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The cellular carbon content and chlorophyll a (Chl a) concentration are two of

the most significant indices for assessing phytoplankton biomass. Recording and

monitoring these biomasses are essential tasks in phytoplankton research, and

the carbon-to-chlorophyll a (C:Chl a) ratio serves as a crucial conversion tool

between them. Although the C:Chl a ratio varies widely, it is influenced by

external environmental factors, making modeling studies of C:Chl a particularly

important. This paper provides an overview of the historical development of the

C:Chl a model, beginning with early empirical models and progressing to the

development of mechanistic models. This discussion is followed by an

examination of existing gaps and future challenges in current C:Chl a

modeling, particularly the potential underestimation of carbon biomass in

existing C:Chl a models for dinoflagellates exhibiting multiple growth

strategies. Finally, it is suggested that future C:Chl a models should strive to

achieve a balance between reliability and applicability.
KEYWORDS

phytoplankton, carbon to chlorophyll a ratio, empirical model, mechanistic model,
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1 Introduction

Unicellular phytoplankton are significant contributors to ocean productivity,

accounting for approximately half of global primary production (Worden et al., 2015;

Levine and Leles, 2021). They play a crucial role in global biogeochemical cycles and

climate change (Falkowski, 1994; Boyce et al., 2010; Litchman et al., 2015; Behrenfeld et al.,

2016). Phytoplankton metabolic processes significantly influence global marine carbon and

oxygen production. In addition to regulating food web dynamics, phytoplankton are

responsible for cycling essential biological elements such as carbon and nitrogen (Litchman

et al., 2015; Behrenfeld et al., 2016).

Phytoplankton in the surface ocean convert dissolved carbon and nutrients into organic

matter, which is then transported downward through sinking particles. This process creates

a biological pump that reduces atmospheric CO2 concentrations (DeVries et al., 2012;
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Agustı ́ et al., 2015; Tréguer et al., 2018). Understanding the

e l ementa l compos i t ion of mar ine photoauto t roph ic

phytoplankton is crucial for studying global ecosystems and

Earth’s climate (Falkowski, 2012; Schoo et al., 2013; Kwiatkowski

et al., 2018). Several studies on phytoplankton conducted in recent

years have demonstrated that community structure, composition,

and diversity significantly influence phytoplankton stoichiometry

(Tréguer et al., 2018; McCain et al., 2021). This stoichiometry, in

turn, reflects the quality of the food supply and the pathways of

energy transfer in tropical ecosystems (Sardans et al., 2021).

Because of its widespread presence in all phytoplankton taxa,

including both prokaryotes and eukaryotes, chlorophyll a (Chl a)

concentration is one of the most commonly used indicators of

phytoplankton biomass. The measurement of chlorophyll

concentration is conducted using various methods, such as

spectrophotometry (Ergun et al., 2004), fluorescence (Kruskopf

and Flynn, 2006), and high-performance liquid chromatography

(Moorhouse et al., 2018). Chl a measurements, in addition to being

convenient and continuously operable, can be conducted remotely

using satellite remote sensing methods. Remote sensing of ocean

water color is an effective monitoring tool for the simultaneous

observation of phytoplankton distribution at the sea surface on a

large scale and for the detection of phytoplankton blooms

(Dierssen, 2010; Kaymaz and Ates, 2018; He et al., 2020).

However, there were differences in Chl a concentrations among

taxonomic groups. Letelier et al. (1993) summarized seven distinct

taxonomic groups of Chl a algorithms based on diagnostic

pigments specific to each algal group. The Chl a concentration of

Bacillariophytes was primarily determined by fucoxanthin, while

the Chl a concentration of Dinoflagellates exhibited a linear

correlation with peridinin. The Chl a concentration of

Cyanobacteria was influenced by zeaxanthin and chlorophyll b

(Chl b). Additionally, the Chl a concentration of Chrysophytes

was linearly correlated with 19′-butanoyloxyfucoxanthin, and the

Chl a concentration of Prymnesiophytes was linearly correlated

with 19′-hexanoyloxyfucoxanthin. The Chl a concentration of

Prasinophytes was linearly correlated with prasinoxanthin, and

the Chl a concentration of Prochlorococcus spp. was determined

by both Chl b and prasinoxanthin. It is important to note that the

phytoplankton community counts also included both mixotrophic

and heterotrophic dinoflagellates that do not contain Chl a. In

addition, because changes in Chl a concentration may not be

influenced by phytoplankton carbon biomass , Chl a

concentrations do not fully represent phytoplankton biomass

(Jackson et al., 2017; Sathyendranath et al., 2020).

To address the limitations of Chl a as an indicator of biomass,

scientists have employed alternative biological indicators, with

biological carbon being the most widely used. Carbon is typically

found in high concentrations relative to other elements, and

importantly, biomass measured using biocarbon markers can be

directly linked to the carbon cycle (Graff et al., 2012). However,

unlike Chl a, directly measuring phytoplankton carbon content is

quite challenging. Currently, our techniques do not permit direct

monitoring of phytoplankton carbon biomass over large areas of the

ocean. Traditionally, phytoplankton carbon biomass has been

estimated from cell volume through microscopic counts, which
Frontiers in Marine Science 02
are then converted to carbon per cell. This information is

subsequently used to determine the distribution and variation of

carbon biomass throughout the community (Menden-Deuer and

Lessard, 2000). However, the methods of microscopic counting and

estimating cell volume for biomass still have limitations. Some

species, such as diatoms, possess a large cell volume that is primarily

occupied by a vacuole, which may lead to an overestimation of their

cell carbon content (Hansen and Visser, 2019).

To estimate the carbon content of phytoplankton based on its

Chl a concentration, a conversion factor known as the

phytoplankton carbon to Chl a ratio (C: Chl a), has been

established (Strickland, 1960). This conversion requires

quantifying the C:Chl a ratios, as they are essential for relating

Chl a concentration to carbon biomass. However, the C:Chl a ratio

in phytoplankton is not constant; it varies not only between species

but is also significantly influenced by external environmental factors

such as light, nutrients, and temperature (Geider et al., 1997;

Behrenfeld et al., 2002; Wang et al., 2009; Li et al., 2010).

