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Southern Ocean
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University, Perth, WA, Australia, 2Australian Research Council (ARC) Australian Centre for Excellence in
Antarctic Science (ACEAS), University of Tasmania, Hobart, TAS, Australia, 3Centre d’Applications et de
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The composition and size distribution of particles in the ocean control their

optical (scattering and absorption) properties, as well as a range of

biogeochemical and ecological processes. Therefore, they provide important

information about the pelagic ocean ecosystem’s structure and functioning,

which can be used to assess primary production, particle sinking, and carbon

sequestration. Due to its harsh environment and remoteness, the particulate bio-

optical properties of the Southern Ocean (SO) remain poorly observed and

understood. Here, we combined field measurements from hydrographic casts

from two research voyages and from autonomous profiling floats (BGC-Argo) to

examine particulate bio-optical properties and relationships among several

ecologically and optically important variables, namely the phytoplankton

chlorophyll a concentration (Chl), the particulate absorption coefficient (ap),

the particulate backscattering coefficient (bbp), and the particulate organic

carbon (POC) concentration. In the clearest waters of the SO (Chl < 0.2 mg

m−3), we found a significant contribution to absorption by non-algal particles

(NAP) at 442 nm, which was up to 10 times greater than the absorption by

phytoplankton. This makes the particulate bio-optical properties there

remarkably different from typical oceanic case 1 water. A matchup analysis

confirms the impact of this larger NAP absorption on the retrieval of Chl from

satellite ocean colour observations. For waters with Chl > 0.2 mg m−3, no

significant differences are observed between the SO and temperate waters.

Our findings also demonstrate consistency in predicting phytoplankton carbon

from either Chl or bbp, suggesting that both methods are applicable in the SO.
KEYWORDS

Southern Ocean, particles, bio-optical properties, bio-optical relationships, BGC-
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1 Introduction

In the sunlit upper ocean, autotrophic organisms take up CO2

and utilise inorganic nutrients via photosynthesis to produce organic

matter, packaged in the form of phytoplankton cells, that

accumulates in the water column as suspended particles (Falkowski

et al., 1998). These phytoplankton cells provide energy for essentially

the entire pelagic ecosystem and are, thereby, transformed into a large

variety of living and nonliving particles through a myriad processes:

viral infection, shedding of vesicles and other cellular parts, grazing

by zooplankton (Jackson, 1980; Steinberg and Landry, 2017; Karakus ̧
et al., 2022), remineralisation by microbes (Boyd et al., 2015; Belcher

et al., 2016; Cavan et al., 2017), and (dis)aggregation by a series of

biogeophysical and biogeochemical processes (Jackson and Burd,

1998; Slade et al., 2011; Briggs et al., 2020). A fraction of their

accumulated carbon and nutrients eventually sinks (or is advected)

into deep unlit layers as part of the so-called biological pump

(Buesseler et al., 2007; Turner, 2015; Boyd et al., 2019). The particle

flux and its composition in the water column represent a dynamic

balance between ecosystem-driven processes that generate large

sinking particles in the upper ocean and particle recycling processes

within the ocean interior that consume, modify, and produce new

sinking particles (Clements et al., 2022). Therefore, marine particles

are critical in the characterisation of pelagic ecosystems, as they

control a range of biogeochemical and ecological processes, and

influence the ability of the ocean to sequester carbon.

The Southern Ocean (SO) is responsible for ~ 40% of the global

oceanic CO2 uptake (Gruber et al., 2009) and is a key driver of

global ocean circulation and climate (Stark et al., 2019).

Characterising and understanding particle dynamics in the

surface layer is particularly important for assessing the strength of

the biological pump under the pressure of climate change. However,

the remoteness and difficult field conditions limit the opportunities

for in situ studies of the SO. In this context, ocean colour remote

sensing (OCRS) can provide a powerful tool to monitor it and

obtain spatially resolved information. However, given the

importance of the SO in oceanic carbon uptake and productivity,

estimates must be accurate, as any error will have a large impact on

our ability to obtain global estimates. In turn, for remote sensing to

be accurate, we must determine whether global relationships

derived elsewhere between satellite-measured quantities—such as

spectral remote sensing reflectance or normalised water-leaving

radiance—and in situ variables are applicable in the SO. This need

has spurred studies examining the particulate bio-optical properties

and relationships in the SO.

Allison et al. (2010a) found a different relationship between

particulate organic carbon (POC) and the blue-to-green band ratios

of reflectance in the SO compared to other oceans, such as the

North Polar Atlantic (Stramska et al., 2003) and the eastern South

Pacific and eastern Atlantic oceans (Stramski et al., 2008). Their

new relationship has been applied to satellite observations to

characterise the seasonal and interannual variability of POC in

the SO (Allison et al., 2010b). Johnson et al. (2013) have reported
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three improved satellite chlorophyll algorithms for the SO to better

monitor phytoplankton dynamics. These improved ocean colour

products and relationships would lead to better estimation of

primary production using bio-optical productivity models (Arrigo

et al., 2008; Hirawake et al., 2011). However, due to the lack of

contemporaneous in situmeasurements in the SO, these particulate

bio-optical relationships obtained from space have not been

thoroughly evaluated and validated.

