La/Sm)N value is

1.13 on average (0.94-1.5), representing a weak fractionation between

light rare earth elements.

4.2.2 Distribution and modes of occurrence of
elevated elements

According to unary linear regression method, the elevated V,

Ni, U and Cr concentration have weak or negative correlation with

Al2O3 content in the Shuijingtuo black shale (r= -0.07, -0.13, -0.61,

-0.39) (Figures 5A–D). Furthermore, it is found that V, Ni, U and

Cr concentrations present strong positive correlations with Sibio
content in the Shuijingtuo black shale (Figures 5E–H), which

indicates that V, Ni, U, and Cr mainly occur in organic form in

the Shuijingtuo black shale.

In addition, there is a strong positive correlation between Ba

and pyrite in the Shuijingtuo black shale (Figure 5I), indicating that

Ba is mainly hosted in pyrite. By contrast, a strong positive

correlation between Sr and calcite in the Shuijingtuo black shale

indicates that Sr is mainly hosted in calcite (Figure 6).

Vertically, the elevated V and Ni show similar variation

characteristics, the contents of which are both higher in the upper

portion of the Shuijingtuo black shale from the Luojiacun section

(Figure 6). Chromium and U show similar vertical variation

characteristics, the content of which are higher in the middle and

upper section (Figure 6). Furthermore, Sr content is higher in the lower

section and Ba content is higher in the middle section, which presents

similar variation to calcite and pyrite content, respectively (Figure 6),

furthering indicating the occurrence of Sr with calcite and Ba with pyrite.
5 Discussion

5.1 Tectonic environment

Through outcrop observation, core description, thin section

observation, scanning electron microscope observation and
Frontiers in Marine Science 07
geochemical analysis of main and trace elements, it is concluded

that the Lower Cambrian sedimentary facies in the Middle

Yangtze area is dominated by shallow water shelf - deep water

shelf - slope sedimentary facies (Zhang et al., 2019; Zhao et al.,

2019; Gao et al., 2020; Ding et al., 2021), among which the western

Hubei - Hunan and Guizhou areas belong to deep water shelf -

slope sedimentary facies (Zhao et al., 2019). Different tectonic

environments have certain characteristics of provenance, and are

characterized by specific sedimentary processes, which can be

distinguished by several geochemical indexes. Sugisaki et al.

(1983) pointed out that the MnO/TiO2 ratio can be effectively

used to distinguish the tectonic environment, with value of 0.5 ~

3.5 and <0.5 indicative of a deep-sea or trench ocean bottom

environment far away from the continent, and a nearshore

shallow sea or continental slope environment, respectively. The

MnO/TiO2 ratios of the Shuijingtuo black shale samples range

from 0.03 to 0.19 (avg. 0.08), reflecting a nearshore shallow sea or

continental slope environment.

Murray (1994) proposed the discrimination diagram of Al2O3/

(Al2O3+TFe2O3) - TFe2O3/TiO2 to reflect tectonic environment, in

which all the Shuijingtuo black shale samples fall into the

continental margin environment (Figure 7A). In the diagram of

Al2O3/(Al2O3+TFe2O3) - (La/Ce)N, all the Shuijingtuo black shale

samples fall within the continental margin environment as well

(Figure 7B). Moreover, the dCe value also can accurately distinguish

three tectonic environments near the mid ocean ridge, the pelagic

basin and the continental margin. Zhou (2019) proposed that the

dCe value of 0.18-0.38, 0.51 ~ 0.61 and 0.74 ~ 0.96 respectively

indicates a regional sedimentation near the ocean ridge, the pelagic

basin, and the continental margin, and found that the Niutitang

(corresponding to the Shuijingtuo) black shale in Northwest Hunan

was formed in the deep- to semi deep-water sedimentary

environment close to the continental margin. The dCe values of

the Shuijingtuo black shale samples in this study range from 0.82 to

1.00 (avg. 0.94), also indicating the normal continental margin

environment. Furthermore, SiO2-log (K2O/Na2O) diagram also can
FIGURE 3

Concentration coefficients of trace elements in the Shuijingtuo black shale.
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be used to identify the tectonic environment (Roser and Korsch,

