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Oceanic water quality monitoring is essential for environmental protection, resource

management, and ecosystem vitality. Optical remote sensing from space plays a

pivotal role in global surveillance of oceanic water quality. However, the spatial

resolution of current ocean color data products falls short of scrutinizing intricate

small-scale marine features. This study introduces a hybrid model that fuses MODIS

(Moderate Resolution lmaging Spectroradiometer) ocean color products with

Sentinel-2 ‘s remote sensing reflectance data to generate high-resolution ocean

color imagery, specifically investigating the diffuse attenuation coefficient at

a wavelength of 490 nm (Kd490). To address the intricacies of coastal

environments, we propose two complementary strategies to improve the

accuracy of inversion. The first strategy leverages MODIS ocean color products

alongside a geographic segmentation model to perform distinct inversions for

separate marine zones, enhancing spatial resolution and specificity in coastal

regions. The second strategy bolsters model interpretability during training by

integrating predictions from conventional physical models into a Random Forest-

based Regression Ensemble (RFRE) model. This study focuses on the coastal regions

surrounding the BeibuGulf, near Hainan Island in China. Our findings exhibit a strong

concordance with MODIS products, achieving a monthly average coefficient of

determination (R²) of 0.90, peaking at 0.97, and sustaining a monthly average root-

mean-square error (RMSE) of less than 0.02. These results substantiate the model’s

efficacy. Moreover, the annual trend analysis and localized assessment of the

reconstructed Kd490 offer nuanced insights that surpass MODIS data, establishing

a robust foundation for high-resolution water quality monitoring in coastal zones.
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1 Introduction

Oceanic waters have recently experienced persistent deterioration

in water quality due to human activities in neighboring inland and

coastal areas. Monitoring oceanic environments is crucial for assessing

ecosystem health and supporting local fisheries economies, forming the

foundation for sustainable development (Marzano et al., 2020).

However, obtaining uniformly distributed time-series data across the

entire study area poses a challenge for traditional field measurement

methods. In this regard, leveraging remote sensing technology can

effectively overcome these challenges and enable more comprehensive

and consistent water quality monitoring.

Spaceborne optical remote sensing technology complements

traditional in-situ sampling methods by providing large-scale, high-

resolution images (with resolutions of tens of meters or finer)

covering large areas with revisit times of a few days (Blondeau-

Patissier et al., 2014; Matthews, 2011). Ocean remote sensing relies

on measuring the spectral characteristics of radiation emitted or

reflected by its components (Mobley, 1994; Manzo et al., 2018;

Braga et al., 2016). In estimating chlorophyll-a (Chl-a) on

centration, a series of algorithms including OC3 (Ocean

Chlorophyll 3), OC4 (Ocean Chlorophyll 4), and those proposed

by O’Reilly et al. have been widely adopted (O’Reilly, 2000).

However, the global ocean color products provided by MODIS

are primarily targeted toward open ocean waters with a spatial

resolution of only 1 km. The coarse resolution is detrimental to

depicting fine oceanic structures, hindering the study of small-scale

oceanic activities. Additionally, coastal water bodies exhibit more

complex compositions, influenced by colored dissolved organic

matter (Zhu and Yu, 2013), phytoplankton (Asim et al., 2021),

and suspended sediments (Zhang et al., 2016). The complexity in

the composition of water bodies leads to rich textural features in

reflectance images. As a result, the remote sensing of these optically

complex water bodies presents greater challenges and typically

requires instruments with higher spatial resolution to provide

more detailed information (Wang et al., 2009; Kremezi and

Karathanassi, 2020; Mouw et al., 2015; Yang et al., 2011). To

address this challenge, satellite sensors with higher resolution,

such as those on Landsat 8, have emerged, offering a moderate

spatial resolution of 30 m. For example, Prasetyo et al. successfully

utilized this sensor to estimate the diffuse attenuation coefficient at a

wavelength of 490nm (Kd490) in the waters surrounding Bangka

Island (Jaelani et al., 2016). Similarly, in experiments conducted in

Eastern Moreton Bay, Australia, Jaelani et al. successfully estimated

the total suspended matter (TSM) and Chl-a concentrations in the

water column (Rodrigues et al., 2020).

Sentinel-2 satellites have recently become instrumental in ocean

monitoring (Hedley et al., 2018; Pahlevan et al., 2017), whose spatial

resolution is up to 10m. It provides high-resolution optical imagery,

(with spatial resolution ranging from 10 to 60 meters depending on

the visible spectral bands) and achieves systematic global coverage

every 2-3 days in mid-latitude regions (Harmel et al., 2018). Many

studies have used Sentinel-2 to successfully perform ocean color

remote sensing tasks. For instance, Shundan Dong et al. conducted

research in the coastal waters of Hong Kong, comparing the

inversion results of Landsat-8 and Sentinel-2 based on multiple
Frontiers in Marine Science 02
models, demonstrating the feasibility of using both remote sensing

datasets for Chl-a concentration inversion in Hong Kong’s

nearshore waters (Dong et al., 2021). Gernez et al. successfully

applied a simulated Sentinel 2 MSI dataset to retrieve CSPM values

in turbid estuary waters (Gernez et al., 2015).