More observations are now available due to the BGC-Argo

program, which deploys autonomous profiling floats worldwide,

particularly in the SO, following the initial deployments by the

Southern Ocean Carbon and Climate Observations and Modelling

(SOCCOM) program (Sarmiento et al., 2023). To maximise the use

of the BGC-Argo data, continuing efforts have been made to

accurately convert chlorophyll fluorescence signals into

chlorophyll a concentrations (Johnson et al., 2017; Roesler et al.,

2017; Schallenberg et al., 2022). Particulate backscattering

coefficients (bbp) at 700 nm have been used to estimate POC in

the SO by Johnson et al. (2017). In addition, Schallenberg et al.

(2019) used 6 years of mooring data collected at the Southern Ocean

Time Series (SOTS) site in the Subantarctic Zone south of Australia

to estimate carbon-to-Chl ratios and interpret their seasonal

dynamics. However, these particulate bio-optical relationships

applied to float data in these studies were empirically developed

based on limited concurrent measurements from hydrological casts

on cruises. It is still unknown whether they are suitable for waters

other than those where the relationships were developed.

In addition to pigment concentration (a desirable proxy for

phytoplankton biomass) and the bbp, hydrological casts during

cruises can also provide data on mass concentrations (e.g., POC,

particulate organic nitrogen (PON), macronutrients, and trace metal)

and particle size distribution. These variables are essential for a better

understanding of the particulate bio-optical properties and

relationships in the SO. Based on ~ 280 samples collected during

the Antarctic Circumpolar Expedition (ACE), Robinson et al. (2021)

found that high-latitude SO phytoplankton have distinctive

absorption properties compared to lower-latitude populations.

However, other particulate bio-optical properties of the SO remain

poorly observed and understood, leaving the question of whether

they conform to or diverge from global relationships unanswered.

Both the correct interpretation of satellite ocean colour observations

and the appropriate parameterisation of bio-optical properties in

biogeochemical models rely on this answer.

To address this gap, we collated field measurements from both

hydrological casts and BGC-Argo floats to derive relationships among

variables that are commonly used to describe the particulate pool,

namely the particulate backscattering coefficient, bbp (m−1), the

particulate absorption coefficient, ap (m−1), Chl (mg m−3), POC

(mg m−3), and phytoplankton carbon (Cphyto, mg C m−3). We

specifically aim to elucidate large-scale distribution patterns of

particle-related properties and evaluate the applicability of

particulate bio-optical relationships developed for temperate oceanic

waters to the SO.
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2 Materials and methods

2.1 Datasets

The field data used in this study were acquired during the ACE

aboard the RV Akademik Tryoshnikov during the austral summer

from 20 December 2016 to 19 March 2017 (Walton and Thomas,

2018), and during the Southern Ocean Large Areal Carbon Export

(SOLACE) research voyage aboard the RV Investigator (voyage

IN2020_V08) from 05 December 2020 to 16 January 2021

(Figure 1). The ACE cruise travelled eastward around the

Southern Ocean, starting from Cape Town, South Africa, to

Hobart, Australia (leg 1), then proceeding via the Pacific Ocean

to Punta Arenas, Chile (leg 2), and finally returning through the

Atlantic Ocean back to Cape Town (leg 3). The SOLACE cruise

investigated three sites: a subpolar site—SOTS (47°05′S, 141°22′E,
Wynn-Edwards et al., 2019), and two polar possible phytoplankton

bloom sites—Southern Site 1 (SS1, 55°49′S, 138°40′E) and Southern
Site 2 (SS2, 57°54′S, 141°32′E), along with several stations during

the transit (Figure 1, inset).

Measurements from both cruises and BGC-Argo floats were

classified based on the seven bioregions defined by Ardyna et al.

(2017) (Figure 2). This split aims to examine whether our dataset

evenly samples various oceanographic regimes and to assess whether

there are regional differences in the particulate bio-optical properties

in addition to their large-scale patterns. The data from floats mostly
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fall into bioregions 3, 4, and 5, with only one-third belonging to the

other bioregions. The distribution of cruise data is similar to that of

float data, although high-latitude regions 6 and 7 are more

prominently represented. Only average values from the top 10 m of

the BGC-Argo data profiles are used in this work, combined with

cruise data from underway sampling (depth ~5 m) and the top 10 m

of data from CTD casts, as described in the following sections.

The BGC-Argo profiling floats (https://biogeochemical-argo.org)

used in this study, equipped with CTD and bio-optical sensors,

measured temperature, salinity, pressure, chlorophyll fluorescence,

and volume scattering (used to derive backscattering coefficient).