1986; Huang et al., 2013). In the diagram of SiO2-log (K2O/Na2O),

all the Shuijingtuo black shale samples fall within the passive

continental margin (Figure 7C). The normal continental margin
Frontiers in Marine Science 08
includes shallow sea shelf and semi-deep sea slope, which is

consistent with the founding that the tectonic location of the

Luojiacun profile belongs to shelf margin - upper slope area

(Hu, 2019).
FIGURE 5

Occurrence modes of elevated elements in the Shuijingtuo black shale. (A) V vs. Al2O3; (B) Ni vs. Al2O3; (C) U vs. Al2O3; (D) Cr vs. Al2O3; (E) V vs. Si bio;
(F) Ni vs. Si bio; (G) U vs. Si bio; (H) Cr vs. Si bio; (I) Ba vs. Pyrite.
FIGURE 4

REE distribution patterns with chondrite standard (A) and NASC standard (B) for the Shuijingtuo black shale.
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5.2 Sediment provenance

Generally, provenances from sediment source region, marine

biological precipitation/recrystallization, and volcanic ash are the

dominant sources for black shales and other sediments. The input

of terrigenous clastic materials can be manifested by contents and

ratios of some elements that are not easily affected by diagenesis and

weathering process (Murray, 1994; Murphy et al., 2000; Rachold
Frontiers in Marine Science 09
and Brumsack, 2001; Rimmer, 2004; Tribovillard et al., 2006;

Calvert and Pedersen, 2007; Lézin et al., 2013). According to the

discriminant indicators of Ti/Al, Th/Al and Zr/Al ratios, the

terrigenous clastic input of the Shuijingtuo black shale was of

medium degree and remained relatively stable during the

deposition process (Yang, 2020). The Al2O3/TiO2 ratio was also

widely used as an efficient indicator of the source rock composition,

with 3-8, 8-21, and 21-70 respectively of mafic basalt, intermediate
FIGURE 6

Vertical characteristics of enriched trace elements in the Shuijingtuo black shale.
FIGURE 7

Tectonic environment discrimination of Shuijingtuo black shales. (A) Diagram of Fe2O3/TiO2 vs. Al2O3/(Al2O3+Fe2O3); (B) (La/Ce)N vs. (Al2O3

+TFe2O3); (C) log(K2O/Na2O) vs. SiO2. 1-Continental margin; 2-Pelagic Basin; 3-Mid-oceanic ridge.
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granodiorite, and felsic granite source (Hayashi et al., 1997). The

Al2O3/TiO2 ratios of the Shuijingtuo black shale in Luojiacun

section range from 17.2 to 23.0 (avg. 19.4), predominantly falling

within the field of intermediate granodiorite (Figure 8A), which

indicates that the terrigenous material source for the Shuijingtuo

black shales is of intermediate granodiorite composition. In

addition, the TiO2/Zr ratio of >200, 55-199, and <55 respectively

represents a mafic, intermediate, and felsic igneous source rock

(Hayashi et al., 1997). The TiO2/Zr ratios of the Shuijingtuo black

shale samples ranges from 38.6 to 56.4, with an average of 44.9,

manifesting that the sediment source for the study area is primarily

of intermediate to felsic composition (Figure 8B). Moreover, the

La–Th–Sc ternary diagram and cross plots of Th/Sc versus Zr/Sc,

and La/Th vs. Hf are also reliable indicators of source rock

composition (McLennan, 2001b; Vosoughi Moradi et al., 2016;

Zhai et al., 2018), according to which the Shuijingtuo black shale

samples primarily fall within the field close to felsic and

granodiorite source (Figures 8C–E). Based on all these

geochemical indexes, it is concluded that the Shuijingtuo black

shale from the Luojiacun section were predominantly sourced from

intermediate to felsic rocks similar to granodiorite.

Apart from the terrigenous supply, marine biogenic production

also contributes as a provenance of the Shuijingtuo black shale from

the Luojiacun section. Element Si is often used to reflect the input

degree of terrigenous clasts (Murphy et al., 2000; Tribovillard et al.,

2006), because Si is generally preserved in quartz and silicate

minerals derived from terrigenous clasts (Kidder and Erwin,

2001). However, many studies have shown that marine sediments

are usually rich in biogenic silica. The Si/Al ratio of the Shuijingtuo

black shale samples ranges from 2.76 to 8.73 (avg. 5.10), which is

higher than the average value of terrigenous sediment (3.11,
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Wedepohl, 1991). This indicates that the excessive Si and the

