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A comprehensive analysis of
microbial community differences
in four morphologies of
mainstream anaerobic ammonia
oxidation systems using big-data
mining and machine learning
Shijie Zhou1, Weidi Zhu1, Yuhang He1, Tianxu Zhang1*,
Zhicheng Jiang1, Ming Zeng1* and Nan Wu2

1College of Marine and Environmental Sciences, Tianjin University of Science & Technology,
Tianjin, China, 2College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
Achieving carbon neutrality in wastewater treatment plants relies heavily on

mainstream anaerobic ammonia oxidation. However, the stability of this process

is often compromised, largely due to the significant influence of microbial

morphology. This study analyzed 208 microbial samples using bioinformatics

and machine learning (ML) across four different morphologies: Suspended

Sludge (SS), Biofilm, Granular Sludge (GS) and the Integrated Fixed-film

Activated Sludge process (IFAS). The results revealed IFAS’s notably complex

and stable community structure, along with the identification of endemic genera

and common genera among the four microbial morphologies. Through co-

occurrence network analysis, the interaction betweenmicroorganisms of various

genera was displayed. Utilizing the Extreme Gradient Boosting (XGBoost) model,

a ML modeling framework based on microbiome data was developed. The ML-

based feature importance analysis identified LD-RB-34 as a key organism in SS

and BSV26 was an important bacterium in IFAS. Additionally, functional bacteria

KF-JG30-C25 occupied a higher proportion in GS, and Unclassified

Brocadiaceae occupied a higher proportion in Biofilm. Furthermore, dissolved

oxygen, temperature and pH were identified as the primary factors determining

microbial communities and influencing anammox activity. Overall, this study

deepens our understanding of bacterial communities to enhance the

mainstream anammox nitrogen removal.
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1 Introduction

Conventional biological nitrogen removal technologies necessitate

significant energy inputs for oxygen supply during nitrification and

frequently rely on supplementary organic matter to enable

denitrification (Rahimi et al., 2020). Employing conventional

nitrification-denitrification for wastewater treatment with limited

organic carbon proves to be economically burdensome due to the

significant energy demands of aeration and the necessity for added

chemical oxygen demand (COD) to achieve for denitrification.

Consequently, the development of new nitrogen removal

technologies that can conserve both energy and carbon sources is of

significant practical importance (Sun et al., 2018). In contrast, the

anaerobic ammonia oxidation (anammox) process is acknowledged as

a more efficient and energy-conserving method for wastewater

treatment (Lackner et al., 2014; Wu et al., 2022). Functioning under

anaerobic or oxygen-limited conditions, this process utilizes nitrite

nitrogen as an electron acceptor and employs anammox bacteria

(AnAOB) to directly convert ammonia nitrogen to nitrogen (Lawson

et al., 2017; Zhu et al., 2023). Owing to the autotrophic nature and

slow growth rate of AnAOB, additional carbon sources are not

required in the nitrification reaction. Consequently, the anammox

process demonstrates energy-saving characteristics and significantly

reduces sludge production (Yin et al., 2022; Li et al., 2024). To meet

the demand for increasingly stringent standards in an environment-

friendly manner, the application of anammox in municipal

wastewater treatment has become a focal point of research

(Lotti et al., 2015; Laureni et al., 2016).

While the fundamental reaction mechanism of anammox has

been established and its feasibility in sewage treatment has been

demonstrated, the understanding of microbial interactions within

anaerobic anammox systems remains significantly limited (Laureni

et al., 2015; Li et al., 2019). AnAOB engage in quorum sensing by

secreting and sensing specific signaling molecules such as N-acyl

homoserine lactones (AHLs). These molecules can activate or

inhibit the expression of particular genes at specific

concentrations, thereby regulating the metabolic activity and

growth state of the bacteria. Additionally, different morphological

forms of AnAOB have been observed in biological treatment

systems, exhibiting varying nitrogen removal performances and

microbial community structures (Yue et al., 2019). Although the

performance of various anammox sludge morphologies formed in

numerous independent systems or under different operating

conditions has been studied, the differences in their microbial

community composition have not been comprehensively

compared under these different morphological conditions.