Figure 1 shows the geographical location of all profiles collected by

254 floats from January 2016 to June 2023. The data points are

colour-coded based on the bioregions in which the floats operated,

following the regionalisation outlined by Ardyna et al. (2017).
2.2 Phytoplankton pigments and
particulate absorption

Phytoplankton pigment concentrations from ACE and

SOLACE were determined using high-performance liquid

chromatography (HPLC, see details in Ras et al. (2008); Antoine

et al. (2020) and references therein). On both cruises, 2.2 L water

samples were collected either 3 hourly from the underway seawater

supply (sampling depth ~ 5 m) or from the shallowest depth of the
FIGURE 1

Sampling locations during ACE (squares) and SOLACE (SOTS, SS1, SS2, and transit sites, inset), as well as surface sampling points from BGC-Argo
floats, colour-mapped according to the bioregions described in Ardyna et al. (2017). The Northern boundary (NB), Subantarctic Front (SF), Polar Front
(PF), Southern Antarctic Circumpolar Current Front (SACCF), and Southern boundary (SB) from Park et al. (2019) are also displayed (black lines).
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conductivity, temperature, and depth (CTD) rosette casts (see

Table 1 for a summary of the number of samples). Total

chlorophyll a concentration was defined as the sum of mono- and

divinyl chlorophyll a concentrations, chlorophyllide a, and the

allomeric and epimeric forms of chlorophyll a (Hooker and

Zibordi, 2005; Reynolds et al., 2016).

The pigments are used here to determine the relative

contributions of micro- (fmicro, > 20 µm), nano- (fnano, 2–20 µm),

and picophytoplankton (fpico, < 2 µm) to the total population,

following Brewin et al. (2015).

For the BGC-Argo floats, the calibrated fluorescence profiles

were adjusted for nonzero deep values (below 600 dbar) and

corrected for spikes using a five-point median filter. Subsequently,

they were divided by 3.79, as recommended by Schallenberg et al.

(2022) for the SO. The surface Chl was obtained by averaging the

values within the top 10 dbar.

A full description of the determination of the absorption

coefficient of phytoplankton and non-algal particles (NAP) from

the total particulate absorption coefficient can be found in Robinson

et al. (2021), which is not repeated here.
2.3 Backscattering measurements

The particulate backscattering coefficient, bbp(l) (m−1), was

determined on ACE and SOLACE using HOBI Labs HydroScat-6

sensors, which provide a measurement of the total spectral volume

scattering function b(y) (m−1 sr−1) at an effective scattering angle
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y = 140 °. The following equation (Maffione and Dana, 1997) was

used to convert b(140 °, l) to bbp (l),

bbp(l) = 2pc½b(140 °, l) − bw(140 °, l)� (1)

Where the subscripts p and w indicate the contributions from

particles and seawater to scattering, respectively. c is the coefficient

of proportionality between b and bb for particles, set to 1.13 for the

HydroScat. Pure water values for bw(140 °, l) at given temperature

and salinity were calculated following Zhang et al. (2009). Finally,

vertical profile data of bbp(l) were filtered to remove spikes and

averaged into 0.5 m depth bins for analysis and correlation with

discrete water samples. The Hydroscat channels were 420 nm, 488

nm, 550 nm, 620 nm, and 700 nm for ACE (the 442 nm channel

failed), and 420 nm, 442 nm, 470 nm, 510 nm, 590 nm, and 700 nm

for SOLACE. For ACE, only 13 bbp spectra were obtained, primarily

during leg 2 near the Antarctic continent.

To examine the wavelength dependency of particle

backscattering, discrete spectral measurements were fitted to a

power function of the following form:

bbp(l) = bbp(l0) l
l0

� �h
(2)

Where l0 represents a reference wavelength, and h denotes the

dimensionless spectral slope of bbp. Nonlinear least-squares fitting

was applied to account for bbp at all channels to derive h. Since the
442-nm spectral channel failed during the ACE cruise, this

wavelength was excluded from the fitting of spectral relationships

for the SOLACE cruise to ensure consistency between cruises.

Since our focus is on the total particle pool, we did not apply the

nonzero deep value correction to the backscattering profile of BGC-

Argo floats, as proposed by Uchida et al. (2019). This correction is

meant to isolate the part of bbp attributed to phytoplankton by

removing the average of deep values (below 600 dbar), which are

assumed to represent the NAP contribution. We applied a five-

point median filter to remove spikes (Carranza et al., 2018; Mignot

et al., 2018). Surface values were obtained by averaging the data

within the top 10 dbar of the profile.
FIGURE 2

Distribution of cruise and float measurements among the seven bioregions defined by Ardyna et al. (2017).
TABLE 1 Summary of the in situ dataset.

Chl bbp(l) ap(l) POC PSD

ACE 221 13 274 355 264

SOLACE 31 3 31 3 3

BGC-Argo
floats

21,872 21,872 – – –
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2.4 Particulate organic
carbon concentration

For the ACE dataset, the concentration of POC was obtained

from the underway seawater supply every 3 h, as well as from

several depths during the CTD rosette casts, and processed at the

University of Cape Town (Fawcett and Forrer, 2020). Up to 2 L

water samples were filtered through precombusted 25 mm GF/F

filters. The filters were then dried at 40°C for 24 h, acidified to

remove inorganic carbon, and stored until elemental analysis.