Therefore, the accuracy with which ecosystem models can predict

the C:Chl a ratio in natural ecosystems is one of the fundamental

challenges in contemporary ocean carbon cycle research

(Armstrong, 2006). Phytoplankton cells under nutrient-deficient

or senescent conditions exhibited a higher C: Chl a ratio compared

to healthy phytoplankton cells, and this ratio was significantly

influenced by environmental factors. Lorenzen (1968) found that

the C:Chl a ratio of phytoplankton was positively correlated with

light intensity. Eppely determined the C: Chl a of phytoplankton in

two areas within the La Jolla Sea Area and found that the C: Chl a in

the saturated nutrient area was about 22-28 g C g Chl a-1, whereas it

was higher in the oligotrophic area, about 91-105 g C g Chl a-1

(Eppley, 1968). Like higher plants, phytoplankton convert solar

energy into chemical energy and inorganic matter into storable

organic matter through photosynthesis. Factors such as light and

temperature can influence this photosynthetic process, thereby

altering the carbon to chlorophyll a ratio in phytoplankton.

Additionally, nutrients, trace elements, and other factors can

affect the composition of materials within phytoplankton cells.

In early phytoplankton modeling studies, the relationship

between phytoplankton growth rates and various environmental

factors was often analyzed separately. Light is the environmental

factor most frequently utilized in modeling, and several models

have been developed to describe the light dependence of growth and

photosynthetic rates. These include modifications of the Monod

equation, hyperbolic tangent functions, and Poisson functions

(Jassby and Platt, 1976; Aiba, 1982; Yun and Park, 2003; Garcıá-

Malea et al., 2006; Costache et al., 2013). For nutrients, the Monod

equation is commonly used to describe the external nutrient

dependence of phytoplankton growth rates, while the Droop

equation illustrates the relationship between growth rates and

cellular quotas of limiting nutrients (Morel, 1987; Sunda et al.,

2009; Mei et al., 2011; Edwards et al., 2012; Thomas et al., 2017).

Under equilibrium growth conditions, the Monod and Droop

equations align with each other and with Michaelis-Menten

nutrient uptake kinetics (Geider et al., 1998). Additionally,

various equations describe the relationship between growth rate

and temperature (Kremer et al., 2017); however, this relationship is
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typically represented using an exponential function or the

Arrhenius equation (Ahlgren, 1987; Blackford et al., 2004;

Taucher and Oschlies, 2011; Sherman et al., 2016; Barton

et al., 2020).

A substantial body of laboratory experiments has demonstrated

the reliability of these early models in describing the dependence of

phytoplankton growth and photosynthesis on environmental

factors (Burmaster, 1979; Megard et al., 1984; Sukenik et al., 1987,

1991; Grima et al., 1996; Xin et al., 2010). However, these models

are only applicable under the constraints of balanced growth, which

necessitates that nutrient uptake, light capture, and carbon fixation

be strictly coupled (Eppley, 1980). Furthermore, when

phytoplankton are limited by a combination of environmental

factors, early modeling efforts lacked consensus on how to

integrate these factors concerning growth rates and develop new

descriptive equations (Rodhe, 1978; Droop, 1983). Some authors

have stated that phytoplankton growth processes are limited by a

single factor (Rodhe, 1978), while other researchers have

demonstrated that there is a multiplicative interaction between

light and nutrient limitations (Droop, 1983).Phytoplankton

dynamic models have been extensively utilized in marine

biological and global marine ecological models (Moore et al.,

2001; Fennel and Boss, 2003; Faugeras et al., 2004; Li et al., 2010;

Schourup-Kristensen et al., 2014; Álvarez et al., 2018). However,

research has demonstrated that the outputs of these models are not

entirely reliable, and that time-series changes in Chl a,

phytoplankton carbon biomass, and C:Chl a ratios do not align

consistently with observations (Lefevre et al., 2003; Doney et al.,

2009). Therefore, in addition to model simulation studies, there is

also a need for evaluation studies to assess the actual performance of

the models.

This paper introduces the C:Chl a model and reviews the

history of the development of this type of model and highlights

the characteristics of each of these models. There is limited

understanding of how light, nutrients and temperature interact

together to regulate large-scale changes in phytoplankton C:Chl a in

the ocean. The purpose of this study is to describe the research ideas

of C:Chl a models from empirical to mechanistic models and to

explore their gaps by summarizing the existing C:Chl a models.

Then, the gaps and future challenges facing C:Chl a models are

discussed in terms of particular limiting circumstances and species

differences. Finally, the balance between reliability and applicability

of the model is emphasized.
2 C:Chl a model development: from
empirical to mechanistic models

Similar to most biological models, early C: Chl a models were

based on a substantial amount of laboratory experimental data, with

empirical models derived through linear or nonlinear fitting to this

data. These empirical models typically describe C: Chl a as a

function of one or more environmental factors. They are

characterized by their simplicity and convenience, allowing for

rapid transformation to obtain C: Chl a when the parameters of

the culture environment are specified.
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2.1 Empirical models

2.1.1 Geider empirical model (1987)
In early models of phytoplankton physiology, C:Chl a (q)

was an important variable (Kiefer and Mitchell, 1983; Geider

et al., 1986), but its fundamental role was implicit in the model

(Steele, 1962; Eppley and Sloan, 1966; Shuter, 1979). Geider

(1987) provided an empirical model for the variation of C:Chl a

with light and temperature for microalgae and cyanobacteria

under nutrient-sufficient conditions based on from laboratory

experiments data. The results show that under nutrient-

sufficient conditions, it is possible to describe most of the

variation in q using functions of light intensity, temperature

and four coefficients.

By summarizing experiments with 13 phytoplankton

(Table 1), Geider found that the light dependence of C:Chl a

can be expressed as a l inear function when a single

phytoplankton species is at constant temperature and under
TABLE 1 Microalgae species and culture conditions summarized by
Geider (1987).

Species T (°C) I (mmol photons m-2 s-1)

Skeletonema costatum 0 4-46

5 2-92

10 5-80

16 5-94

22 19-119

S. costatum 20 15-650

Leptocylindrus danicus 5 6-72

10 6-79

15 7-132

20 6-127

Thalassiosira weisflogii 18 30-600

T. weisflogii 20 2-105

Thalassiosira pseudonana 18 14-512

Phaeodactylum
tricornutum

23 1-230

P. tricornutum 25 12-230

25 52-277

Fragillaria crotonensis 20 13-154

Scenedesmus sp. 20 15-82

Nannochloris atomus 23 1-200

Euglena gracilis 25 9-483

Chlorella pyrenoidosa 26 11-80

Dunaliella tertiolecta 34 \

Oscillatoria redekii 15 15-250

Microcystis aeruginosa 29 20-565
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nutrient-sufficient conditions:

q = q0 + e · I (1:1� 1)

where q is the C: Chl a ratio (g C g Chl a-1), I is the photon flux

density (mmol photons m-2 s-1). q0 is the value of q at I = 0, and e is
the empirical regression coefficient in g C g Chl a-1 m2 s mmol

photons-1. The intercept q0 varied from 6 to 40 g C g Chl a-1. The

slope e varied over a wide range from 0.04 to 1.9 g C g Chl a-1 m2 s

mmol photons-1.