There have also been studies on the construction of high-resolution

ocean color data. Kremezi et al. improved marine monitoring by

integrating Sentinel 3 and Sentinel 2 image data. They generated

Chl-a and TSM maps to assess the fused image, yielding favorable

results (Kremezi and Karathanassi, 2020). Pan Duan et al. aimed to

develop and evaluate the performance of two image reconstruction

strategies, namely spatiotemporal fusion reflectance image inversion

SPM and SPM spatiotemporal fusion, based on the measured SPM

concentration data with Sentinel-2 and Sentinel-3 (Duan et al., 2023).

In the realm of ocean color inversion methods, empirical

models, while straightforward, suffer from a lack of spectral

feature consideration. This limitation restricts their applicability

to regions beyond their initial calibration area, consequently

affecting prediction accuracy in the current region (Cao et al.,

2020). Conversely, bio-optical models, characterized by their

complexity and stability, encounter challenges associated with the

acquisition of inherent optical properties, thereby constraining their

widespread adoption (Song et al., 2014; Giardino et al., 2007).

In recent years, machine learning has been widely used to

retrieve water quality parameters, including random forest (RF)

(Maier et al., 2018; Chen et al., 2019), Support Vector Regression

(SVR) (Camps-Valls et al., 2006), and artificial neural network

(ANN) (Pahlevan et al., 2020; Gonzalez Vilas et al., 2011). Frank S.

Marzano et al. proposed using an empirical and model-based

framework to design regression and neural network (NN) models

for the inversion of Chl-a and TSM along the coasts of the Adriatic

and Tyrrhenian Seas in Italy. Comparisons with in situ data

demonstrated the effectiveness of using Sentinel-2 for ocean color

inversion (Marzano et al., 2020). Asim et al. developed techniques

for ocean Chl-a remote sensing in the Barents Sea, improving

monitoring through in situ data integration and machine

learning, resulting in enhanced Chl-a estimation accuracy (Asim

et al., 2021). Chen et al. evaluated various methods and found that

the random forest-based regression ensemble (RFRE) model

performed best in remotely estimating surface pCO2 in the Gulf

of Mexico, providing a robust estimation framework for ocean

carbon flux and acidification research (Chen et al., 2019).

The preceding studies relied on in-situ measurement results for

validation, which resulted in a limited number of samples available

for model training and testing. In contrast, this paper adopts a

methodology that replaces in-situmeasurement results with filtered

MODIS standard ocean color products. While Sentinel-2 provides

high spatial resolution data essential for detailed coastal analysis,

there is currently no universal model. MODIS can complement

Sentinel-2 by providing lower-resolution but frequent observations

and a mature ocean color data product. Leveraging Sentinel-2’s

multispectral remote sensing imagery, a model combining machine

learning and empirical formulas is constructed to re-invert and

obtain high-resolution ocean color data for the study area.

In this paper, we employed RFRE as the machine learning

method. A notable advantage of the machine learning-based RFRE
frontiersin.org
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approach is the capability to approximate the nonlinear relationship

between predictor variables (i.e., reflectance values from different

spectral bands in remote sensing) and the target variable (i.e.,

Kd490) without the need for explicit knowledge of their

functional dependency (Lunetta et al., 2004).

The coastal waters of the Beibu Gulf, adjacent to Hainan Island,

China (spanning from 18.8°N, 108.1°E to 19.8°N, 109.1°E), have been

designated as the research area. It is a semi-enclosed and shallow

marine environment bordered by the southern coast of China and the

northeastern coast of Vietnam.With an average depth of about 50m, it

is influenced by complex hydrodynamic processes, including

monsoons, tides, and currents. The gulf is rich in biodiversity and

serves as a vital fishing ground, supporting various fish species,

crustaceans, and mollusks. Nutrient input from rivers contributes to

its high primary productivity. Accurately understanding the

spatiotemporal characteristics of marine ocean color parameters in

this region holds significant scientific and strategic importance

(Zhuang et al., 2010). Kd490 is chosen as our research target, which

quantifies the reduction in the intensity of light at a wavelength of 490

nm due to scattering and absorption by water and its constituents. This

coefficient is important in oceanography and marine science for

understanding light penetration in water, which affects

photosynthesis, ocean color, and the overall health of aquatic

ecosystems (Tomlinson et al., 2019). Utilizing data collected by both

sensors throughout the months in 2023, Kd490 standard ocean

products from NASA’s MODIS are employed to train and test the

inversion model with Sentinel-2 data. The test results have shown

promising outcomes. With the proposed model, we reconstruct Kd490

images at a 10m resolution for the coastal waters of Hainan Island.