Finally, POC for each sample was obtained by subtracting the

average concentration of carbon in the dry blanks and was

expressed in units of milligrammes per cubic metre. Samples

outside the detection limits were eliminated. The same

methodology was used for the SOLACE POC data, although it

was processed at the University of Tasmania by Cathryn

Wynn-Edwards.
2.5 Particle size distributions

The particle size distributions (PSD) determine their optical

properties along with the particle composition. During ACE, PSD

was measured with a Beckmann Coulter Counter Multisizer, which

measures particle sizes by quantifying changes in electrical

resistance produced by particles suspended in seawater as they

pass through an aperture (Kinsman, 2018). In this study, 0.2 µm

filtered seawater was used as the blank to detect particles in the

range of 2–60 µm across 400 bins at each underway station. Twenty

replicate measurements of 2 ml subsamples were made by the

Counter for each sample and summed up to provide larger sample

volumes, thereby improving statistical accuracy. Each discrete

Coulter measurement included a set of values representing the

particle concentrations (m−3) within a size bin D, N(D). The bin

diameters were restricted to 2–30 µm, as no particles were observed

in larger bins. Plots of particle concentration versus bin diameter

were visually inspected, and samples with high noise levels or

particle concentrations constrained to just a few bins were flagged

as poor quality and removed (Robinson et al., 2021). Finally, 264

records of PSD were retained for further analysis.

During SOLACE, the PSD of large (> 100 mm) particles was

measured using an Underwater Video Profiler 5 (UVP-5, Picheral

et al., 2010) mounted on the rosette. Particle cross-sectional areas

are quantified by assessing the contiguous pixels for a given image

brightness level, which were then used to estimate the equivalent

circular diameter. Finally, PSDs were determined for 24 bins, with

centre bin sizes ranging from 115 to 23,300 µm. An upper limit of

2,315 µm was chosen to avoid regions of low particle counts and

high statistical noise at large particle diameters. All data were

binned vertically into 5-m intervals, and only surface values were

used in this study.

The particle size distribution was fitted to a power law model

(Bader, 1970; Jonasz and Fournier, 2011):

N(D) = N0
D
D0

� �z
(3)
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Where D0 is a reference diameter, N0 is the particle number at

D0, and z is the dimensionless slope of the distribution. For the

Coulter measurements, these metrics were calculated to

characterize the samples and were computed over the size range

of 4–20 µm. Since z is very sensitive to the range of effective

diameters used and can be biased when an abundant phytoplankton

cell size is present, leading to a bump on the PSD, we visually

inspected the spectra and removed 15 spectra where clear bumps

were present to avoid these cases.
2.6 Phytoplankton carbon estimations

Cphyto is a key parameter in estimating primary production using

various models (Sathyendranath et al., 2007). It also allows an

understanding of phytoplankton physiology, as reflected in

variations of cellular chlorophyll-to-carbon ratios generated by

changes in light, temperature, and nutrients (Behrenfeld et al., 2005).

However, Cphyto is difficult to distinguish experimentally in situ or in

laboratory studies from the total carbon included in phytoplankton

plus zooplankton, detritus, and bacteria. Consequently, direct Cphyto

estimations are scarce, and essentially proxy measurements have been

used to quantify it, such as Chl, cell biovolume, POC, and bbp.

Here, in the absence of direct Cphyto measurements, it was

estimated using either the POC vs. Chl relationship or from bbp.

The former approach assumes that at any given Chl, the lowest POC

observed represents the phytoplankton fraction, Cphyto

(Sathyendranath et al., 2009). In this approach, a 1% quantile

regression is applied to the fit between POC and Chl to obtain

Cphyto, hereafter denoted as Cphyto-S09. Since there will always be

some contribution to POC from material other than phytoplankton,

such as heterotrophs and detritus, this Cphyto estimate likely represents

an upper limit for a given Chl. In addition, this approach does not

allow for scenarios where Cphyto increases or decreases without a

corresponding change in Chl (Thomalla et al., 2017). However, it is

unlikely to be influenced by phenomena such as coccolith blooms or

bubbles, which can significantly increase backscattering or the

attenuation coefficient without increasing Chl.

Backscattering-based approaches allow Cphyto to vary

independently of Chl, making them less susceptible to the

package effect or photoacclimation. As a result, they are able to

detect the high temporal variability in Chl:Cphyto ratios. These

methods assume Cphyto is linearly related to bbp. Behrenfeld et al.

(2005) established such a relationship by fitting satellite-derived bbp
(440) to which a background value of 3.5 × 10−4 m−1 is subtracted to

laboratory Cphyto values:

Cphyto = 13,000� (bbp(440) − 3:5� 10−4) (4)

which is denoted as Cphyto-B05 hereafter. The subtraction of the

background value accounts for the portion of backscattering

attributed to a background of NAP that does not covary

with phytoplankton.

Based on direct measurements of both Cphyto and bbp in

the Atlantic Ocean, Martinez-Vicente et al. (2013) found a

significant linear relationship between Cphyto and bbp(470)
frontiersin.org
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(denoted as Cphyto-M13):

Cphyto = 30,100� (bbp(470) − 7:6� 10−4) (5)

This linear regression was initially limited to bbp (470) < 0.003

m−1 or Chl < 0.4 mg m−3; however, in this study, we extended it for

the larger Chl range as well.

Using data from the Equatorial Pacific Ocean and from the

22nd Atlantic Meridional Transect cruise, Graff et al. (2015)

established yet another relationship:

Cphyto = 12,128� bbp(470) + 0:59 (6)

Hereafter denoted as Cphyto-G15.