Geider found a linear decrease in q0 as the temperature

increased from 15°C to 30°C. In addition, the regression

coefficient e has a negative exponential relationship with

temperature (T):

e = 1:85 ∗ exp( − 0:126T) (1:1� 2)

Combining Equations 1.1-1 and 1.1-2, the change in q can be

described in terms of light and temperature:

q = (a − bT) + cIexp( − dT) (1:1� 3)

where the 4 regression coefficients a = 43.4, b = 1.14, c = 1.85,

and d = 0.126, respectively. The variation of q with light at three

temperature conditions (5°C, 15°C and 25°C) was predicted using

Equation 1.1-3. The results showed that the tendency

of q becoming larger with increasing light was more obvious

at low temperatures. In addition, q was larger at low

temperatures, which is consistent with the results of several

studies (Eppley, 1971; Li, 1980; William and Morris, 1982).

This phenomenon is widespread in nature (Berry and

Bjorkman, 1980; Lapointe et al., 1984), and it is exacerbated by

increased light (Liu et al., 2021).This is due to the fact that at low

temperatures, phytoplankton can suffer from low-temperature

chlorosis due to chlorophyll loss (Eppley, 1971).

Geider empirical model revealed a relationship between C: Chl

a (q), light intensity and temperature in microalgae. It was possible

to describe changes in q using a single function of temperature and

light intensity, independent of species. However, because the study

included only a few species and limited observations at low

temperatures, this empirical model has limited applicability.

2.1.2 Cloern model (1995)
In the previous section, Geider proposed a model for the light-

temperature dependence of C: Chl a under nutrient-sufficient

conditions, but much of the ocean is oligotrophic, so the model is

not applicable in these regions. Cloern proposed a new empirical

equation that describes much of the variation in Chl: C ratios

expressed by phytoplankton of laboratory experiments. The

modeling approach differs from that of Geider (1987), which

incorporates an explicit link between nutrient-limited growth

rates and Chl: C. The Cloern model is based on a theory

describing the link between biochemical components and

phytoplankton growth proposed by previous modeling studies

(Laws and Bannister, 1980; Kiefer and Mitchell, 1983; Laws and

Chalup, 1990).

Cloern summarized data from 12 published studies, most of

which were conducted under different light-limited or nutrient-
Frontiers in Marine Science 04
limited conditions and reported temperature T (°C), irradiance I

(mol quanta m-2 d-1), photoperiod, nutrient-limited growth rate m′
(d-1) and Chl: C, to obtain an empirical equation applicable to

temperate coastal waters:

Chl : C = 0:003 + 0:0154 · exp (0:050T) ·

exp ( − 0:059I) · m 0

(1:2� 1)

Cloern model possessed three features: Firstly, Chl: C possesses

a minimum value of about 0.003 mg Chl a (mg C)-l. Secondly, Chl:

C is linearly related to m′ when light and temperature are stable

(Laws and Bannister, 1980; Sakshaug et al., 1989; Chalup and Laws,

1990). Third, the linear relationship between Chl:C and m′ changes
with light. For mixed waters, I is related to the depth of the mixing

layer, H (Cullen, 1990):

I = (1=H) ·
Z H

0
Ij exp ( − kz) dz

= (Ij=kH) · ½1 − exp ( − kH)�
(1:2� 2)

If is the daily irradiance below the surface. The Monod equation

was used to describe the limitation of growth rate m′ by nutrients:

m 0 = N=(KN + N) (1:2� 3)

N is the limiting nutrient concentration, and KN is the half-

saturation constant, i.e., the nutrient concentration at which the

growth rate reaches 1/2 of its maximum, which also represents m′
sensitivity to changes in nutrient concentration. Combining the

three equations gives an equation that is directly described by light,

temperature and nutrient concentration together:

Chl : C = 0:003 + 0:0154 · exp (0:050T)

· exp −0:059(Ij=kH) · ½1 − exp ( − kH)�� �
· ½N=(KN + N)� (1:2� 4)

Although the Cloern empirical model is sufficient to describe

most of the variability in phytoplankton Chl:C in the steady state of

laboratory experiments (Figure 1), a considerable number of

questions remain unanswered. Examples include the P-I

parameters (Harding et a l . , 1981) , the dynamics of

photoadaptation (Lewis et al., 1984), and differential adaptations

between different phytoplankton taxa (Chan, 1980).

2.1.3 Shortcomings of empirical models
Although the empirical model initially fit the data well, it was

limited to laboratory experiments that overlooked the biological

processes of phytoplankton, such as photosynthesis, chlorophyll

synthesis, and respiration. This limitation hindered the

understanding of how environmental factors specifically affect the

physiological state of phytoplankton. In more complex growth

environments, the empirical model’s fitting results become

unsatisfactory, indicating that it is not suitable for estimating the

C:Chl a ratio of phytoplankton communities in natural waters.

Consequently, more comprehensive mechanistic modeling

approaches are necessary to address the challenges associated

with modeling C:Chl a.
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2.2 Mechanism models

The natural environment is often in a dynamic state of flux, and

the cellular chemistry of phytoplankton changes in response to

changes in the environment, an adjustment known as acclimation.

Typically, environmental acclimation that regulate phytoplankton

growth and physiology include principally light, nutrients and

temperature. There have been several studies on the individual

modeling of these factors on phytoplankton growth or

photosynthesis (Jassby and Platt, 1976; McCarthy, 1981; Li, 1980;

Droop, 1983; Morel, 1987). In natural environment, phytoplankton

growth is often co-regulated by multiple factors, and models of

single-factor dependence are not fully applicable.

In both procaryotic and eukaryotic phytoplankton,

photoacclimation involves the down-regulation of pigment

synthesis at high irradiance (Falkowski and LaRoche, 1991;

Alderkamp et al., 2011; McKew et al., 2013). Two of the most

widely used indicators of the state of phytoplankton

photoacclimation are Chl a: C (h) and Chl a-specific light-

saturated photosynthetic rate (Geider, 1993). Geider et al.