Subsequently, a trend analysis of Kd490 is conducted based on these

reconstructed images.
Frontiers in Marine Science 03
2 Data

This section introduces the Sentinel-2 satellite imagery and

MODIS ocean products used in this study.
2.1 Sentinel-2 imagery data set

The Sentinel-2 mission under the Copernicus program, driven

by the European Space Agency (ESA), aims to acquire high-

precision imagery data of land and coastal areas to support the

monitoring of vegetation, soil, and coastal waters (Pahlevan et al.,

2017; Liu et al., 2017). The full mission specification of the twin

satellites flying in the same orbit but phased at 180°, is designed to

give a high revisit frequency of 5 days at the Equator. The mission

consists of two identical satellites, Sentinel-2A and Sentinel-2B,

both of which are equipped with Multi-Spectral Imagers (MSI).

The MSI measures the Earth’s reflected radiance in 13 spectral

bands from VNIR to SWIR with an orbital swath width of 290

kilometers. Spatial resolution varies are shown in Table 1: 1) Four

bands (B2-4, B8) for visible and near-infrared spectra at a resolution

of 10 meters; 2) Six bands (B5-7, B8A) at 20-meter resolution for

red-edge and SWIR for vegetation detection, and (B11, B12) for

snow, ice, and cloud discrimination; 3) Three bands (B1, B9, B10) at

a resolution of 60 meters targeting coastal aerosols, water vapor, and

cirrus detection, respectively.

For this study, 24 Sentinel-2 satellite images were

selected from the Copernicus Open Access Hub (https://

browser.dataspace.copernicus.eu) and categorized by month.

These Level-2A images, obtained in the free SAFE format and

projected in UTM/WGS84, underwent official atmospheric
TABLE 1 Overview of the MSI spectral bands with their spatial resolutions (From Sentinel-2 MSI technical guide).

S2A S2B

Band Number
Central wave-
length (nm)

Bandwidth (nm)
Central wave-
length (nm)

Bandwidth (nm)
Spatial

resolution (m)

1 442.7 20 442.3 20 60

2 492.7 65 492.3 65 10

3 559.8 35 558.9 35 10

4 664.6 30 664.9 31 10

5 704.1 14 703.8 15 20

6 740.5 14 739.1 13 20

7 782.8 19 779.7 19 20

8 832.8 105 832.9 104 10

8A 864.7 21 864.0 21 20

9 945.1 19 943.2 20 60

10 1373.5 29 1376.9 29 60

11 1613.7 90 1610.4 94 20

12 2202.4 174 2185.7 184 20
(From ESA Sentinel-2 MSI Technical Guide: https://sentiwiki.copernicus.eu/web/s2-mission#MSI-Instrument).
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correction by ESA, eliminating the need for further correction

during subsequent processing. To ensure data quality, images

with cloud cover exceeding 15% were excluded, resulting in a

final selection of 24 pairs of high-quality images for model

training and reconstruction.
2.2 MODIS Kd490 (marine level-3
products) data set

MODIS, onboard NASA’s Aqua and Terra satellites, plays a

vital role in monitoring Earth’s surface parameters, including ocean

color. Kd490, which characterizes the diffuse attenuation of light in

the water column, is particularly significant in ocean color remote

sensing as it reflects water transparency and particle concentration

(Rodrigues et al., 2020). To provide reference and validation results

for Sentinel-2 inversion, data from NASA’s website (https://

oceandata.sci.gsfc.nasa.gov) were accessed to obtain Kd490

products covering the same year in the vicinity of Hainan Island,

with a spatial resolution of 1 km. Two images were selected each

month to match with Sentinel-2. Due to potential cloud cover and

data gaps in MODIS images, two images were selected each month

to match the temporal resolution of Sentinel-2 data. A maximum

time difference of 2 days was allowed between corresponding

Sentinel-2 and MODIS images to ensure consistency. Images with

extensive missing data were manually excluded, resulting in a final

selection of 24 pairs for analysis.
3 Method

This section provides an overview of the methodology

employed in the study. It commences with the sequential

preprocessing, filtering, and matching of pairs of single-day

images for each month. Subsequently, the resulting datasets are

recombined by month for model training and testing. Following

this, the model framework, training process, testing results, and

improvements are detailed.
3.1 Data preprocessing, filtering,
and matching

Before developing the model, we first conducted preprocessing

steps on the original Sentinel-2 imagery and MODIS Kd490 ocean

color products, including spatial resolution matching, dataset

selection, and geographic location alignment to facilitate

subsequent work, as shown in Figure 1A.