The differences in stability, treatment efficiency and microbial

diversity of different microbial morphology might have important

effects on process optimization. Research on the four microbial

morphologies can provide a deeper understanding of the

mechanisms of these influencing factors, thereby utilizing the

research findings to optimize the anammox process and

enhance nitrogen removal efficiency in wastewater treatment.

This study revealed variations in microbial flora among different

morphologies during the anammox process through comparative

analysis and employed bioinformatics methodologies to
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investigate the distinctions in bacterial communities across four

microbial morphologies. Through systematic analysis of 16S

rRNA gene sequences from 208 extracted samples of different

microbial morphologies, common bacterial phylum and genus

were identified, elucidating the interrelationships among various

taxa. Machine Learning (ML) techniques were employed to

identify key microbial species in various microbial morphologies

and to study the contribution of bacterial abundance to different

microbial forms under mainstream conditions. Additionally, the

XGBoost model was leveraged to highlight microbial communities

with significant contributions in various microbial morphologies

within the anammox process and to delineate the influential

environmental factors (e.g., COD, temperature, pH, dissolved

oxygen) shaping bacterial community structures. Multiple

analytical methods and the use of machine learning algorithms

to analyze high-throughput sequencing data contributed to a

deeper understanding of microorganisms in anaerobic anammox

systems. These findings aimed at enhancing our understanding of

bacterial communities in anammox systems, developing and

evaluating machine learning models based on microbial

community data and environmental conditions, to improve the

accuracy and efficiency of classification of microbial morphology,

and further provide insights for improving nitrogen removal

efficiency in wastewater treatment.
2 Materials and methods

2.1 Collection and processing of
literature data

To obtain 16S rRNA gene sequencing data from four different

morphologies of bacterial communities in biological wastewater

treatment systems, the Web of Science database was used to retrieve

published studies, and additional data were sourced from the NCBI

Sequence Read Archive (Sayers et al., 2022). A total of 208 samples

from 2017 to 2023 were included, comprising SS (42 samples), GS

(30 samples), biofilm (103 samples), and IFAS (33 samples).

Detailed information and sequencing data accession numbers for

the four different morphologies of bacterial communities in

biological wastewater treatment systems were provided in

Supplementary Tables S1 and S2.
2.2 Bioinformatics analysis

All 16S rRNA gene sequences were processed and analyzed

using USEARCH (v.10.0.240) (Edgar, 2010). The parameters –

fastq_minlen 400 and –fastq_trunclen 400 were applied to

remove primer binding, and low-quality reads were filtered using

–fastq_maxee 1.0 (Kuczynski et al., 2011). Following quality

control, the representative sequence of each OTU was

taxonomically classified using the Silva 138 Classifier, and

operational taxonomic unit (OTU) clustering was performed at a

97% identity threshold (Wu et al., 2019). The categorical

distribution profiles of bacterial at the genus level across
frontiersin.org

https://doi.org/10.3389/fmars.2024.1458853
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2024.1458853
individual samples were aggregated for comprehensive statistical

assessment and visual representation. The resultant OTU count

table served as the foundation for subsequent ML modeling efforts.

To characterize the incidence and abundance of distinct bacterial

genera, several descriptive terms were introduced: “frequently

observed genera” were defined as those observed in the top 50%

of all samples; “frequent abundance genera” were defined as those

with a relative abundance of > 5% in the top 50% of samples; and

“frequently observed but low abundance genera” were defined as

those with a relative abundance of < 2% in the top 50% of

the samples.
2.3 Statistical analysis and
data visualization

Alpha diversity analysis of various microbial morphologies

was conducted using the ggpubr and ggplot2 packages in R,

enabling the visualization and comparison of species richness

and Simpson’s diversity. The Mann-Whitney U test was applied to

discern significant differences. Bray-Curtis distance-based

Principal Coordinates Analysis (PCoA) and Adonis analysis

were performed in R utilizing the vegan package. The

abundance distribution of predominant genera within the

various microbial morphologies was visually represented using

violin plots, with the PERMANOVA employed to assess the

statistical significance of differences among the four microbial

morphologies. Exploration of inter-genus correlations within

different microbial morphologies was facilitated through co-

occurrence network analysis using R and Gephi. Spearman’s
Frontiers in Marine Science 03
correlation coefficient r > 0.7 and significance level p < 0.05

were utilized as criteria to discern strong correlations and

statistically significant relationships.
2.4 Machine learning with four models
using microbiome data