occurrence of authigenic quartz (Figures 2B, I) in the Shuijingtuo

black shale may be caused by biogenesis other than terrigenous

input (Wojcik-Tabol and Slaczka, 2009). Previous research has also

revealed that the provenance for the Early Cambrian black shales in

the Yangtze platform was strongly influenced by the marine

biogenic production (Wu et al., 2016; Zhu et al., 2021; Xia et al.,

2022; Wang et al., 2023; Fu et al., 2023b).
5.3 Palaeoredox conditions

The Palaeoredox environment plays a crucial role in the

distribution and evolution of marine organisms, as well as in the

circulation, differentiation and enrichment of elements in marine

sediments (Chang et al., 2009). It has been confirmed by several

research that the early Cambrian black shales in the Yangtze Platform

were deposited under an anoxic palaeoredox conditions (Xu et al.,

2013; Han et al., 2015; Wu et al., 2016; Zhu et al., 2021; Xia et al.,

2022; Wang et al., 2023; Fu et al., 2023b). Correspondingly, several

redox sensitive elements and elemental ratios are useful indicators of

palaeomarine environment, especially the palaeoredox conditions

(Wignall, 1994; Crusius et al., 1996; Algeo, 2004; Algeo and

Maynard, 2004; Rimmer, 2004; Rimmer et al., 2004; Tribovillard

et al., 2004; Abanda and Hannigan, 2006; Tribovillard et al., 2006;

Zhang et al., 2023). For instance, V/(V+Ni) ratio of >0.84, 0.54-0.82,

and <0.60 respectively reflects euxinic, anoxic, and dysoxic to oxic

conditions, and U/Th ratio of >0.5 is generally indictive of anoxic

condition (Jones and Manning, 1994). The U/Th and V/(V+Ni)

ratios of the Shuijingtuo black shale samples vary from 0.37 to 10.50

(avg. 4.31) and 0.56 to 0.87 (avg. 0.69), respectively, mostly falling
FIGURE 8

Source rock composition of the Shuiijingtuo black shales. (A) Cross plots of Al2O3 versus TiO2; (B) Cross plot of TiO2 and Zr; (C) Cross plot of Th/Sc
versus Zr/Sc; (D) La/Th versus Hf bivariate plot; (E) La-Th-Sc diagram for the Shuijingtuo black shales.
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within the anoxic field in the cross plots of V/(V+Ni) vs. U/Th

(Figure 9), indicate that the Shuijingtuo black shale was primarily

deposited under anoxic to euxinic conditions. Similarly, Ni/Co ratio

of >7, 5-7, and <5 respectively reflects anoxic, dysoxic, and oxic

conditions (Jones and Manning, 1994). The Ni/Co ratio of the

Shuijingtuo black shale samples vary from 3.24 to 16.62 (avg. 8.18),

also indicating deposition of the Shuijingtuo black shale under

anoxic conditions.

Furthermore, authigenic uranium (Ua=Utotal-Th/3) and dU
(dU=U/[1/2 (U+Th/3)]) are also commonly used to refer the

palaeoredox conditions of sedimentary environment (Wignall,

1994; Wignall and Myers, 1998). The Ua content of less than 5 mg/
g generally indicates an oxidizing condition (Jones and Manning,

1994), while dU>1 and <1 respectively indicates an anoxic and

normal marine sedimentary environment (Wignall, 1994). The Ua

and dU of the Shuijingtuo black shale respectively ranges from 0.6 to

66.2 mg/g (avg. 29.5 mg/g), and 1.05 to 1.94 (avg. 1.68), further

manifesting an anoxic sedimentary environment of the Shuijingtuo

black shale.

Studies on Ce anomalies in modern seawater show that Ce is a

sensitive factor for judging the redox environment (Yang et al.,

2008). Generally, under oxidation conditions, Ce3+ is oxidized to

Ce4+, Ce4+ is prone to hydrolysis and precipitation by adsorption of

Fe and Mn oxides, which is separated from other rare earth

elements, resulting in Ce depletion in seawater. Under anoxic

reduction conditions, Fe oxides dissolve and Ce4+ is reduced to

Ce3+, resulting no obvious Ce anomaly in seawater. Consequently,

the variation of dCe value reflects the reduction-oxidation variation

of sedimentary environment (DeBaar et al., 1985), and the dCe
value of 0.78 is used as the reference value to discriminate the redox
Frontiers in Marine Science 11
conditions of depositional environment (Wright et al., 1987).