(1996) described a dynamic model of phytoplankton growth and

photoacclimation under nutrient-sufficient conditions. The main

features of the model are that it explicitly describes the role of the

ratio of photosynthesis to light harvesting in regulating the

biosynthesis of light-harvesting pigments, shows how light

acclimation arises from the dynamic partitioning between

intracellular carbon pools, and accounts for equilibrium growth

and transient responses to changes in irradiance. Subsequently,

Geider et al. (1997) proposed an improvement, with a new model

providing an analysis of the response of h to irradiance in

equilibrium growth, and the limiting effects of nutrient

limitation and temperature on the rate of light-saturated

photosynthesis were incorporated into the model.
Frontiers in Marine Science 05
2.2.1 Geider initial model (1997)
C:Chl a has a wide range (Taylor et al., 1997; Wang et al., 2009;

Jakobsen and Markager, 2016) but is highly regulated by irradiance,

nutrient effectiveness, and temperature (Goldman, 1980; Geider,

1987, 1993; Cloern et al., 1995). Geider initially built a dynamic

model that C:Chl a under different conditions of irradiance,

nutrient-limitation and temperature. Changes in Chl a depend on

the ratio of energy supplied by light absorption and photosynthetic

energy conversion to the energy required for growth.

The light dependence of photosynthesis (P-I curve) in traditional

studies is usually described as a saturation function (Jassby and Platt,

1976). Geider built on this to establish a light (I) dependence function

for the carbon-specific photosynthetic rate (PC):

PC = PC
m 1 − exp

−aChlIh
PC
m

� �� �
(2:1� 1)

where h is Chl a:C, PC is the carbon-specific photosynthetic rate,

aChl is the Chl a-specific initial slope of the P-I curve, and PCm is the

carbon-specific light saturated photosynthetic rate. Changes in h
were assumed to depend on the relative changes in the rates of net

Chl a synthesis and net carbon fixation. The net rate of carbon

fixation (dC/dt) is derived from the difference between

photosynthetic and respiration rates (Equation 2.1-2). The net rate

of Chl a accumulation (dChl/dt) is derived from the difference

between synthesis and degradation rates (Equation 2.1-3):

dC
dt

= PCC�RCC (2:1� 2)

dChl
dt

= rChlP
CC�RChlChl (2:1� 3)

RC and RChl are the degradation rate constants for carbon and

Chl a, respectively, and rChl is the ratio of Chl a synthesis to carbon
fixation, which can be expressed as:

rChl = hm
PC

aChlIh

� �
(2:1� 4)

hm is the Chl a:C maximum. Combining Equations 2.1-1 to 2.1-

4 yields a light-dependent function of h:

h =
hm

1 + aChlIhm

2PCm

� 	 (2:1� 5)

For temperature and nutrient limitation, Geider assumed that

both factors affect only the light-saturated photosynthetic rate, the

temperature dependence of PCm was described using the Arrhenius

equation (Li, 1980), and the nutrient limitation of PCm was

described as the Monod equation (Morel, 1987), with the

combined effect of the two factors regarded as a multiplicative

function of temperature and nutrient effectiveness:

PC
m(T ,N) = PC

ref
N

N + KN

� �
� exp −

Ea
R

1
T
−

1
Tref

� �� �
(2:1� 6)

PCm(T, N) is the light-saturated photosynthetic rate at a given

temperature and nutrient concentration. T is the temperature, Tref is
FIGURE 1

Comparison of predicted and measured Chl:C from the Cloern
model. The dashed line indicates a 1:1 relationship.
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the reference temperature of 293 K, PCref is the reference value of

PCm under nutrient-sufficient conditions at the temperature of Tref,

N denotes the nutrient concentration, KN is the half-saturation

constant of growth, and Ea/R is the slope of the curve of the

Arrhenius equation.

Geider initial model was a more simplified model, and although

based on intracellular sources and losses of carbon and chlorophyll,

there were still some parts that were not included (e.g., excretion of

DOC, biosynthesis consumption of C) in order to make the model

easy to use.

2.2.2 Geider model (1998)
Based on previous work (Geider et al., 1996; Geider et al.,

1997), Geider developed a more complete model of the C:Chl

mechanism, which will be referred to simply as the Geider model

(Geider et al., 1998) (Table 2). The Geider model was based on the

adaptation of phytoplankton growth and physiology to light,

nutrient concentration, and temperature, and treats nutrient

uptake and photosynthesis rates as a function of environmental

factors and cell chemical composition (Chl:C and N:C). Multiple

environmental variables together determine the instantaneous

rates of light utilization, carbon assimilation, Chl synthesis and

nutrient assimilation (Table 3).

The Geider model is based on three features of the

phytoplankton adaptation process. First, it includes the down-

regulation of pigment content at high irradiance and/or when

growth rates are limited by nutrient availability or temperature

(Falkowski and LaRoche, 1991; Geider et al., 1996). Second, it

includes the accumulation of energy-storing polymers when growth

rates are light-saturated and/or nutrient-limited, and the
TABLE 2 The equations of Geider Model (1998).

1
C
dC
dt

= Cphot �RC − zVC
N

(2.2-1)

1
N

dN
dt

=
VN

Q
− RN (2.2-2)

1
Chl

dChl
dt

=
rChlVC

N

hC �RChl (2.2-3)

PC
phot = PC

max 1 − exp
−aChlhCE0

PC
max

� �� �
(2.2-4)

PC
max = PC

ref
Q − Qmin

Qmax − Qmin

� �
Tfunction

(2.2-5)

VC
N = VC

max
Ni

Ni + Knit

� �
(2.2-6)

VC
max = VC

ref
Qmax − Q

Qmax − Qmin

� �n

Tfunction
(2.2-7)

rChl = hN
max

C

aChlhCE0
(2.2-8)

RC = RN = RChl = RrefTfunction (2.2-9)

Tfunction = exp AE
1
T
−

1
Tref

� �� �
(2.2-10)
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TABLE 3 The variables of Geider Model (1998).