ML methodologies have emerged as powerful tools for

discerning microbial community variations and investigating the

impact of diverse environmental factors on bacterial populations. In

this study, relative abundance data from microbial samples at the

genus level were subjected to ML training and modeling processes

using four distinct models: Logistic Regression (LR), Support

Vector Machine with Linear Kernel (SVML), Support Vector

Machine with Radial Basis Function Kernel (SVMRBF), and

Extreme Gradient Boosting (XGBoost) (Cai et al., 2019). To

optimize the performance of the ML models, this study employed

the holdout method to segment the data set (randomly dividing it

into an 80:20 training-to-testing ratio). GridSearchCV was utilized

for hyperparameter tuning. GridSearchCV is a universal

hyperparameter searcher which can automate the search for

optimal parameters using an exhaustive search method, ensuring

that no potential combinations are missed and thereby

guaranteeing the identification of the global optimal solution.

This approach saved time and effort compared to manual

hyperparameter tuning. Subsequently, five-fold cross-validation

was implemented to compute the average accuracy and Area

Under the Curve (AUC) metrics for model evaluation and

facilitate visual analysis (Figure 1A). Five-fold cross-validation
FIGURE 1

The performance of ML models utilizes microbiome data to determine the significance of each feature. (A) Classification prediction accuracy and
AUC of the four ML models; (B) ROC curves of the four ML models. The confusion matrix illustrates the prediction accuracy of the four ML models
(C). LR, (D) SVML, (E) SVMRBF, (F) XGBoost).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1458853
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2024.1458853
fully utilized the data, reduced random error, and enhanced the

stability and reliability of model performance evaluation. Among

these, SVML and LR were linear models, XGBoost was a decision

tree-based model, and SVMRBF was based on the radial basis

function (RBF) methodology. SVMRBF uses the same support

vector machine as SVML but is based on the radial basis function

(RBF) methodology. The results of these models would be discussed

in detail in the results section, especially in identifying key

microorganisms in different morphologies. All four models were

suitable for various data scenarios, and thus, the most appropriate

model should be determined based on the accuracy and AUC values

derived from the classification predictions of microbial morphology

facilitated by each feature. The AUC was derived from the area

under the ROC curves of each model through integration, which

were plotted using the true positive rate (TPR) and false positive

rate (FPR).

Additionally, feature importance in the classification

predictions of all models was calculated using SHapley Additive

exPlanations (SHAP). SHAP provided a unified framework that can

explain the outputs of any machine learning model due to its

model-agnostic applicability, and capability to provide both local

and global interpretability, as previously described (Lundberg et al.,

2020). SHAP calculated the marginal contribution of each feature to

the prediction output in different combinations and finally derived

the average contribution value of each feature. After obtaining the

SHAP values, SHAP v0.45.1 (https://github.com/shap/shap) was

used to generate dot plots. These plots illustrated feature

importance and the magnitude of positive and negative

contributions of each feature by showing the SHAP values for
Frontiers in Marine Science 04
different samples in each model. In the plots, each point represented

a SHAP value of a specific feature in a sample, red dots indicated

positive contributions, while blue dots represented negative

contributions. Finally, the XGBoost algorithm was employed to

assess the individual contributions of bacterial taxa to the

classification outcomes for distinct microbial morphologies (SS,

GS, Biofilm, IFAS), pinpointing the most influential bacteria driving

the classification results for each morphological group.

Furthermore, feature importance analysis of environmental

factors impacting different microbial morphologies was conducted

using the XGBoost Classifier.
3 Results and discussion

3.1 Overview of bacterial communities in
four microbial morphologies

An analysis of bacterial communities within four distinct

microbial morphologies was performed by examining 208 16S

rRNA gene sequencing datasets sourced from 34 studies. As shown

in Figure 2, the Simpson Diversity index of IFAS systems was

significantly higher than that of other systems, indicating higher

diversity and complexity in microbial community composition.

The richness index provided a more intuitive representation of

biodiversity across the four microbial morphologies (Figure 2B).