Note that, for backscatter measurements lacking a 440- or 470-

nm channel, the values at 700 nm were converted to these other

wavelengths using Equation 2, with h equal to 1.08 (mean of the

measured values).
3 Results and discussions

3.1 General latitudinal distribution
of properties

The latitudinal distribution of average values of major

environment parameters and inherent optical properties (IOPs) is

presented in Figure 3. These values are calculated from all data

found in 2° latitude bands centred on latitudes from 40°S to 74°S.

Hereafter, Chl and bbp are measured both through ship-based

hydrographic casts and BGC-Argo floats are denoted separately

as Chl-Cruise and Chl-Float (and bbp-Cruise and bbp-Float).

Temperature decreases toward the south (Figure 3A), from

about 15°C at 40°S to − 1°C close to the Antarctic continent. Salinity

also shows a general decreasing trend toward the south (Figure 3B),

with two relative maxima observed around 65°S and near

the continent.

Minima of Chl-Cruise are found around 60°S~68°S and maxima

around 45°S and 72°S (Figure 3C). The Chl-Cruise and Chl-Float

are quite consistent, with the differences mainly due to the uneven

cruise sampling. In the 41°S~45°S latitudinal belt, Chl-Cruise

measurements were constrained in the area south of the African

continent and are higher than Chl-Float. In the 59°S to 67°S

latitudinal belt, Chl-Cruise was at the lowest level (< 0.2 mg m−3)

at the Drake Passage and the Dumont d’Urville Sea. As for the 69°

S~76°S latitudinal belt, Chl-Float measurements are higher than

Chl-Cruise and have larger variance because they were collected in

more varied environments. Among the SOLACE data, Chl-Cruise is

the highest at SOTS with a mean value of 0.64 mg m−3, followed by

SS2 (0.31 mg m−3) and SS1 (0.15 mg m−3).

The latitudinal distribution of aph(442) (Figure 3D) reflects that

of Chl-Cruise, yet shows a smaller relative increase toward high

latitudes, leading to a decrease of the chlorophyll-specific

absorption coefficient at 442 nm, a*ph(442) (Figure 3E).

The fraction of larger phytoplankton, fmicro, increases from

about 0.3 to 0.9 toward the south (Figure 3F), which is consistent

with the findings by Robinson et al. (2021).
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Generally, bbp (700) (Figure 3G) is quite stable in the 40 to 60°S

belt, with a mean value of ~ 0.0012 m−1. South of 60°S, the mean

values and associated variance both increase. The 16 bbp-Cruise all

fall within the range of the bbp-Float values. Due to the very limited

bbp measurements on cruises, they were excluded from further

analyses with respect to the large-scale latitudinal analyses. The

mean bbp:Chl ratios across latitudes (Figure 3H) fluctuate between

0.005 and 0.008 m2 mg−1.

The POC (Figure 3I) varies between 30 and 200 mg m−3, with

minimum values around 60°S and an average value of 105 mg m−3

across the dataset. The POC:Chl ratio (Figure 3J) varies over one

order of magnitude, from 100 to 1,000, and shows relative maxima

around 54°S and 64°S, with a regular decrease for latitude south of

about 64°S.

It is worth noting that BGC-Argo data from all seasons have

been pooled together here, whereas the cruise data are for the

summer months only (December to February, plus early March for

ACE). If Figure 3 was to include BGC-Argo data for only the 3

summer months, the only two notable differences would be the

slightly higher bbp(700) values (0.002 instead of 0.0015 m−1 on

average for latitudes above 70°S) and, similarly, the slightly higher

Chl for latitudes above 60°S (with an average of approximately 0.4

instead of 0.25 mg m−3). The discrepancy between Chl-Cruise and

Chl-Float would be reinforced in the 60°S–68°S band, primarily due

to the ship sampling being restricted to the Drake Passage and

Dumont d’Urville Sea.

When the zonal averages displayed in Figure 3 are restricted to

the Atlantic, Indian, and Pacific sectors, the latter displays the

lowest Chl (average 0.2 mg m−3). In contrast, the subtropical

latitudes of the Indian Ocean are saltier (salinity ~ 35 psu),

warmer (SST up to 17°C), and have the largest POC

concentrations (around 100 mg m−3). No other major differences

are observed among the three sectors and between the results for

each sector and those for the entire SO.
3.2 Bio-optical relationships

The various bio-optical relationships we have explored are

illustrated in Figure 4. The ratio of NAP to phytoplankton

absorption, aNAP: aph (Figure 4A), shows an upward tail in low

Chl waters (Chl < 0.2 mg m−3), with values larger than 1 and as large

as 10. For larger Chl values (> 0.2 mg m−3), the ratio slowly

decreases as Chl increases. This result not only suggests a high

contribution of NAP, such as heterotrophs and detritus, to the

particle pool in clear waters of the SO, but also that this contribution

is highly variable.

This large contribution of NAP to the particle pool in the SO

seems corroborated by the POC vs. Chl relationship (Figure 4B).