Variable Definition Units

C Phytoplankton carbon gC m-3

N Phytoplankton nitrogen gN m-3

Chl Chl a gChl a m-3

PC
phot C-specific rate of photosynthesis d-1

PC
max

Maximum value of PC
phot at

temperature T
d-1

PC
ref Value of PC

max at temperature Tref d-1

VC
N

Phytoplankton carbon-specific nitrate
uptake rate

gN (gC)-1 d-1

VC
max

Maximum value of VC
N at

temperature T
gN (gC)-1 d-1

VC
ref Value of VC

maxat temperature Tref gN (gC)-1 d-1

aChl Chl a-specific initial slope of the
photosynthesis-light curve

g C m2 (mmol
photons g Chl a)-1

Q The cell quota of nitrogen (N: C) gN (gC)-1

Qmin Minimum value of Q gN (gC)-1

Qmax Maximum value of Q gN (gC)-1

E0 Incident scalar irradiance mmol photons m-2 s-1

Ni Inorganic nitrogen concentration mM

RC Maintenance respiration rate constant d-1

RN N remineralization rate constant d-1

RChl Chl a degradation rate constant d-1

Rref
Degradation rate constant at the

reference temperature
d-1

T Temperature K

Tfunction Temperature-response function Dimensionless

Tref Reference temperature K

hC Chl a to C ratio gChl a (gC)-1

hN Chl a to N ratio gChl a (gN)-1

hN
max Maximum value of hN gChl a (gN)-1

fmax
Maximum photon efficiency

of photosynthesis
mol C (mol
photons)-1

rChl Chl a synthesis regulation term Dimensionless

z Cost of biosynthesis gC (gN)-1

AE
Slope of the linear region of the

Arrhenius plot
Dimensionless

n
Shape-factor describing dependence of

VC
max on Q

Dimensionless

Knit
Half-saturation constant for

nitrate uptake
mM

aChl Chl-specific light absorption coefficient m2 (g Chl a)-1
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subsequent release of these polymers when light is limited or

nutrients are replenished (Foy and Smith, 1980). Third, it

includes feedbacks between nitrogen and carbon metabolism.

This model differs from previous equilibrium growth steady-state

models (Bannister, 1979; Shuter, 1979; Kiefer and Mitchell, 1983;

Laws et al., 1983; Geider et al., 1997) in that it explicitly takes into

account the time-dependence of biomass and pigment

accumulation under non-equilibrium growth steady-state

conditions and incorporates both nitrogen limitation and N:C

ratio changes are included.

The Geider model is based on phytoplankton mass balances of

carbon (C), nitrogen (N) and chlorophyll a (Chl) (Equations 2.2-1,

2.2-2, 2.2-3). The light dependence of photosynthesis is considered

as a Poisson function (Equation 2.2-4), nutrient uptake rates are

described using the Michaelis-Menten function (Equation 2.2-6),

and temperature affects light-saturated photosynthesis, maximum

nutrient uptake rate, and maintenance respiration rate through the

Arrhenius relationship (Equation 2.2-10).

In the Geider model, the constants that maintain C respiration,

N remineralization and Chl degradation are assumed to be equal. In

the Geider model , the carbon-specific l ight-saturated

photosynthetic rate depends on the nitrogen status inside the cell

(Equation 2.2-5), and the carbon-specific light-limited

photosynthetic rate depends on the Chl: C ratio (Equation 2.2-4).

The synthesis of Chl a requires nitrogen assimilation (Equation 2.2-

3), and the maximum rate of nitrogen assimilation is regulated by

the nitrogen status inside the cell (Equation 2.2-7). Chl a synthesis is

down-regulated when the rate of light absorption exceeds the

photon utilization rate of carbon fixation (Equation 2.2-3), and

the extent of the down-regulation depends on the imbalance

between the rates of light absorption and photosynthesis

(Equation 2.2-8). Respiration rate is linked to the rate of nitrogen

assimilation through the cost of biosynthesis (Equation 2.2-1).

The Geider model provides a more complete dynamic model of

phytoplankton physiology based on the sources and destinations of

elements within the phytoplankton than previous models. The

introduction of dynamic regulation of nitrogen in addition to

carbon and Chl a has linked pigment synthesis to nitrogen

assimilation in the model. The Geider model is the first

representative model in C:Chl modeling research, and it provides

a foundation idea for future C:Chl modeling research.

2.2.3 Pahlow model (2013)
In the Geider model, the nutrient dependence of nutrient uptake

rates is described using the Michaelis-Menten equation (MM

equation), but the MM equation is still flawed. For two limiting

nutrients, nitrogen (Rhee, 1974) and phosphorus (Droop, 1974; Rhee,

1974), the MM equation is unable to describe the steady-state uptake

response over a wide range of concentrations with constant half-

saturation constants, Ks, and nutrient uptake saturation rates, Vmax.

Therefore, scientists have proposed a new hypothesis - optimal

uptake (OU) kinetics. Optimal uptake (OU) kinetics assumes that

there is a physiological trade-off between the efficiency of nutrient

contact at the cell surface (As) and the maximum rate of nutrient

assimilation (Vmax,s). The main idea is that phytoplankton change the
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number of their surface uptake sites (or ion channels), which

determine the time scale of nutrient encounters, and the number of

internal enzymes, which assimilate the nutrients after they have been

encountered. Nitrogen is recognized as a key resource for partitioning

between these two uses, as both uptake sites and enzymes are

predominantly composed of proteins and therefore require large

amounts of nitrogen (Pahlow, 2005).

Based on this assumption, Pahlow proposed an optimality-

based model for phytoplankton (hereafter referred to as the

Pahlow model). In the Pahlow model, phytoplankton cells are

assumed to transiently optimize the Chl a and N content of their

cells for maximum net growth, i.e., the net accumulation of carbon

fixation minus the energy cost of photosynthesis and nutrient

uptake. The N of the Pahlow model is divided into three

components: nutrient acquisition, light-trapping organs and

structural proteins (Figure 2).

The Pahlow model has three optimization levels without

considering P limitation. The first is to optimize the Chl:C ratio

(h
∧
0) within the chloroplasts such that net photosynthesis is

maximised. h
∧
0 can be obtained by solving the gradient function

of net photosynthesis of a chloroplast with respect to h
∧
0:

h
∧
0 =

1

z chl
+

VC
0

achlI
1 −W0 1 +

Rchl
M

LdV
C
0

� �
e

1+ achl I
z chlVC

0

� �2
64

3
75

8><
>:

9>=
>;    

if  I > I0

(2:3� 1)

h
∧
0 = hmin     if I > I0

where I is irradiance (W m-2), achl is the chlorophyll-specific

initial slope of the photosynthesis-irradiance (P-I) curve, and zchl is
the cost coefficient of photosynthesis. Rchl

M is the maintenance cost of

Chl. Ld is the length of the day. W0 is the zero branch of the

Lambert-W function. hmin is the minimum chlorophyll-to-carbon

ratio. I0 is the threshold light level for chlorophyll synthesis.