Coincident with those concluded from the above-mentioned

geochemical indexes, the dCe of the Shuijingtuo black shale

samples is between 0.82 and 1.00 (avg. 0.94), indicating a

relatively anoxic environment as well.

A set of black shales with high organic matter was deposited in

the Ordovician-Silurian, and its depositional environment was also

anoxic-reductive (Mustafa et al., 2015; Mohammed et al., 2020;

Zhou et al., 2021; Yi et al., 2022; Fu et al., 2023a), which is consistent

with the depositional environment of the Shuijingtuo Formation in

this paper. These results indicate that the shales with high organic

matter have a positive correlation with the anoxic environment,

which can provide indications for shale gas exploration and

paleoenvironmental restoration.
5.4 Palaeomarine productivity

It is widely accepted that apatite is closely related to biological

life activities, and has two kinds of formation mechanism. The first

is the direct action of biology (Li et al., 2017a), that is, through

biological life activities, the dispersed phosphorus in the medium is

absorbed and formed into phosphate shell or bone, which is

preserved in sediments after biological death, and transformed

into apatite during diagenesis. The apatite formed by this

mechanism is bioclastic apatite. The second is the indirect effect

of biology, which is mainly affected by biomass and redox

conditions. The indirect effect of biology is the main form of

apatite formation in the early Cambrian. Al2O3 is generally

considered in geochemistry to be derived only from terrigenous
FIGURE 9

Cross plots of U/Th versus V/(V+Ni) of the Shuijingtuo black shale.
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clastic inputs (Liu, 2017; Li et al., 2017a). According to unary linear

regression method, there is a significant negative correlation

between P2O5 and Al2O3 (Figure 10A), and an obvious positive

correlation with TOC (Figure 10B) in the black shale of the

Shuijingtuo Formation. Although P is not enriched in the black

shale of the Shuijingtuo Formation (Table 2), P is still biogenic and

related to higher palaeomarine productivity.

In addition, the content of biological silicon (Sibio) can be used

to restore palaemarine productivity, which is quantified by the

following formula (Murray and leinen, 1996): Sibio=Sisample – [(Si/

Al)average shale × Alsample], where Sisample and Alsample are the total Si

and Al content in the studied sample, (Si/Al) average shale (3.11) is the

Si/Al ratio of average shale (Taylor and Mclennan, 1985). The Sibio
content of the Shuijingtuo black shale samples is 9.2% on average,

accounting for 35.5% of the total Si. Moreover, the Sibio of the

Shuijingtuo black shale is obviously correlated with the TOC

(Figure 10I), which is in consistence with previous study that

biogenic silicon in marine shale is usually highly correlated with

organic carbon content (Luo et al., 2013). The main source of
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biogenic silicon is various siliceous plankton, such as diatoms,

radiolarians and sponge spicule (Aplin and Macquaker, 2011),

which is also the primary source of organic matter in marine

sediments. The prosperity of plankton is usually accompanied by

high organic matter (total organic carbon) content, both of which

are responsible for the high paleo productivity. The primary

productivity of the Shuijingtuo black shales is relatively high

(TOC=1.9-6.5%, avg. 3.9%), manifesting the contribution of

biogenic production to black shales.

Furthermore, the element Ba is widely used as a credible

indicator for primary productivity of paleo ocean (Dehairs et al.,

1987; Dymond et al., 1992; Paytan et al., 1996; Eagle et al., 2003;

Tribovillard et al., 2006). The sources of barium in sediments

mainly include biogenic barium, barium from terrestrial

aluminosilicates, the precipitation of submarine hydrothermal

barium and the secretion of some benthic organic organism

(Dymond et al., 1992; Gonneea and Paytan, 2006). Only biogenic

barium can reflect palaeoproductivity. Barium from biological

sources is mainly precipitated in sediments in the form of barium
FIGURE 10

Cross plots of P2O5 versus Al2O3 (A) and TOC (B); (C-F) TOC versus elevated elements; Sr versus TOC (G) and Babio (H); (I) Sibio versus TOC of the
Shuijingtuo black shales.
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sulfate (Barite). For the genesis of barium sulfate crystals, the

current mainstream view is that there are some SO4
2- ions on the

surface of organic matter in the reduction microenvironment of

marine diatom cell membrane and some particles, and Ba2+ in water

will combine with them to form barium sulfate, which will then be

deposited on the ocean floor. There is a positive correlation between

the amount of barium sulfate crystal precipitation and the amount

of organic matter, so the higher the Ba content in the sediment, the

higher the primary productivity of the ocean surface.