Here, Chl-Cruise varies over nearly three orders of magnitude, and

POC over two, and their relationship shows the generally expected

increasing trend but only for Chl > 0.2 mg m−3. Below this

concentration, POC fluctuates around 80 mg m−3, independent of

Chl levels, again suggesting that NAP significantly contributes to

POC in the clear waters of the SO.
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The POC vs. Chl relationship is generally expressed through a

linear fit on log-transformed data. For instance, Sathyendranath

et al. (2009) found such a linear relationship (r2 = 0:58) using data

from the equatorial Pacific and Atlantic Oceans, denoted POC-S09

hereafter (solid purple line in Figure 4B). In our study, a linear

regression in log space is not appropriate to describe the POC vs.

Chl relationship because of the relatively constant POC in waters

where Chl is less than 0.2 mg m−3, attributed to the contribution of

NAP to POC. Therefore, we added a constant background POC in

our linear regression. When a linear fit without constant

background value is applied to data for Chl > 0.2 mg m−3 only,

the obtained POC vs. Chl relationship shows no significant

difference with POC-S09.
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We also applied 1% quantile regression on the data where Chl >

0.2 mg m−3 to derive Cphyto, following the approach of

Sathyendranath et al. (2009), resulting in a remarkably similar

relationship (dashed and solid purple lines in Figure 4B). By

converting bbp-Float to Cphyto according to Behrenfeld et al. (2005);

Martinez-Vicente et al. (2013), and Graff et al. (2015), Cphyto vs. Chl

can be obtained as well, denoted as B05, M13 and G15, respectively.

Their comparison with S09 is illustrated in Figure 4C. The slope of

M13 is significantly higher than the others, resulting in a difference up

to 160 mgm−3 in Cphyto at Chl = 3 mgm−3. B05 and G15 have similar

intercepts, although the slope of B05 is slightly higher. Their largest

difference is about 50 mg m−3 in Cphyto at Chl = 6 mg m−3. S09

generally derives higher Cphyto per Chl, while G15 intersects with B05
FIGURE 3

Latitudinal distribution of (A) temperature, (B) salinity, (C) Chl, (D) aph(442), (E) a*ph(442), (F) fmicro, (G) bbp(700), (H) bbp(700) to Chl ratio, (I) POC, and

(J) POC to Chl ratio. Black symbols represent measurements made from hydrographic casts on ships, while orange symbols refer to BGC-Argo float
measurements. The red, blue, and green dots refer to the SOTS, SS1, and SS2 sites, respectively. Data were grouped into 2° latitude intervals, within
which the mean values and standard deviations were calculated.
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at Chl = 4.3 mg m−3, with their differences in Cphyto remaining within

50 mg m−3 across all Chl ranges.

B05 and M13 assume a constant background bbp due to NAP

(denoted bbp-NAP) that does not covary with phytoplankton.

However, Bellacicco et al. (2016) found that bbp-NAP varies both

seasonally and regionally by more than one order of magnitude,

which might result in significant errors in the Cphyto estimates. G15

is the only one using analytical field-measured Cphyto, which has

been found to have a significant correlation with bbp in the

Equatorial Pacific Ocean and Atlantic Ocean.
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None of these methods (either Chl or bbp-based) have been

derived using data collected in the SO, so their applicability here

cannot be ascertained. Their consistent Cphyto prediction is however

encouraging. It is still worth noting that the aforementioned

approaches do not seem applicable to waters with Chl < 0.2 mg

m−3, due to the high NAP contribution to the particle pool. The

substantial contribution of NAP to POC and bbp further

complicates the accurate estimation of Cphyto in such waters.

Therefore, sufficient concurrent measurements of phytoplankton

community composition and their specific chlorophyll and carbon
FIGURE 4

Bio-optical relationships. (A) aNAP:aph ratio at 442 nm vs. Chl. The black solid line represents the fourth-degree polynomial regression in log space for our

dataset, y = −0:26 − 3:0x + 1:36x2 − 0:90x3 + 0:08x4 (y = log10(aNAP(442)=aph(442)),  x = log10Chl,  n = 201,  r2 = 0:57). (B) POC vs. Chl. The black solid

curve represents POC = 67:4 + 93:3 Chl0:87 (n = 229,  r2 = 0:42). The dashed black line represents the 1% quantile regression on the same data,

representing the relationship between Cphyto and Chl (Cphyto = 78:5 Chl0:63), following Sathyendranath et al. (2009). The purple solid and dashed lines refer

to the POC vs. Chl and Cphyto vs. Chl relationships from Sathyendranath et al. (2009), respectively. (C) Cphyto vs. Chl. See Section 2.6 for S09, B05, M13,
and G15. (D) bbp(700) vs. Chl. The background orange symbols refer to the density of float measurements. The solid black line represents the regression

line between bbp(700) and Chl, using both ship and float data from this study: bbp(700) = 0:0005 + 0:0028 Chl (Chl ≤ 0.2 mg m−3); bbp(700) =

0:0031 Chl0:67 (Chl > 0.2 mg m−3). The blue, green, and purple lines refer to the relationships from Antoine et al. (2011) in the Northwestern
Mediterranean Sea and Santa Barbara Channel, Huot et al. (2008) in the Eastern South Pacific Ocean, and Morel and Maritorena (2001) for global oceanic
waters, respectively. (E) POC vs. bbp(470). S99, L01, S08, C12, J17, and T17 refer to the relationships from Stramski et al. (1999) in the Antarctic Polar Front
Zone (APFZ) and the Ross Sea, Loisel et al. (2001) in the Mediterranean Sea, Stramski et al. (2008) in the Pacific and Atlantic Oceans, Cetinić et al. (2012) in
the North Atlantic Ocean, Johnson et al. (2017) in the SO, and Thomalla et al. (2017) in the South Atlantic and SO, respectively. Note that for models
without bbp at 470 nm, values were propagated from other available bands according to Equation 2 using h = 1:08.
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content are needed to evaluate and validate optical methods of

determining Cphyto concentrations, and then to assess Chl: Cphyto

ratios for better understanding phytoplankton physiology under

environmental forcing.