The presence of outliers in all groups indicated occasional

significant deviations in species richness. Notably, the richness

index distribution in the SS and biofilm groups showed a wide
FIGURE 2

This study conducted a comprehensive analysis of four microbial morphologies. (A) Comparison of the Simpson index among the four microbial
morphologies; (B) Comparison of species richness (Richness Index) among the four microbial morphologies; (C) PCoA of four microbial
morphologies based on phylum level Bray-Curtis distance; (D) PCoA of four microbial morphologies based on genus level Bray-Curtis distance.
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range, reflecting substantial variability in species abundance. In

contrast, the IFAS group exhibited a higher and more stable

richness index, indicating uniform numbers of species. The GS

group exhibited the lowest richness index among the morphologies,

with minimal variation, consistent with the results of the

Simpson analysis.

Cluster analysis showed that differences in microbial

community structure were not particularly significant at phylum

and genus levels (Figures 2C, D). The two-dimensional distribution

and clustering of samples in PCoA space indicated that the

community structure was similar. IFAS samples demonstrated

close relationships with each other, while SS samples exhibited

greater dispersion, suggesting a higher degree of similarity within

IFAS microbial communities. The variance interpretation ratio of

PCoA at the genus level was lower than that at the phylum level,

indicating higher community structure complexity at the genus

level and more pronounced separation at the phylum level.
3.2 Differences in bacterial communities of
different microbial morphologies

A comprehensive examination revealed a total of 1217, 693,

458, and 702 genera in SS, biofilm, GS, and IFAS samples,

respectively (Figure 3A). Among them, SS had the highest

number of unique bacterial genera at 453, while GS had the

lowest at 29. The unique bacterial genera in biofilm and IFAS

were 77 and 80, respectively. Additionally, 285 genera were
Frontiers in Marine Science 05
identified in the overlapping central regions across all microbial

morphologies, indicating their ubiquity within these systems.

Conversely, fewer genera were shared between specific groups,

highlighting the distinctiveness of microbial compositions in

each morphology.

This study presented a detailed examination of the relative

abundances of specific genera (Figure 3B) and compared the top 10

most endemic species among the four microbial morphologies

(Supplementary Table S3). While the relative abundances of

endemic species were generally low, biofilm and GS displayed

significantly higher relative abundance values, suggesting a

prevalence of certain endemic bacteria within these morphologies.

Conversely, IFAS and SS exhibited lower relative abundance values

with more concentrated distributions.

Furthermore, a survey of common genera based on their

occurrence frequency across diverse morphologies was conducted,

and stacked bar charts were used to visualize the distribution of

genera within the four microbial morphologies (Figure 3C). The

enrichment analysis of frequently observed genera in SS, biofilm,

GS, and IFAS revealed that these genera accounted for 17.7%,

14.1%, 2.8%, and 27.2% of the total sequences, respectively

(Figure 3D). The analysis highlighted the presence of genera

frequently observed across different morphologies, albeit with low

abundance. Noteworthy observations included the identification of

specific abundant genera in each morphology, such as SBR1031 and

Thauera in SS; Candidatus Brocadia, Nitrospira, and Truepera in

biofilm, Denitratisoma, Nitrospira, and Truepera in GS; and

Ignavibacterium and unclassified_Comamonadaceae in IFAS.
FIGURE 3

Comparison of bacteria genera across four distinct sludge types. (A) Venn diagram illustrating the shared and unique genus, (B) Total relative
abundance of specific genus, (C) Number of frequently observed genus, categorized as frequently abundant, frequently observed but low
abundance, and other genus, (D) Total relative abundance of frequently observed genus.
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Notably, Candidatus Brocadia, one of the main AnAOB in biofilms,

utilizes ammonia and nitrite as substrates to convert them into

nitrogen through the anammox process. This process helps reduce

the nitrogen load in water bodies. Candidatus Brocadia often

coexists with other microorganisms, and the formation of

biofilms enhances its stability and survival in the environment

(Okabe et al., 2021). These findings suggested that genus

frequently enriched within microbial systems tend to exhibit

higher relative abundances, potentially playing a dominant role in

shaping the ecological dynamics of these systems. These

discrepancies in microbial composition among different

morphologies indicated significant impacts on the interactions

and functions within the microbial systems.
3.3 Bacterial co-occurrence network in the
four microbial morphologies

To explore the intricate relationships among bacteria inhabiting

different microbial morphologies, a detailed co-occurrence network

analysis was conducted, signifying frequent interactions and

interdependencies among different genera (Figure 4). The

clustering of bacteria within the network indicated shared

functional roles or cooperative dynamics among the co-occurring

genera. Larger clusters indicated heightened complexity in

interactions or a more extensive degree of connectivity within the

corresponding group.