The inversion algorithm primarily utilizes four Sentinel-2

bands: ultra blue, blue, green, and red, with different spatial

resolutions. To ensure consistency, the coastal band of each

Sentinel-2 image is upsampled to a 10m resolution to match the
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other bands. Subsequently, due to the large data volume and

resolution mismatch with MODIS, all Sentinel-2 images are

downsampled to a uniform resolution of 1 km.

During dataset filtering, the corresponding MODIS Kd490 data

within the coverage area of Sentinel-2 images are initially selected

due to the limited coverage of Sentinel-2 images. Due to having

previewed the approximate range of valid values for MODIS Kd490

marine products, to ensure the validity and accuracy of the data, the

range of Kd490 values is restricted to between 0 and 1 m-1, thereby

excluding potential outliers. This filtering process results in the

creation of a MODIS dataset, referred to as set A, containing

geographic coordinates and corresponding Kd490 values.

To improve geographic coordinate matching accuracy, a

proximity-based matching method is employed. By comparing

the distance at corresponding locations on Sentinel-2 and MODIS

images, matching is determined. Given that Sentinel-2 images

have already been downsampled to 1 km spatial resolution, and

each degree of latitude is approximately 111 km, a spatial

resolution of 1 km corresponds to a difference of 0.01° in

latitude and longitude. Therefore, a distance threshold of 0.01°

is set for matching.

To be specific, first, iterate through each pixel of the Sentinel-2

image. Then, for each pixel’s corresponding geographical

coordinates, iterate through and calculate the Haversine distance

with the geographical coordinates in set A. This calculation

considers Earth’s curvature.

The Haversine distance between two points with specific

latitude and longitude coordinates (j1, l1) and (j2, l2) is

calculated as follows:

a = sin2 Dj
2

� �
+ cos(j1) � cos(j2) � sin2 Dl

2

� �
(1)

c = 2 � atan2( ffiffiffi
a

p
,

ffiffiffiffiffiffiffiffiffiffi
1 − a

p
) (2)

d = R � c (3)

where (j1, l1) and are the latitudes of the two points in

radians, Dj = j2 − j1   is the difference in latitudes, Dl = l2 − l1
is the difference in longitudes, and R is the Earth’s radius (mean

radius = 6371 km).

For each pixel in Sentinel-2, if the minimum distance to the

coordinates in Set A is less than the predefined threshold of 0.01°, it

indicates that the pixel has a geographic location match in the

preprocessed MODIS data. In such cases, the Sentinel data

corresponding to this minimum distance is selected as the input

variable, while the associated MODIS data is assigned as the label.

After completing the preprocessing steps, two datasets are

obtained, representing input variables (the sampling points

include the remote sensing reflectance of Sentinel-2 bands 1-4

and their corresponding latitude and longitude) and target labels

(the Kd490 values of sampling points given by MODIS), forming

the basis for subsequent model training and analysis.
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3.2 Geolocation segmentation of
MODIS Kd490

Coastal and transitional waters often categorized as Case-II

water types, encompassing algal blooms and natural or

anthropogenic turbidity plumes, typically pose challenges for a

single model approach to achieve satisfactory results, following

the definition provided by Morel and Prieur (Morel and Prieur,

1977). Using MODIS data, we can obtain a rough estimate of Kd490

for the area. We found that the Kd490 values in the nearshore

waters exhibit a pronounced tendency to higher values, which can

probably be attributed to elevated concentrations of suspended

particles, such as sediments and organic matter, which are

common in coastal areas. Therefore, this study adopts a model

segmentation approach that integrates Kd490 reference value from

MODIS and geographic location information. The operational steps

are outlined as follows:
Fron
1. Regional Partitioning: Data points with Kd490 values

exceeding a specific threshold are labeled, and the

boundaries of these regions are delineated using smooth

curve fitting techniques.

2. Model Segmentation: For regions with lower Kd490 ground

truth values, indicating clearer and simpler water
tiers in Marine Science 05
compositions, empirical algorithms remain applicable.

Here, commonly used blue-green band ratio models for

oceanic water bodies, collectively referred to as physical

models, are primarily employed (see Empirical Formula in

Table 2) (Blondeau-Patissier et al., 2014; O’Reilly, 2000;

Sauer et al., 2012). Through multiple tests, the best-

performing models are selected.

In contrast, for regions with higher Kd490 truth values

due to water complexity, a machine learning model

is utilized.