The bbp-Cruise and bbp-Float data are displayed as a function of

Chl in Figure 4D. The former varies between 0.0004 and 0.004 m−1

in the combined ACE and SOLACE dataset, and all fall within the

larger range (0.0002~0.1 m−1) measured by floats over the entire

SO. Values obtained during SOLACE were generally higher than

those observed during ACE leg 2 near the Antarctic continent. The

highest values were obtained at SS2 with the smallest variation,

followed by those at SOTS and SS1. The spectral slope of bbp(l),
calculated using all available wavebands, fluctuates from 0.5 to 1.6,

with a mean value of 1.08. The bbp-Float values generally increase

with Chl, although they remain relatively constant in the low Chl

range (again, Chl < 0.2 mg m−3). For Chl > 0.2 mg m−3, bbp covaries

with Chl, which is consistent with previous observations (Antoine

et al., 2011; Bellacicco et al., 2019). Therefore, we here combined a

linear regression for Chl < 0.2 mg m−3 with a power law for Chl >

0.2 mg m−3 to fit the data (solid black curve in Figure 4D).

For comparison, other relationships obtained from in situ data

collected in the Northwestern Mediterranean Sea and Santa Barbara

Channel by Antoine et al. (2011) (denoted A11) and in the Eastern

South Pacific Ocean by Huot et al. (2008) (denoted M08) are also

shown. For A11, their bbp(560) was converted to bbp(700) according

to Equation 2. The bbp(700) vs. Chl relationship from Morel and

Maritorena (2001) (denoted MM01) developed for the oceanic case

I waters is shown as well. Generally, the bbp(700) of MM01 is

significantly higher than H08 and A11 across the Chl range, which

might be due to the difference in study regions. For Chl > 0.2 mg

m−3, our fit generally coincides with MM01, but with a slightly

larger slope. For Chl < 0.2 mg m−3, bbp(700) is higher than predicted

by MM01, with differences that can reach up to one order of

magnitude. The high contribution of NAP is likely responsible for

these larger bbp values in clear waters as compared to what global

models predict from Chl. Such relative constant bbp is likely a

consequence of the combination of photoacclimation and the high

proportion of NAP. The former is typical for polar waters, where
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Chl variation is driven by photoacclimation to low light and thus

uncoupled with biomass, leading to an increase of Chl without a

corresponding increase in bbp (Behrenfeld et al., 2005; Brewin et al.,

2012; Bellacicco et al., 2019).

It is also worth noting that we did not find significant

differences among bbp-Float vs. Chl-Float relationships as

separately derived for each Ardyna’s bioregions.

The ACE and SOLACE datasets have only 16 concurrent

measurements of POC and bbp(470). They are shown in

Figure 4E on top of relationships obtained from both temperate

oceans and subregion of the SO (see figure caption for details).

There is a large spread of POC vs. bbp(470) relationships across

different regions. The highest POC: bbp(470) statistical mean ratio is

noticed in the Ross Sea, while the lowest is also found in the SO

from 20°W ~ 20°E by Thomalla et al. (2017). In addition, their

difference in POC is about 350 mg m−3 at bbp(470) = 0.004 m−1 and

continues to increase as bbp increases. Thus, there is no clear POC

vs. bbp relationship in the SO, especially for high-scattering waters.

This lack of correlation is due to the contributions of both POC and

particulate inorganic carbon (PIC) to backscattering.

It appears that in the SO, we cannot use a single linear

regression to describe the relationships of bio-optical properties

and chlorophyll over the full concentration range. For Chl < 0.2 mg

m−3, the large NAP contribution tends to mask any possible

phytoplankton-related changes in bio-optical properties.
3.3 Particle size distributions

PSD of surface waters measured by the Coulter Counter and

UVP-5 are illustrated in Figure 5. Particle concentrations

(m−3 mm−1) decrease when the equivalent spherical diameter

increases and generally follow a Junge-type size distribution. This

is expected, yet exceptions occur, with peaks appearing at certain

diameters, e.g., 10 mm, which may indicate phytoplankton blooms

dominated by a particular size group. Although the Coulter and

UVP-5 use different approaches to determine particle size, cross-

sectional area for the UVP-5, and particle volume for the Coulter
FIGURE 5

Particle size distributions derived from Coulter Counter and UVP-5.
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Counter, the slopes determined over different size ranges are quite

similar (a mean value of 3.99 for Coulter Counter data and 4.29 for

UVP-5 data). Among the SOLACE data, the number of particles is

overall larger at SS1 and SS2 than at SOTS, although the latter

displays a larger Chl. This observation of more large particles

(UVP-5 data start at 100 µm) at the two clearer southern sites

seems consistent with the larger NAP contribution already

identified for the domain of smaller particles.