Figure 4A provided a comprehensive visualization of the

interaction network among SS genera, offering insights into the

intricate relationships spanning the four distinct microbial

morphologies. Noteworthy genera such as Candidatus_

Competibacter and Nitrosomonas emerged as key nodes within the

network, exhibiting prominence in terms of their connectivity.

Central nodes including Candidatus_Kuenenia and RBG-13-54-9

displayed extensive interactions with numerous other nodes,

underscoring their pivotal roles and contributions to the microbial

ecosystem. Conversely, peripheral nodes like OLB14 ,
Frontiers in Marine Science 06
Saccharimonadales, and Ignavibacterium exhibited fewer

connections, suggesting niche-specific roles or less frequent

interactions within the network. Candidatus_Kuenenia, SBR1031,

and OLB13 formed distinct clusters within the IFAS network,

indicative of unique interactions and interdependencies within these

specific groups (Figure 4B). Figure 4C elucidated the co-occurrence

dynamics among IFAS genera, with genera such as Truepera and

Thauera occupying pivotal positions within the network, followed by

Candidatus_Kuenenia and Truepera. The central nodes,

Candidatus_Kuenenia and Nitrosomonas, within the Biofilm genera

played crucial roles, acting as significant nodes within their respective

clusters. Candidatus_Brocadia also emerged as a central connector,

manifesting essential interactions within the network. While other

nodes displayed comparatively fewer connections, they nonetheless

played significant roles within their designated clusters, with SM1A02

demonstrating niche-specific or less frequent interactions. In the GS

co-occurrence network, data generation was notably absent,

potentially due to variances in bioinformatics tools and algorithms

leading to biased interpretations of the data.

The robust correlations observed between bacterial genera

within SS and IFAS underscore the intricate interactions

prevailing within these systems. However, these interactions

may not be consistently preserved when these bacteria are

cultured in diverse bioreactor environments (Ma et al., 2023).

Taxonomic analysis of the co-occurrence network highlighted the

prevalence of bacterial genera affiliated with Proteobacteria,

Firmicutes, and Bacteroidetes, likely due to the dominance of

these phylum among microbial populations (Figures 4B, C).

Candidatus_Competibacter, renowned for its role in enhanced

biological phosphorus removal processes, exhibited higher

abundance in SS compared to Biofilm and IFAS. Notable

aerobic ammoxidation bacteria such as Nitrosomonas and the

Candidatus_Kuenenia were more pronounced in IFAS, also

manifesting presence in Biofilm and AS but to a lesser extent

(Welles et al., 2016). Truepera, recognized for its denitrification

capabilities, demonstrated greater prevalence in IFAS than in

Biofilm. Furthermore, OLB13, a core microbial constituent in
FIGURE 4

Co-occurrence analysis of frequently observed genus across different microbial morphologies. Each node represents a genus, with node size
proportional to its degree and color indicating frequency of occurrence [(A) SS, (B) Biofilm, (C) IFAS].
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anaerobic nitrification processes, exhibited varying abundances

across different microbial morphologies, with slightly higher

representation in IFAS. Noteworthy interactions, such as the

symbiotic relationship between OLB13 and AnAOB as a

protective mechanism in harsh environments, further

underscored the intricate ecological dynamics at play (Liu

et al., 2024).
3.4 Evaluating accuracy of four machine
learning models

This study employed machine learning modeling methods to

extract key features from extensive microflora data, establish

predictive models, and enhance the efficiency of data analysis.

The predictive performance of each ML model was evaluated

using the metrics of AUC and accuracy (Figure 1). The LR model

exhibited an average accuracy of approximately 84%, the SVML

model demonstrated an average accuracy of around 86%, the

SVMRBF model achieved an accuracy of about 83%. The

XGBoost model outperformed all others with the highest

accuracy of approximately 94%.