I0 =
z chlRchl

M

Ldachl
(2:3� 2)

The second level of optimization is to balance the energy

allocation between photosynthesis and nitrogen uptake. The net

relative growth of a cell is equal to the net photosynthesis of the

whole cell minus the respiratory cost of nitrogen uptake. The

optimal cellular nitrogen quota, QN, can be calculated by solving

the gradient function of net relative growth against the nitrogen

uptake allocation factor (fV):

QN = QN
S 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1

QN
S

m̂ I

V̂ N + zN
� 	

vuut
2
64

3
75 (2:3� 3)

where QN
S is the nitrogen quota for structural proteins, which is

half of the minimum nitrogen quota (QN
0 ). V̂

N is the potential

nutrient uptake rate. m̂ I is the light-dependent growth rate after

accounting for photosynthesis and chlorophyll maintenance. zN

stands for the cost of nitrogen assimilation. fV can be calculated as:
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fV =
QN

S

QN − zN (QN − 2QN
S ) (2:3� 4)

Chl:C (h) for the whole cell can be calculated as.

h = ĥ 0 1� QN
S

QN − fV

� �
(2:3� 5)

The third dimension of optimization concerns the trade-off

between nutrient uptake at the cell surface and nutrient assimilation

within the cell (Pahlow, 2005; Smith et al., 2009). The potential

nutrient uptake rate (V̂ N ) is calculated as.

V̂ N =
VN
0 N

VN
0

AN
0
+ 2

ffiffiffiffiffiffiffiffi
VN
0 N
AN
0

r
+ N

(2:3� 6)

where VN
0 is the maximum potential nitrogen uptake rate. AN

0 is

the maximum potential affinity. N is the nitrogen concentration in

the environment.

The success of the Pahlow model is demonstrated by the fact that

it provided the first theoretical derivation of the well-known Droop

quota model (Pahlow and Oschlies, 2013) and has been extensively

validated (Fernández-Castro et al., 2016; Smith et al., 2016) with

laboratory datasets (Pahlow et al., 2013) and ocean observations

(Arteaga et al., 2014). However, the Pahlow model is still flawed, and

under low light conditions, the prediction of Chl a:C by the Pahlow

model may be lower than the actual value (Chen and Smith, 2018).
2.3 Applications of several models

Several C:Chl a models are also used in a wide range of

applications, from indoor incubation to parts of the ocean, and in
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global ocean (Table 4). For the empirical models, most of them have

been applied in various sea areas, especially the Cloern model

(Pondaven et al., 1999; Kettle, 2009; Omta et al., 2009; Itoh et al.,

2015; Kooi et al., 2017), due to the advantage of ease of use of

empirical models, which can be directly used for estimation. For

mechanism models, mostly global ocean and biogeochemical

models are applicable, due to the fact that mechanistic models

cover phytoplankton biological processes and are closely linked to

the ocean carbon cycle. Because the Pahlow model describes the

nutrient uptake of phytoplankton cells more rationally, the Pahlow

model has begun to gradually replace the Geider model in recent

studies (Arteaga et al., 2016; Masuda et al., 2021; Sasai et al., 2022;

Kerimoglu et al., 2023).
3 Future development challenges

3.1 Light

Light is one of the most crucial external factors in

phytoplankton modeling, particularly in carbon-to-chlorophyll

(C:Chl) modeling. This is because light directly influences carbon

fixation and plays a key role in regulating chlorophyll a synthesis.

However, there are still aspects of light research that require

further exploration.

Most of the data used to validate the models come from

laboratory experiments, which are primarily conducted under

constant irradiance using artificial light sources. In contrast, the

only light source for phytoplankton growth in the natural

environment is sunlight, whose intensity varies continuously

throughout the day and with depth in the water column. Since

the C:Chl model is intended for application in natural
FIGURE 2

Three levels of nitrogen partitioning in the Pahlow model. Level 1 includes nutrient acquisition (ƒV), structural proteins (Q
N
s/Q

N) and light harvesting
(1-ƒV-Q

N
s/Q

N). Level 2 divides nutrient acquisition into P acquisition (1-ƒN) and N acquisition (ƒN). Level 3 divides dissolved inorganic nitrogen (DIN)
uptake and N2 fixation.
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environments, this limitation reduces the applicability of laboratory

experiment data for the model.

In addition, photoinhibition is a phenomenon that cannot be

overlooked. Microalgal cells undergo three processes depending on

light intensity (Figure 3). When irradiance exceeds saturating light

levels, the photosynthetic system becomes impaired, leading to a

decrease in the photosynthetic rateos phenomenon known as

photoinhibition (Marshall et al., 2000). Due to light attenuation,

most of the seawater is in a photo-restricted state, with only a small

portion experiencing photoinhibition. However, as mentioned in

the introduction, the application of the C:Chl a model necessitates

the integration of satellite remote sensing data, which measures Chl

a from the ocean’s surface layer, the region most significantly

affected by photoinhibition. Álvarez et al. (2018) developed a

preliminary C:Chl a model that incorporates photoinhibition by

including the photoinhibition term function proposed by Platt et al.

(1980). Nevertheless, the photoinhibition resulting from the

transient inactivation of PSII or the reduction of its absorption

cross-section remains inadequately explained.
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3.2 Nutrients

Currently, nutrient uptake is often described using either the

Monod equation or the Pahlow model. Chen and Smith (2018)

compared these two models and found that the assumption of a

trade-off between photosynthesis and nutrient uptake in the Pahlow

model was useful, suggesting that optimal uptake dynamics should

be considered in marine biogeochemical models. In the Monod

model, only one nutrient is assumed to be limiting for other

nutrients such as phosphorus, silicon, and iron. However,

Browning and Moore (2023) conducted a global analysis of

nutrient limitation in marine phytoplankton and discovered that

surface seawater is often close to a state of nutrient co-limitation.

Although the Pahlow model incorporates phosphorus uptake, its

computational steps are quite cumbersome, making it challenging

to obtain a reliable and user-friendly nutrient uptake component for

the C:Chl a model.
3.3 Temperature

In most cases, the role of temperature is incorporated into the

model in a multiplicative form. The temperature dependence of

phytoplankton growth has been demonstrated by Bernard and

Rémond (2012), showing that the growth rate of phytoplankton

increases gradually with rising temperatures up to an optimum level,

after which it decreases sharply when temperatures exceed this

optimum (Figure 4). This sharp decline is attributed to the

inactivation of enzymes or denaturation of proteins at elevated

temperatures, leading to metabolic disorders and potentially algal cell

death (Renaud et al., 2002; Ras et al., 2013; Serra-Maia et al., 2016). The

Arrhenius equation, while a useful model for representing growth rates

at low temperatures, has a limited temperature range in which it is

applicable and fails to account for the declining portion of the thermal

growth curve. In the Geider model, temperature is assumed to

influence only the light-saturated photosynthetic rate (see Section

2.1). Additionally, some ecosystem models treat the respiration rate

as a constant, typically set at 0.01 d-1 (Schourup-Kristensen et al., 2014).