Currently, it is universally acknowledged that the content of

biogenic barium in sediments is 1000 ~ 5000 mg/g, indicating that the
Palaeocean surface productivity is high (Murray and Leinen, 1993;

Schoepfer et al., 2015). The specific calculation formula is

Babio=Basample – Alsample × (Ba/Al)clasts, where Basample and Alsample

are the total Ba and Al content in the studied sample, respectively,

and (Ba/Al)clasts are the average Ba/Al ratio of crustal rocks (0.0032-

0.0046, Taylor and Mclennan, 1985). In this study, the (Ba/Al)clastics
value is taken as 0.0032 to calculate the Babio content of the

Shuijingtuo black shale samples. The Babio content of Shuijingtuo

black shale samples in Luojiacun profile range from 568 to up to

35011 mg/g (avg. 2672 mg/g), also indicating that the primary

productivity of Shuijingtuo black shale in Luojiacun profile is high.

The high primary productivity of Shuijingtuo black shale in

Luojiacun profile is also consistent with the previous studies (Wu

et al., 2016; Zhu et al., 2021; Xia et al., 2022; Wang et al., 2023; Fu

et al., 2023b).
5.5 Enrichment mechanism of elevated
critical elements

Several productivity- and redox-sensitive elements, such as V,

Ni, U, Cr, and Ba have been found enriched in the Shuijingtuo black

shale (Yang and Yi, 2012). In the current study, the Shuijingtuo

black shale from the Luojiacun section is significantly enriched in U,

and enriched in Ba, V, Cr, Ni and Sr.

As stated above, the terrigenous provenance of the Shuijingtuo

black shale is primarily of intermediate to felsic composition.

However, the contents of U, V, Cr, and Ni in intermediate and
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felsic rocks are much lower than those in basic and ultrabasic rocks

(Vinogradov, 1986), with U, V and Cr content in felsic rocks of

3.5mg/g, 18mg/g, and 8mg/g respectively (Vinogradov, 1986; Condie,
1993). Therefore, the enrichment of these elements in the

Shuijingtuo black shale is not ascribed to the intermediate to

felsic terrigenous provenance.

Murphy et al. (2000) have found that the strong anoxic

condition and slow deposition is responsible for the enrichment

of some trace elements, especially those redox sensitive ones in the

nutrient-rich upwelling area. Redox sensitive elements such as V, Ni

and Cr are prone to enrichment under anoxic conditions in the

early diagenetic stage, due to that these redox sensitive elements are

generally insoluble and precipitated into insoluble phases under

anoxic/euxinic conditions (Sadiq, 1988; Tribovillard et al., 2006).

Because the uranium content in open oceans, rivers and upper

continental crust is very low, authigenic uranium under anoxic

conditions is the main source of uranium in marine sediments.

Under anoxic environment, uranium will diffuse in water and

deposit in oxygen poor layer to form organometallic ligands and

metal complexes (Algeo and Maynard, 2004; Tribovillard et al.,

2012). As discussed above, the elevated V, Cr, U, and Ni in the

Shuijingtuo black shale show the vertical distribution characteristics

(Figure 6). Moreover, V, Ni, Cr, and U have a close correlation with

TOC (r=0.17-0.84; Figures 10C–F), indicating that the enrichment

of these elements in the black shale is closely related to organic

matter by means of complex interaction process under the

reduction environment, which needs further investigation.

In addition, the abnormal enrichment of V-Cr-Ni-U element

assemblages in organic-rich rocks, e.g., coal and black shale, is often

related to hydrothermal activities (Dai et al., 2013a; Jia, 2018). The

submarine hydrothermal activity is due to the uplift of the

continental crust, which contributes to the intrusion of

underground magma along the weak zone, carrying a high

content of metal elements into the sedimentary water body. On

one hand, the influx of Mo, Ni, U and other elements will form a

heavy metal mineral layer in the seawater. On the other hand, the

increase of Fe, P and other life elements will provide sufficient

nutrients for aquatic organisms, promote the growth of organisms,

and produce higher primary productivity. Furthermore, the
FIGURE 11

(A) Cross plot of V/Cr versus V/Sc; (B) Ni-Co-Zn three-phase diagram of the Shuijingtuo black shale.
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occurrence of hydrothermal activities will also locally change the

redox conditions of water bodies. A large number of Fe and Mn

elements enter the water bodies, forming an H2S rich anoxic

reduction environment at the bottom, resulting in the enrichment

of some trace elements (Morforda et al., 2001). Hydrothermal

sedimentation will also promote the migration and accumulation

of trace elements in sedimentary rocks.