The predictive performance of the models was visually depicted

through ROC curves, which reaffirmed the superior efficacy of the

XGBoost model (Figure 1B). By plotting the TPR against the FPR at

varying thresholds, the ROC curves revealed that all models

approached the upper left corner, indicating their excellent

classification efficacy across different thresholds. Notably, the

XGBoost model exhibited the most outstanding performance,

achieving a remarkable 98% AUC. The LR and SVMRBF models

trailed slightly behind with 92% AUC, and the SVML model

attained 93% AUC. These results decisively favored the XGBoost

classification model as the optimal choice.

Moreover, the classification prediction performance of the four

models was comprehensively assessed using confusion matrix heat
Frontiers in Marine Science 07
maps (Figures 1C–F). The data in the blocks of the confusion matrix

represented the comparison between the predicted results and the

actual results in a classification task. The majority of

misclassifications were observed between Biofilm and IFAS

systems, accounting for approximately 2-3% of all forecasts,

whereas fewer erroneous predictions were noted between GS and

other morphologies. The difficulty in accurately classifying Biofilm

and IFAS could be attributed to their relatively similar community

structures (Figure 2). It was evident that the intricate interplay

among various microbial morphologies influences the predictive

efficacy of ML models concerning operational characteristics.

Overall, all models exhibited predictive accuracy, with XGBoost

demonstrating superior performance in terms of accuracy, AUC,

and minimal classification errors. XGBoost exhibited significant

performance advantages due to its incorporation of regularization

techniques to prevent overfitting, built-in handling of missing

values, efficient tree pruning algorithms, parallel processing

capabilities, advanced methods for addressing imbalanced data.

These features collectively enhanced model’s efficiency, accuracy,

and robustness in handling complex data scenarios, making it a

superior choice for many machine learning tasks.
3.5 Distinguishing key taxonomic groups
by ML modeling

The XGBoost model was employed to conduct feature

importance analysis on the OTU count table, derived from

summarizing the classification distribution profiles of bacteria at

the genus level for each sample (Figure 5). LD-RB-34 emerged as

the most influential feature impacting the SS type, as shown in

Figure 5A. The norank_f_LD-RB-34 facilitates the anammox process

by engaging in the PD process, utilizing nitrate as an electron

acceptor, reducing it to nitrite, and providing the essential nitrite
FIGURE 5

The importance of the microbial flora in predictive decision-making is ranked based on their characteristics. The XGBoost model was employed to
estimate the mean absolute SHAP values for each bacterial population [(A) SS, (B) GS, (C) Biofilm, (D) IFAS] and to generate the corresponding SAP
value dot plots.
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for AnAOB (Wu et al., 2023). This nitrite accumulation is facilitated

by the synergistic activity of multiple microorganisms, not merely a

single genus. Genera such as Candidatus Competibacter and

Defluviicoccus, both capable of denitrification, also contribute to the

PD process. The combined action of these genera results in efficient

nitrite accumulation, which is crucial for subsequent anammox

processes (Li et al., 2020). Candidatus_Kerfeldbacteria belongs to

the candidate phylum. Candidate phylum represent a group of

microorganisms that have not yet been cultured or sufficiently

characterized for classification. Although the current study

indicates that Candidatus_Kerfeldbacteria is not among the known

genera involved in the anammox process, its presence may be

indirectly related to the anammox process. Peredibacter is an

obligate predatory bacterium that attacks its prey through efficient

locomotion, attaches to the outer membrane of prey cells, and preys

exclusively on other Gram-negative bacteria via epibiotic predation or

by penetrating the periplasmic space of the prey (epigenetic

predation) (Davidov and Jurkevitch, 2004). By preying on Gram-

negative bacteria involved in the anammox process, Peredibacter can

regulate the population dynamics and structure of AnAOB, thereby

playing a crucial role in anammox (Ezzedine et al., 2020).