Notably, the impact of temperature on respiration is more significant

compared to its effect on photosynthesis (Barton et al., 2020).

Furthermore, temperature also influences enzyme activity, indicating

that reactive processes such as nutrient uptake may be affected by

temperature fluctuations. However, nutrient limitation can inhibit the

temperature dependence of phytoplankton metabolism (Marañón

et al., 2018).

In addition to its effects on phytoplankton cells at the

microscopic level, temperature also influences the stratification

of the water column, resulting in changes to the vertical

distribution of phytoplankton (Berger et al., 2010; Hordoir and

Meier, 2012). Over time, seasonal variations in temperature

significantly impact phytoplankton communities. In previous

studies, the influence of temperature has been regarded as

secondary to that of light and nutrients. However, in light of

rising global and ocean temperatures, the significance of

temperature must be emphasized.
TABLE 4 Application of several types of models.

Models Application area Sources

Geider
empirical model

Manukau Harbour Gallegos and Vant, 1996

Cloern model the Antarctic Circumpolar
Current and the North
Pacific Ocean

Pondaven et al., 1999

Mozambique Channel Omta et al., 2009

Atlantic Kettle, 2009

Kuroshio–Oyashio
Extension region

Itoh et al., 2015

Modeling of
marine microplastics

Kooi et al., 2017

Geider initial model California coastal Li et al., 2010

Global ocean Jackson et al., 2017

the northern Gulf
of Alaska

Coyle et al., 2019

Geider model Indoor incubation Armstrong, 2006

Ross and Geider, 2009

TOPAZ model Henson et al., 2009

ReCOM2 model Schourup-Kristensen
et al., 2014

Global ocean Álvarez et al, 2018

the Southern Ocean Losa et al., 2019

Pahlow Model Global ocean Arteaga et al., 2016

Masuda et al., 2021

the North Pacific Ocean Sasai et al., 2022

FABM (Framework of
Aquatic
Biogeochemical Model)

Kerimoglu et al., 2023
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3.4 Communities

The impact of phytoplankton species has largely been overlooked

in current C:Chl modeling studies, as these models typically estimate

the carbon biomass of the entire phytoplankton community across

various marine environments. However, certain specific cases

warrant consideration, including mixotrophic, methanotrophs, and

heterotrophs. Most dinoflagellates are mixotrophic and play a

dominant role in several marine ecosystems (Burkholder et al.,

2008; Taylor et al., 2008; Zhang et al., 2013; Stoecker et al., 2017;

Jeong et al., 2021). Cohen et al. (2021) demonstrated that
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dinoflagellates are a significant component of the microbial

community in the Pacific Ocean, exhibiting high relative

abundance across a trophic gradient. Unlike other phytoplankton,

dinoflagellates exhibit a diverse range of trophic strategies, including

autotrophy, heterotrophy, and mixotrophy (Cohen et al., 2021). This

diversity suggests that the C:Chl model may underestimate carbon

biomass by not adequately accounting for dinoflagellate mixotrophy

when assessing the phytoplankton community dominated by these

organisms. It is unclear how much the carbon biomass acquired by

dinoflagellates through heterotrophy impacts the total carbon

biomass of the entire phytoplankton community.
FIGURE 3

Schematic diagram of the P-I curve. Phytoplankton cells undergo 3 stages of increasing light: (1) light limitation, (2) light saturation, and (3)
light photoinhibition.
FIGURE 4

Thermal growth curves of microalgae as exemplified by Astrionella formosa (from Bernard and Rémond, 2012).
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3.5 Improved methodology

Currently, mechanistic models, such as the Geider model and

the Pahlow model, are widely utilized in biogeochemical modeling

studies due to the cycling processes within phytoplankton that

involve elements such as carbon (C) and nitrogen (N). However,

there are still aspects of the Geider model that can be enhanced.

Firstly, for photosynthetic processes (Equations 2.1-1, 2.2-4), a

photoinhibition term can be incorporated (Platt et al., 1980).

PC = PC
m · 1 − exp

−aChlIh
PC
m

� �� �
· exp

−bChlIh
PC
m

� �
(3:5� 1)

where bChl represents the empirical photoinhibition parameter.

The inclusion of this term enables the Geider model to provide a

more accurate estimation of phytoplankton carbon biomass in the

ocean’s surface waters. Additionally, for nutrient uptake, optimal

uptake kinetics are more appropriate than the Monod or Droop

equations (Pahlow, 2005):

VOU =
1

(fAA0,SS)
−1 + ½(1 − fA)V0,S�−1

(3:5� 2)

fA is the proportion of the total nitrogen pool allocated to the

cell surface, and (1 - fA) is the proportion assigned to intracellular

enzymes. A0,S and V0,S are the potential affinity maximum value and

maximum uptake rate for nutrient S, respectively. Thirdly,

irreversible damage caused by high temperatures can be described

using the modified Arrhenius equation (Grimaud et al., 2017):

Tfunction = krexp
TA

Tref
−
TA

T

� �
(3:5� 3)

where Tref is the reference temperature, TA is the Arrhenius

temperature (i.e., the slope of the straight line in the Arrhenius

plot), and kr is the reaction rate at Tref. Currently, there is no

superior method to exclude the effects of mixotrophic or

heterotrophic dinoflagellates in natural phytoplankton taxa.