PSD slopes (z, unitless) are displayed as a function of Chl,

colour-mapped as a function of the fraction of microphytoplankton

(fmicro) derived according to Brewin et al. (2015) (Figure 6). The

slope z varies between 3 and 5. A somewhat decreasing trend can be

discerned for Chl > 0.2 mg m−3, similar to what Buonassissi and

Dierssen (2010) have found in temperate regions, yet there is no
Frontiers in Marine Science 10
significant relationship when Chl appears below 0.2 mg m−3,

suggesting the particle distribution is heterogenous within the SO.

In addition, we did not notice a clear impact of fmicro on z. The
expectation would be that populations dominated by larger cells

would have a lower z, which is not clearly observed here.
3.4 Implications for ocean colour
remote sensing

The absorption of NAP follows an exponential decay from the

blue to the red parts of the spectrum. In the clear waters we have

analysed here (Chl < 0.2 mg m−3), the large NAP contribution leads

to significant non-chlorophyll absorption in the blue part of the
FIGURE 6

PSD slope z vs. Chl relationship. The dots are colour-mapped as a function of the fraction of micro-phytoplankton derived from Brewin et al. (2015).

The purple line represents the relationship obtained by Buonassissi and Dierssen (2010) in the North Atlantic, where z = −0:63 log10Chl + 3:56,  n =

25,   r2 = 0:45.
FIGURE 7

Comparisons between in situ and satellite-derived Chl. The black dashed line represents the 1:1 relationship. Error bars indicate the typical 30%
uncertainty for both the HPLC- and satellite-derived Chl.
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spectrum (l < ~ 500 nm). A likely consequence is a lower blue-to-

green remote-sensing reflectance band ratio than would otherwise

exist for the same Chl concentration but with a lower NAP

contribution. This would result in a significant overestimation of

Chl when using global empirical ocean colour algorithms to derive

Chl from the reflectance ratio, as the NAP absorption would be

wrongly interpreted as phytoplankton absorption.

To verify this, we compared in situ Chl from both cruise and float

measurements with satellite-derived Chl estimates. For this purpose, we

used the Moderate Resolution Imaging Spectroradiometer (MODIS)

L3b binned chlorophyll products, which use a sinusoidal projection so

that each grid cell covers the same area, regardless of latitude. For each

in situmeasurement covered by a product, a 3 × 3 window centred on

the in situ location was extracted. In total, we found 311 in situ and

satellite-derived Chl matchups, which are displayed in Figure 7.

Previous similar matchup studies generally reported an

underestimation of Chl by satellite products in the SO (Garcia

et al., 2005; Marrari et al., 2006; Kahru and Mitchell, 2010; Szeto

et al., 2011; Johnson et al., 2013; Jena, 2017; Pereira and Garcia, 2018;

Moutier et al., 2019). This is confirmed here, but only for Chl > 0.2

mg m−3. For lower values, we conversely observe an overestimation.

This is consistent with the excess NAP absorption reported here. It

cannot be ruled out, however, that larger absorption by coloured

dissolved organic matter (CDOM) would also contribute to this

overestimation of Chl (Morel and Gentili, 2009). The absence of

reflectance measurements from the ACE and SOLACE voyages did

not allow these hypotheses to be further tested here.
4 Conclusions

By combining ship-based measurements from the ACE and

SOLACE research voyages and profiling-float-based measurements

from over 20,000 profiles collected by the BGC-Argo network, we

were able to analyse the general latitudinal distribution patterns of

particle-related bio-optical and biogeochemical variables, as well as

the associated bio-optical relationships.

At latitudes beyond 60°S, Chl, aph, bbp, POC, and fmicro increase

toward the Antarctic continent. In parallel, the chlorophyll-

normalised values of aph and POC decrease, while the

chlorophyll-specific bbp remains stable across latitudes.

The absorption data showed a high proportion of NAP (aNAP:

aph up to 10) in the clear waters (Chl < 0.2 mg m−3) of the SO. This

substantial NAP contribution leads to higher POC and bbp values,

making particulate bio-optical properties significantly different

from what is expected for temperate areas. In contrast, this

divergence is not evident in waters with Chl > 0.2 mg m−3.

Therefore, using bio-optical relationships developed in temperate

waters to study the SO is probably acceptable outside the domain of

low Chl. The specific relationships we propose here (Figure 4) are

presumably better adapted to the SO. Nonetheless, caution is

warranted, as even minor alterations in these relationships can

result in notable absolute differences due to the substantial

variability present.
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The implication for satellite ocean colour applications seems

to be an overestimation of Chl in clear waters when using

standard algorithms (again, in areas with Chl levels below 0.2

mg m−3). Deriving better SO-adapted Chl retrieval algorithms

that account for this peculiarity would, however, require more

comprehensive datasets of bio-optical properties and radiometry

measurements, which still do not exist at the required scale. This

is definitely where more effort should be directed if we are to

expect significant improvements in our ability to monitor SO

ecosystems from space.
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