Candidatus_Competibacter, a member of the glycogen-

accumulating organisms (GAOs), does not directly participate in

phosphorus removal, but plays a critical role in the Enhanced
Frontiers in Marine Science 08
Biological Phosphorus Removal (EBPR) wastewater treatment

system (McIlroy et al., 2014). As they compete for resources with

polyphosphate accumulators organisms (PAOs), the competition

between GAOs and PAOs can be optimized by adjusting the

operating conditions of EBPR system to enhance its phosphorus

removal efficiency (Song et al., 2022).

In the GS system, the predominant bacterial taxa included KF-

JG30-C25, Pla4_lineage, and Fimbriimonadaceae. According to

previous studies, KF-JG30-C25 is pertinent to the study of

soil microbial communities, particularly in stable isotope

detection (SIP) experiments, which are employed to identify the

Acidobacteria Granulicella sp. The microbial community associated

with extracellular polymer substances (EPS) produced by strain

WH15 constitutes a group of bacteria potentially significant in soil

microbial communities, potentially playing a role in the metabolism

and nutrient cycling of soil organic matter (Costa et al., 2020).

Notably, Pla4_lineage achieves biological nitrogen removal in

anammox by converting ammonia into nitrogen through anammox

process, which is similar to other planctomycetes communities, and

this process contributes significantly to the global nitrogen cycle,

especially in the Marine environment (Wiegand et al., 2020). The

Fimbriimonadaceae family showed a significantly correlation with

ammonia removal, suggesting that it may contain ammonia-

oxidizing bacteria groups or have positive interactions with

ammonia-oxidizing bacteria, thereby facilitating the anammox

process (de Celis et al., 2020).

Unclassified Brocadiaceae, classified as a genus of AnAOB,

emerges as the predominant genus exerting the most substantial

influence on the Biofilm type. Notably, fluctuations in the

abundance of Unclassified Brocadiaceae have been used as an

indicator of anaerobic ammonium oxidation reactor stability in

previous studies (Deng et al., 2023). Thus, although the specific

classification of these microorganisms remains pending, their

presence and variations play a pivotal role in monitoring and

assessing the operational efficiency of anammox systems (Yang

et al., 2021). In the biofilm ecosystem, Thiobacillus orchestrates

energy production via sulfide oxidation, fostering the growth and

metabolism of diverse microbial communities (Lopez-Fernandez

et al., 2023). Moreover, the uncultured OM190 group within the

Planctomycetes phylum is significant in the nitrogen cycle,

particularly associated with genes involved in nitrogen oxide

reductase, nitrogenase, and hydroxylamine reductase pathways

(Ludington et al., 2017). Additionally, bacteria such as Thauera,

part of the Betaproteobacteria class, are gram-negative bacteria

actively engaged in denitrification processes, catalyzing nitrate

reduction to nitrogen and enhancing nitrogen cycle dynamics

(Rujakom et al., 2023).

In the context of IFAS type prediction, BSV26 emerges as a

resilient microorganism exhibiting robust environmental

adaptability, crucial for sustained proliferation and maintenance

within the IFAS ecosystem. Its presence significantly impacts the

system’s stability and metabolic functionality (Bai et al., 2022).

Moreover, the involvement of CCM19a in phosphorus removal

processes underscores its crucial role in environmental remediation

s t ra teg ies (S tokholm-Bjerregaard e t a l . , 2017) . The

Unclassified_Comamonadaceae genus, a member of the
FIGURE 6

The performance of ML modeling utilizes environmental condition
data to determine the significance of each feature. (A) Classification
prediction accuracy and AUC of four ML models. (B) Estimation of
the mean absolute SHAP value for each environmental factor using
the XGBoost model.
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Proteobacteria phylum, is a dominant bacterium genus integral to

denitrification processes. It collaborates with diverse microbial

cohorts within the system, contributing to hydrogen autotrophic

denitrification processes that are critical for sewage treatment and

nitrogen elimination (Lu et al., 2024). Furthermore, Flavobacterium

bacteria, characterized as gram-negative microbes, are prominently

associated with biofilm formation, organic matter decomposition,

and significantly contribute to the carbon cycle within aquatic

ecosystems (Kolton et al., 2016).
3.6 Impacts of environmental factors on
bacterial communities