Additionally, more culture experiments, such as mixed
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incubations of diatoms and dinoflagellates, are necessary to

summarize potential empirical relationships.
3.6 Special events

There are several episodic and special events in the oceans that

can alter the phytoplankton community and, consequently, its

biomass. Phytoplankton blooms frequently occur in both lakes

and oceans, some of which are harmful algal blooms (HABs)

driven by coastal upwelling or significant anthropogenic nutrient

enrichment (Pitcher et al., 2010; Richlen et al., 2010; Andersen et al.,

2017; López-Cortés et al., 2019). Research indicates that the

frequency and distribution of these blooms are expected to

increase with future climate change (Dai et al., 2023). Therefore,

it is possible to develop a specialized C:Chl amodel for algal blooms

and to analyze later whether it is feasible to predict the likelihood of

blooms based on C:Chl a ratios. The Southern Ocean is commonly

characterized as a high-nutrient, low-chlorophyll (HNLC) region, a

phenomenon attributed to the limitation of trace element iron

(Broecker, 1992). Current projections of carbon biomass for the

global ocean primarily rely on Monod dynamics or optimal uptake

dynamics that describe nitrogen limitation. However, for the HNLC

region, C:Chl a modeling that accounts for iron limitation

is essential.
4 Conclusion

The key to the transition of the C:Chl a model from a simple

empirical framework to a dynamically regulated mechanistic model

lies in a fundamental shift in modeling concepts. Initially, empirical

models were primarily characterized by values of C:Chl a. While

there was some consideration of the individual or combined effects

of environmental factors (Figure 5A), the relationship between

these factors and C:Chl a was direct, with only specific regression
FIGURE 5

Ideas for building empirical (A) and mechanistic (B) models. The empirical model is based on the regression relationship between environmental
factors and C:Chl a and the mechanistic model is based on the cellular physiology of phytoplankton.
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coefficients influencing C:Chl a. Consequently, the primary purpose

of the empirical models was to investigate the mathematical

relationships derived from the regression results. Thus, the aim of

these models was to explore the mathematical connections within

the regression findings. There has been significant advancement in

the theory of mechanistic models, including the Geider model,

which is based on cellular elemental sources and destinations, and

the Pahlow model, which focuses on optimal uptake kinetics. Both

models are grounded in the cellular physiological regulation of

phytoplankton (Figure 5B). The regulatory role of environmental

factors is more clearly defined in these models.

This paper reviews the C:Chl a models that have been commonly

applied to date, which primarily consider the combined effects of light,

temperature, and nutrients on phytoplankton biological processes.

However, these considerations are not comprehensive. C:Chl a

models that incorporate photodamage still fail to explain the

photoinhibition caused by the transient inactivation of PSII or the

reduction of its absorption cross-section. While optimality absorption

kinetics may offer a more plausible explanation, its computational steps

are significantly more complex. The impact of temperature is likely

underestimated and should be more thoroughly considered in the

context of global warming. Additionally, since dinoflagellates exhibit

multiple trophic strategies, new models may need to be incorporated

when dinoflagellates are dominant to minimize the underestimation of

carbon biomass.

In addition to the necessity of being as comprehensive as

possible to encompass all types of scenarios and enhance the

reliability of the output results, the modeling process should not

be overly complex. For instance, while the Pahlow model’s

optimality-based assumption makes it superior to the Monod

equation in describing the nutrient uptake of phytoplankton cells,

it is rarely employed in marine biogeochemical modeling due to its

complicated computational requirements. Consequently, the

model’s structure should remain straightforward and user-friendly.
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Serra-Maia, R., Bernard, O., Gonçalves, A., Bensalem, S., and Lopes, F. (2016).
Influence of temperature on Chlorella vulgaris growth and mortality rates in a
photobioreactor. Algal Res. 18, 352–359. doi: 10.1016/j.algal.2016.06.016

Sherman, E., Moore, J. K., Primeau, F., and Tanouye, D. (2016). Temperature
influence on phytoplankton community growth rates. Global Biogeochem. Cycles 30,
550–559. doi: 10.1002/2015GB005272

Shuter, B. A. (1979). model of physiological adaptation in unicellular algae. J. Theor.
Biol. 78, 519–552. doi: 10.1016/0022-5193(79)90189-9

Smith, S. L., Pahlow, M., Merico, A., Acevedo-Trejos, E., Sasai, Y., Yoshikawa, C.,
et al. (2016). Flexible phytoplankton functional type (FlexPFT) model: size-scaling of
traits and optimal growth. J. Plankton Res. 38, 977–992. doi: 10.1093/plankt/fbv038

Smith, S. L., Yamanaka, Y., Pahlow, M., and Oschlies, A. (2009). Optimal uptake
kinetics: physiological acclimation explains the pattern of nitrate uptake by
phytoplankton in the ocean. Mar. Ecol. Prog. Ser. 384, 1–12. doi: 10.3354/meps08022

Steele, J. H. (1962). Environmental control of photosynthesis in the sea. Limnol.
oceanogr. 7, 137–150. doi: 10.4319/lo.1962.7.2.0137
Frontiers in Marine Science 15
Stoecker, D. K., Hansen, P. J., Caron, D. A., andMitra, A. (2017). Mixotrophy in themarine
plankton. Annu. Rev. Mar. Sci. 9, 311–335. doi: 10.1146/annurev-marine-010816-060617

Strickland, J. D. H. (1960). Measuring the production of marine phytoplankton. Fish.
Res. Bd. Canada Bull. 122, 172.

Sukenik, A., Falkowski, P. G., and Bennett, J. (1987). Potential enhancement of
photosynthetic energy conversion in algal mass culture. Biotechnol. bioengineering 30,
970–977. doi: 10.1002/bit.260300808

Sukenik, A., Levy, R. S., Levy, Y., Falkowski, P. G., and Dubinsky, Z. (1991).
Optimizing algal biomass production in an outdoor pond: a simulation model. J.
Appl. phycology 3, 191–201. doi: 10.1007/BF00003577

Sunda, W. G., Shertzer, K. W., and Hardison, D. R. (2009). Ammonium uptake and
growth models in marine diatoms: Monod and Droop revisited. Mar. Ecol. Prog. Ser.
386, 29–41. doi: 10.3354/meps08077

Taucher, J., and Oschlies, A. (2011). Can we predict the direction of marine primary
production change under global warming?Geophys. Res. Lett. 38. doi: 10.1029/2010gl045934

Taylor, A. H., Geider, R. J., and Gilbert, F. J. H. (1997). Seasonal and latitudinal
dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modelling
study. Mar. Ecol. Prog. Ser. 152, 51–66. doi: 10.3354/meps152051

Taylor, F. J. R., Hoppenrath, M., and Saldarriaga, J. F. (2008). Dinoflagellate diversity
and distribution. Biodivers. Conserv. 17, 407–418. doi: 10.1007/s10531-007-9258-3

Thomas, M. K., Aranguren-Gassis, M., Kremer, C. T., Gould, M. R., Anderson, K.,
Klausmeier, C. A., et al. (2017). Temperature–nutrient interactions exacerbate
sensitivity to warming in phytoplankton. Global Change Biol. 23, 3269–3280.
doi: 10.1111/gcb.2017.23.issue-8
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