3. Model Training: During the inversion process, the choice of

model is determined based on the proximity of Sentinel-2

data coordinates to the boundaries of the fitting curves. Data

points closer to these boundaries undergo inversion using

machine learning model, while others employ physical

models. In the fitting process, Sentinel-2 remote sensing

data serve as independent variables, with corresponding

MODIS Kd490 values as dependent variables. These

methods aim to enhance the model’s adaptability to

different water types, thereby improving the accuracy and

reliability of ocean color parameter inversion.
The segmentation and geolocation fitting process of the model

is illustrated in Figure 1B, along with an example of fitting results
FIGURE 1

The method flowchart. (A) depicts the preprocessing flowchart for MODIS and Sentinel-2 Original Data. (B) illustrates the segmentation and
geolocation fitting process of the model and showcase an example of fitting results for geographic locations in July. (C–E) demonstrates the training
and testing processing of both the Basic RFRE Model and the Improved RFRE Model.
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for July geographic locations. The red solid line is the curve fitted

by screening the higher value of MODIS-Kd490, while the

scattered point represents the Kd490 value of the sample points.

The Kd490 around the fitted curve is significantly higher,

indicating that the segmentation of the model based on

geographical location is effective. In addition, the curve is

consistent with the lower part of the coastline, which can be

preliminarily analyzed that the coastal water body in the south of

this region is turbidity in summer, so it is not suitable to use a

simple physical model such as blue-green ratio method for ocean

color inversion.
3.3 Basic RFRE model and seasonal
fixed model

Initially, Kd490 values are divided into three intervals using

0.25 and 0.5 as breakpoints. For MODIS-provided Kd490 falling

within these intervals, separate position curves are fitted to

determine the appropriate model for training. Based on the

distance between Sentinel-2 data points and the fitted curves,

data points are assigned to the corresponding Kd490 interval

model. Geographic coordinates are used to evaluate the fit of each

data point to the curves, with assignments made based on a

matching threshold.

For sample points near the boundaries of the fitting curves, the

RFRE model was chosen for this study after evaluating several

machine learning models mentioned in the introduction. RFRE is a

widely used ensemble learning algorithm that enhances model

accuracy and robustness by aggregating predictions from multiple

decision trees. In regression tasks, RFRE helps mitigate the

overfitting commonly associated with individual regression trees

by employing bagging, which improves the model’s generalization

capability (James et al., 2013).
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During training, each regression tree in the RFRE model is

independently grown on bootstrapped samples of the training data,

which in this case consist of Rrs values from Sentinel-2 bands B1 to B4.

At each decision split, a random subset of these Rrs values is selected as

predictors, reducing correlations between trees and increasing their

independence, ultimately boosting overall model performance. The

bootstrap sampling technique also enables out-of-bag (OOB)

estimation, allowing for the assessment of predictive performance

using observations not included in the bootstrap samples.

Two key parameters define the RFRE model’s structure: the

minimum leaf size and the number of learning cycles (i.e., the

number of regression trees). The minimum leaf size determines

the smallest number of data samples required in each node of a

regression tree, affecting both the depth of the tree and the way it

splits. The number of learning cycles refers to the total number of

regression trees in the ensemble. After optimizing these

parameters, the Basic RFRE model was implemented to establish

the predictive relationship between the Rrs values and Kd490, the

target variable. Figure 1C depicts the overall process, while

Figure 1D specifically details the Basic RFRE Model utilized

within this framework.

After multiple rounds of cross-validation, we have selected the

optimal configuration of the model’s key parameters (see RFRE

Model Setting in Table 2). The chosen configuration for the physical

model is y = t1e
(t2�max (b2,b1))=b3 + t3, the matching threshold is D =

5� 10−5. Using 50 trees in the regression random forest and set the

threshold accordingly. The RFRE optimal values for the minimum

leaf size and number of learning cycles were determined to be 8 and

25, respectively. With these settings, the predictive accuracy of the

RFRE model becomes stable, and the RFRE model has been

developed for predicting Kd490.

Using random sampling, 2/3 of all data points are selected as the

training set for training the Sentinel-2 Kd490 inversion model each

month. The remaining 1/3 of data points are reserved as the test set

to evaluate the accuracy and generalization ability of the model, and

to adjust the model parameters appropriately.

We computed the overall coefficient of determination (R2), the

mean bias (Bias), and the root mean square error (RMSE) of the

model on the test set for each month. These metrics serve to gauge

the efficacy of the model across different time intervals and its

overall performance.

The coefficient of determination, R2, represents the proportion

of the variance in the dependent variable that is explained by the

model. R2 values range from 0 to 1, with values closer to 1 indicating

better model fitting:

R2 = 1 − SSres
SStot

(4)

Bias indicates the average difference between the predicted

values and the true values, thereby offering a measure of model

accuracy:

Bias = 1
no

n

i=1
(yi − byi) (5)

RMSE, the square root of the mean squared differences between

the predicted values and the true values, provides an assessment of
TABLE 2 Physical model and RFRE model setting.