In addition to genus level taxonomic data for bacterial groups,

this study utilized machine learning models to identify

environmental factors that significantly influence microbial

morphology (Figure 6A). The findings derived from the

XGBoost classification model highlighted the critical role of DO

in shaping microbial community dynamics (Figure 6B), the x-axis

represented the feature importance of each feature, which means

the degree of contribution of each feature to the model prediction

results. AnAOB exhibited heightened sensitivity to variations in

DO levels due to their metabolic functions in hypoxic

environments. Elevated concentrations of DO were shown to

potentially hinder AnAOB activity and viability. Experimental

observations indicated that a properly increase in DO

concentration (e.g., from 0.4 to 0.6 mg/L) could stimulate

AnAOB growth without detrimental effects. This phenomenon

may be attributed to increased nitrite availability at higher DO

levels, thereby facilitating the proliferation of AnAOB (Zhao

et al., 2023). AOB and NOB, functioning aerobically to

oxidize ammonia and nitrite, were notably influenced by DO

levels. Suboptimal DO conditions could impede the growth and

activities of these bacteria. Therefore, properly DO management

represents a key modulatory factor for optimizing the Anammox

process, enhancing biological nitrogen removal efficiency, and

mitigating competition from AOB and NOB for substrates

(Duan et al., 2024).

Temperature and pH emerged as pivotal determinants closely

linked to microbial community predictions within the ML framework.

To date, more than 20 anammox species have been discovered, each

exhibiting varying adaptabilities to temperature (Lin et al., 2018;

Nsenga Kumwimba et al., 2020). Temperature fluctuations modulate

the metabolic pathways of AnAOB, with optimal performance typically

observed within the range of 35°C to 40°C (Tomaszewski et al., 2017b).

Temperature alterations can induce shifts in AnAOB metabolic

pathways, thereby influencing nitrogen removal efficacy. The

anammox process is also affected by short-term disturbances in DO

under two different temperature regimes (Niederdorfer et al., 2021).

Furthermore, AnAOB exhibited heightened sensitivity to pH

variations. The optimal pH range for AnAOB is typically between

6.7 and 8.3, with high and low pH values exerting varying degrees of

inhibitory effects on the anammox community. Precise pH control

within a narrow band (7.2 to 7.6) is advocated to maintain consistent

anammox performance and prevent substrate inhibition (Zhao et al.,
Frontiers in Marine Science 09
2023). Temperature and pH fluctuations not only individually impact

the anammox process but also create synergistic effects on parameters

such as free ammonia and free nitrite content. Some studies have

shown that the interaction effect of temperature and pH has an

important effect on anammox activity. For example, a central

combinatorial design experiment found that higher pH levels result

in increased anammox activity at low temperatures (Daverey et al.,

2015). Tomaszewski also indicated that pH has a more significant effect

on anammox activity at lower temperatures (Tomaszewski et al.,

2017a). Additionally, fluctuations in temperature and pH not only

individually impact the anammox process but also create synergistic

effects on parameters such as free ammonia and free nitrite content

(Daverey et al., 2015). Therefore, enhancing anammox activity by

adjusting temperature and pH can promote synergistic interactions

with microorganisms and optimize substrate utilization, thereby

improving nitrogen removal efficiency in water treatment applications.
4 Conclusions

In this study, bioinformatics andMLmethods were used to analyze

the microbial communities of four different forms of anammox

systems. The results of bioinformatics analysis showed that the

composition of microbial communities in the IFAS system had great

diversity and complexity, and there were complex interactions and

associations among different bacterial genera. In machine learning

modeling, in particular the XGBoost model, feature importance

analysis was performed to identify the most influential bacterial

genera and environmental factors that influenced the classification

results of various microbial morphology. The results demonstrated that

changes in DO, temperature, and pH are the crucial factors influencing

microbial community composition across various forms and altering

anammox activity. Overall, these findings enhanced the understanding

of the differences in the four different forms of bacterial communities

during anammox, and also provided an important theoretical basis for

improving wastewater treatment processes. Although four microbial

morphologies have been analyzed using bioinformatics and ML

methods in this study, there are few existing experimental studies

and a lack of long-term experimental validation in actual wastewater

treatment systems. Long-term operational experiments applied to real

wastewater treatment systems in the future would help to validate the

findings of this study and provide strong support for more efficient and

stable wastewater treatment.
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