In the current research, the hydrothermal activities is evidenced

by geochemical indexes, such as V/Sc and V/Cr ratios, which can be

used to distinguish hydrothermal source from normal authigenic

element deposition (Yang, 2020). Sc/Cr ratio of <0.120 and >0.144

indicates a hydrothermal sedimentation and normal seawater

sedimentation, respectively, while Sc/Cr ratio between 0.120 and

0.144 represents the joint influence of normal seawater

sedimentation and hydrothermal sedimentation (Yang, 2020).

The Shuijingtuo black shale samples in Luojiacun profile

predominantly fal l between the trend line of normal

sedimentation and the hot water sedimentation line, indicating

that the Shuijingtuo black shale was affected by hydrothermal

sedimentation (Figure 11A). Additionally, Zn, Ni, Cu and other

elements are often enriched due to submarine hydrothermal

activities in seawater, while Co is mainly derived from hydrogenic

sedimentary environment (Choi and Hariya, 1992). Therefore, the

Ni-Co-Zn three-phase diagram is usually used to trace the

hydrothermal (Choi and Hariya, 1992). In the Ni-Co-Zn three-

phase diagram, the overwhelming majority of the Shuijingtuo black

shale samples fall within Hydrothermal deposit area (Figure 11B),

further indicating that the Shuijingtuo black shale was affected by

hydrothermal sedimentation. Furthermore, calcite is filled in the

fracture in the form of veins (Figure 2F), also is an indication of the

hydrothermal sedimentation of the Shuijingtuo Formation black

shale. Because Luojiacun section was deposited in deep-water

continental shelf area, the hydrothermal activity during the

deposition process was submarine hydrothermal deposition.
Frontiers in Marine Science 14
Consequently, the submarine hydrothermal fluid accompanying

the anoxic condition, high palaeomarine productivity are

responsible for the enrichment of U, V, Ni, and Cr in the

Shuijingtuo black shale (Figure 12).

With respect to the enrichment of Ba, it is accepted that biogenic

process can to some extent give rise to the enrichment of some

elements (e.g., Cu, Zn and Ba) by marine organism activity (Breit and

Wanty, 1991; Luning et al., 2000; Brumsack, 2006; Tribovillard et al.,

2006; Yan et al., 2015; Zhao et al., 2016; Smolarek et al., 2017). The

Shuijingtuo black shale of Luojiacun section is characterized by high

primary productivity, and occurrence of elevated biological Ba, which

indicates that Ba enrichment in Shuijingtuo black shale is mainly the

result of higher primary productivity. However, there is no

correlation between Sr and TOC (Figure 10G) and Babio
(Figure 10H) in the Shuijingtuo Formation black shale, indicating

that the enrichment of Sr is not related to the biological combination

and primary productivity, but mainly related to the anoxic-euxinic

sedimentary environment.
6 Conclusion

The Shuijingtuo black shale from the Luojiacun section,

Western Hubei Region is characterized by high TOC content and

enriched in V-Cr-Ni-U and Sr-Ba elevated critical element

assemblages. The elevated V, Cr, Ni, and U present organic

affinities, which primarily occur in organic matter in the

Shuijingtuo black shale. Strontium is closely correlated to calcite

and Ba is closely correlated to pyrite.

The Shuijingtuo black shale was deposited in anoxic conditions

in nearshore shallow sea or continental slope environment close to

the continental margin, and has a high palaeomarine productivity.

Terrigenous provenance of the Shuijingtuo Formation in Luojiacun

section is mainly medium-feldspathic granodiorite, which is not
FIGURE 12

Enrichment pattern of elevated elements.
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responsible for the enrichment of V-Cr-Ni-U and Sr-Ba critical

element assemblages in Shuijingtuo black shale.

The enrichmentofU,V,Cr, andNi in the Shuijingtuoblack shale is

ascribed to the anoxic condition, high palaeomarine productivity and

the submarine hydrothermal solutions. Barium enrichment is

predominantly caused by higher primary productivity, while Sr

enrichment is primarily ascribed to anoxic depositional conditions.
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