Model Form Expression

Empirical Formula
(Based on Blue-Green

Ratio Method)

Exponential Function

Kd490 = t1e
(t2 �max (b2 ,b1 ))=b3 + t3

Kd490 = t1e
(t2 �b2+t3 �b1)=b3 + t4

Kd490 = t1e
(t2 �b2)=b3 + t3

Polynomial Function
Kd490 = t1(b2=b3)

2 + t2

Kd490 = t1(b2=b3)
3 + t2

Power Function Kd490 = t1(b2=b3)
t2 + t3

Logarithmic Function Kd490 = t1 log (b2=b3) + t2

RFRE Model Setting

Physical Model Kd490 = t1e
(t2 �max (b2 ,b1 ))=b3 + t3

Matching Threshold D = 5� 10−5

Sections breakpoints 0.25, 0.5

Learning Cycles 25

Minimum Leaf Size 8
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the overall prediction error of the model. Smaller bias and RMSE

values indicate that the model’s predictions are closer to the true

values, signaling better performance:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(yi − byi)2
q

(6)

Where yi   represents the observed value, ŷi denotes the

predicted value, �y stands for the mean of the observed values, and

n indicates the sample size, SSres refers to the sum of squared

residuals, which represents the total variance of the dependent

variable that is not explained by the regression model. SStot   stands

for the total sum of squares, which represents the total variance of

the dependent variable.

Moreover, an extensive examination of the physical model’s fitting

outcomes reveals a noticeable trend in coefficients across various

seasons. Utilizing this insight, the coefficients within each season are

weighted by their corresponding R2 values to derive universal

coefficients representative of each quarter. A similar approach is

adopted for the RFRE model, where parameters are fixed within

each quarter to better capture the seasonal data dynamics.

Consequently, this study develops a Seasonal RFRE model

with predefined parameter settings, ensuring model stability

across different seasons. By simultaneously employing the

physical model and RFRE for joint inversion, a Seasonal Fixed

Model is established, eliminating the need for recurrent model

retraining during Sentinel inversion operations. The model’s

primary strength lies in its ability to perform inversions directly

following model stabilization for each season, all without the need

for retraining. In addition, because the parameters of the model

are few and fixed, the application is very simple. However, it’s

important to note that while its fixed coefficients may compromise

predictive accuracy to some extent, this trade-off is outweighed by

its efficiency, making it particularly suitable for scenarios where
Frontiers in Marine Science 07
speed and simplicity are paramount, such as real-time decision-

making processes or large-scale data analysis tasks.
3.4 Improved RFRE model

Without accounting for the seasonal aspect of the model and

instead fitting and updating the model using MODIS images from

nearby dates on a case-by-case basis, the prediction results from the

physical model for the low Kd490 segment (Pre-Kd490) are

integrated into the input of the RFRE model. At this stage, all

segments derived from the geographically fitted curves are trained

using the RFRE model, as shown in Equation 7. This approach

allows the RFRE model to leverage not only raw data but also the

predictive information generated by the physical model, thereby

improving its accuracy and robustness. Figure 1C shows the entire

process, while Figure 1E demonstrates the application of the

Improved RFRE Model for data inversion.

Kd490 = fRFRE(b1; b2; b3; b4;Pre‐Kd490) (7)

We also performed a significance analysis of the inputs to the

Improved RFRE model, and the monthly average results are

shown in Figures 2A, B), representing the importance ranking

of high and low segments based on geographical location

segmentation respectively. As can be seen from the figure, the

low segmentation still mainly depends on the prediction results of

the physical model (Pre-Kd490), the proportion reached 77.8%,

which is far more important than other inputs, indicating that the

blue-green ratio method is still valid. In addition to the physical

model, the high segment is more dependent on the ultra blue wave

segment (b1), the proportion is 43.0%, and other inputs also

occupy a certain proportion. It further indicates that when the

water body is complex, it cannot simply rely on the physical model
FIGURE 2

The significance analysis of the inputs to the improved RFRE model. (A, B) represent the importance ranking of high and low segments based on
geographical location segmentation respectively.
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for training, nor can it only consider the information of the blue

and green bands.
4 Results

4.1 Comparations and analysis of
model performances

In this section, R2, Bias and RMSE are used to evaluate the

testing results of the three models, as shown in Figure 3.

The R2 of Basic RFRE Model values mostly hover around 0.8,

indicating a strong linear correlation between the model’s

predictions and the corresponding Kd490 values from MODIS

products. Despite the lower R2 value in March, both bias and

RMSE remain low, indicating minimal discrepancies between the

model predictions and actual values for that month. Overall, the

model demonstrates robust performance. Additionally, it’s worth

noting that the geographic segmentation model for the selected

MODIS dataset in March is null, indicating that the Kd490 values

predominantly fall within the low range of 0 to 0.25. Consequently,

the inversion mainly relies on the physical model, specifically the

blue-green ratio method. The lower R2 values also indicate that

results obtained solely through various empirical models based on

the blue-green ratio method may not be fully applicable to the more

complex conditions of coastal waters. This suggests that the

simplistic fitting from such empirical models may not adequately

capture the nuances of coastal water bodies. When we fixed model,

the R2 and RMSE decreased slightly compared with the Basic RFRE
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Model, but the absolute Bias was quite different, indicating that the

accuracy of the seasonal fixed model decreased more.

The Improved RFRE Model demonstrates remarkable

advancements in both data fitting and predictive accuracy.

Through the integration of the physical model, further refinement

is achieved, enhancing the accuracy and robustness of the

prediction results. The monthly average R2 on the test set reaches

an impressive 0.91, with the highest value reaching an exceptional

0.97, highlighting the model’s exceptional ability to capture variance

and elucidate the variability of the observed data. Furthermore, the

noteworthy improvement in R2 values is evident, with increases

ranging from 0.02 to 0.39 over the twelve months, emphasizing the

significant enhancement achieved through the adoption of the

Improved RFRE Model. Moreover, the model maintains

consistently low average RMSE values, persistently remaining

below the 0.02 threshold. This emphasizes the minimal

discrepancies between predicted and observed values, indicating

the model’s remarkable accuracy in estimating target variables.

It is also noteworthy that the most significant improvement was

observed in March, highlighting that even in relatively clean water

environments, the Improved RFRE Model brings about substantial

optimizations compared to solely relying on empirical formulas.

Due to the superior overall fitting performance of the Improved

RFRE Model, its results were utilized for subsequent validation and

high-resolution Kd490 reconstruction tasks. Figures 4A, B illustrates

the density plots of the test results for July and November respectively

using the Improved RFRE Model, along with the corresponding

geographical locations marked shown in Figures 4C, D. In the figure,

red hollow circles denote predicted high Kd490 locations.
FIGURE 3

The comparison of the results of the three models in the test set. (A–C) respectively show the comparison results of R2, Absolute Bias and RMSE of
the three models on the test set.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1464942
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yang et al. 10.3389/fmars.2024.1464942
The test results reveal a striking alignment between the

predictions generated by the Improved RFRE model, which

incorporates geographical segmentation and integrates insights

from the physical model, and the Kd490 ocean color products

provided by MODIS. It is worth noting that the model excels in

accurately predicting high Kd490 values. This demonstrates the

effectiveness of integrating MODIS ocean color products for

geographic segmentation, showcasing its exceptional fitting

capability in addressing the complexities of coastal waters.

Additionally, it highlights the model’s high reliability in capturing

and predicting changes in ocean color products.
4.2 Analysis of annual variations in
predicted Kd490 trends

By training the Improved RFRE Model monthly, Kd490

predictions for single days are eventually reconstructed. In this

section, the reconstructed results will be evaluated and analyzed.

Firstly, a thorough analysis of the reconstructed dataset is

conducted, including meticulous calculations of the monthly average
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Kd490 values. Additionally, the analysis encompasses computations for

the average Kd490 values in both high and low segments. These

insightful research findings are vividly illustrated in Figure 5.

From Figure 5A, it’s evident that the mean Kd490 generally

peaks in winter and declines in other seasons. This indicates a

probable increase in suspended particles, phytoplankton, or other

factors influencing light propagation during the winter months.

Such variations could signify an adaptive response known as light

acclimation, where phytoplankton modulate their Chl-a content to

cope with reduced light intensity during the weaker daylight periods

of winter (Tiarasani et al., 2023). Looking at the trend of lower

Kd490 mean values (indicated by blue solid dots), it closely overlaps

with the overall mean, indicating lower Kd490 values in most areas

of the study region. It also indicates that most areas of this water

body are relatively clean. It also indicates that most areas of this

water body are relatively clean. As for the trend of higher Kd490

mean values (from Figure 5B), there is a lack of data from March to

June, suggesting lower Kd490 values during spring, indicating

clearer water during this period. In summer, however, there is a

higher value, especially with a significant peak in August, but the

overall mean Kd490 remains low. This could indicate that during
FIGURE 4

The testing results and corresponding geographical locations for selected months of the year 2023 are depicted below. (A, B) illustrate the model’s
testing outcomes for July and September, respectively, while (C, D) display their corresponding Kd490 scatter plots.
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the summer, there are noticeable localized oceanic activities in the

area, such as eddies and surface winds (Guo et al., 2017; He et al.,

2016; Fang et al., 2006; Yu et al., 2019). These factors can also affect

the growth environment of phytoplankton, further leading to

seasonal variations in ocean color parameters. For example,

Mesoscale eddies can alter biological productivity by changing

nutrient distribution in the euphotic zone with their complex

horizontal or vertical motion (Chen et al., 2011; Siegel et al.,

2011). Wind-induced mixing can enhance Chl-a levels by

entraining additional nutrients into the upper ocean in most

tropical and subtropical areas (Kahru et al., 2010).
4.3 High-resolution predicted
Kd490 reconstruction

We further compare the high-resolution reconstruction results

based on Sentinel-2 with MODIS Kd490 products. Additionally, to

corroborate the conclusion of locally elevated summer Kd490 values

in the annual trend, we select three sets of summer reconstruction

results for demonstration, as shown in Figure 6.

Based on the comparison of the images in Figure 6, it is evident

that the reconstructed results are consistent with MODIS over the

overall large-scale range. This indicates that the method proposed

in this paper is effective in the coastal waters near Hainan Island.

Furthermore, owing to the 10m spatial resolution of Sentinel

satellite imagery, the reconstructed results offer more intricate

details on small-scale ocean features that are less distinguishable

in MODIS imagery with its 1km resolution. It is important to note

that simply upsampling MODIS Ocean color products to match the

spatial resolution of Sentinel-2 will not produce comparable results,

as upsampling only interpolates new pixels without adding new

information. So the proposed model enhances image resolution

while compensating for data gaps in MODIS caused by cloud cover.

This facilitates more refined studies of oceanic activities and enables

precise monitoring of ocean color parameters. In addition, locally
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elevated Kd490 values are indeed observed during the summer,

primarily concentrated in the southern maritime areas. This may be

related to seasonal biological activities, oceanic dynamic

adjustments, marine currents, and mixing processes (Xiu and

Chai, 2011; Liu et al., 2008).

In summary, these findings collectively indicate that the method

proposed in this paper is crucial for in-depth analysis and

understanding of the ocean color conditions in nearshore areas,

especially for conducting small-scale studies. It should be noted that

since MODIS Kd490 ocean color products are generally more

suitable for open ocean waters, future research may need to

integrate more in-situ data, especially for more detailed sampling

and monitoring in coastal areas.

It is also worth noting that the original Sentinel-2 imagery did

not undergo complex preprocessing. In future work, we will

incorporate BRDF correction into the preprocessing of Sentinel-2

Rrs data, as variations in viewing and sun angles introduce

significant anisotropy effects (Zhang et al., 2018). This will

enhance the model’s precision and robustness, especially in

complex coastal environments. Furthermore, this study focuses

on experimental verification in the Hainan Island region, and

more case studies are needed to validate the applicability and

generalizability of the method to other regions. Future research

could select other representative geographic areas to further verify

the applicability of the method in different aquatic environments

and expand the model’s scope of application.
5 Conclusion

This work proposes a model that integrates MODIS ocean color

products with Sentinel-2 remote sensing reflectance images to

ultimately reconstruct high-resolution ocean color data. Due to

the complexity of coastal waters, the accuracy of ocean color

inversion is improved through two methods:
FIGURE 5

The annual variation of Kd490 in 2023 is depicted comprehensively in (A), which illustrates the overall mean Kd490 values (blue line), the mean
values of the low Kd490 segment (blue solid dots), and the mean values of the high Kd490 segment (orange solid dots). (B) specifically showcases
the trend in the mean values of the high Kd490 segment.
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Fron
1. Using MODIS ocean color products (specifically Kd490) as

a basis, combined with a geographic segmentation model,

different marine areas are inverted separately.

2. Introducing the preliminary prediction results of an

empirical physical model based on the blue-green ratio

method into the input end of an RFRE model, enhancing

the interpretability of the model learning process.
tiers in Marine Science 11
The method was tested in the coastal waters around the Beibu

Gulf, near Hainan Island, and its performance was assessed using the

overall monthly average coefficient of determination (R²), mean bias

(Bias), and root mean square error (RMSE) on the test set. The results

indicate excellent performance of the model in terms of data fitting

and prediction accuracy. The monthly average coefficient of

determination (R2) on the test set reached 0.90, with a maximum
FIGURE 6

The comparison between the forecast results from Sentinel-2 in summer 2023, specifically (A) July, (C) August, (E) September, and the MODIS
Kd490 product results for (B) July, (D) August, (F) September.
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of 0.97, and the monthly average root mean square error (RMSE) was

less than 0.02.

We also demonstrate and analyze the annual variation of

Kd490, comparing the 10m resolution Kd490 results obtained

from Sentinel-2 inversion with MODIS products. The results

show overall consistency between the reconstructed results and

MODIS data, with Sentinel-2 providing more detailed information

due to its higher resolution. This demonstrates the effectiveness of

the proposed model in the research area. In addition, the method

proposed in this paper can be further applied to other ocean color

parameters and different marine areas in the future, providing

valuable references for conducting finer monitoring of marine

color parameters and studying small-scale oceanic activities.
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