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Marine mammals are integral to global biodiversity and marine health through

their roles in coastal, benthic, and pelagic ecosystems. Marine mammals face

escalating threats from climate change, pollution, and human activities, which

perturb their oceanic environment. The diverse biology and extreme adaptations

evolved by marine mammals make them important study subjects for

understanding anthropogenic pressures on marine ecosystems. However,

ethical and logistical constraints restrict the tractability of experimental

research with live marine mammals. Additionally, studies on the effects of

changing ocean environments are further complicated by intricate gene-

environment interactions across populations and species. These obstacles can

be overcome with a comprehensive strategy that involves a systems-level

approach integrating genotype to phenotype using rigorously defined

experimental conditions in vitro and ex vivo. A thorough analysis of the

interactions between the genetics of marine mammals and their exposure to

anthropogenic pressures will enable robust predictions about how global

environmental changes will affect their health and populations. In this

perspective, we discuss four challenges of implementing such non-invasive

approaches across scientific fields and international borders: 1) practical and
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ethical limitations of in vivo experimentation with marine mammals, 2)

accessibility to relevant tissue samples and cell cultures; 3) open access to

harmonized methods and datasets and 4) ethical and equitable research

practices. Successful implementation of the proposed approach has the

potential impact to inspire new solutions and strategies for marine conservation.
KEYWORDS

marine mammals, systems biology, toxicology, physiology, climate change, predictive
modeling, functional genomics, endocrine-metabolic disruptors
1 Introduction

Marine mammals play essential roles in coastal, benthic, and

pelagic ecosystems. Many species occupy high trophic levels and

contribute to carbon sequestration, nutrient cycling, and primary

productivity. Some marine mammals dive deeply or migrate long

distances, enabling vertical and horizontal movement of nutrients.

Therefore, declines in marine mammal populations compromise the

stability and biodiversity of ocean ecosystems and serve as warning

signs of declines in ecosystem health (Fortuna et al., 2024; Estes et al.,

2016). Furthermore, the accumulation of contaminants and

microplastics in marine mammal tissues provides a bioindicator of

pollution in marine food webs and its effects on large, long-lived

mammals (Bossart, 2011). This diverse group, comprising whales and

dolphins (cetaceans), seals and sea lions (pinnipeds), manatees and

dugongs (sirenians), and polar bears and sea otters (marine fissipeds)

has convergently evolved adaptations to the aquatic environment on

a relatively short time scale, including extreme body size,

extraordinary diving ability, and extended fasting capacity (Foote

et al., 2015; Jones et al., 2009). During the Anthropocene, marine

mammals increasingly confront mounting pressures impacting their

health, reproduction, and population viability (Parsons et al., 2015;

O’Hara et al., 2021; Halpern et al., 2015; Schaap et al., 2023; Morrison

et al., 2022; National Academy of Sciences, Engineering, and

Medicine, 2017). As vanguards in a changing world, a more

profound understanding of marine mammal adaptations and

vulnerabilities to anthropogenic pressures is essential to global

health and will allow modeling responses to further change.

Direct and indirect anthropogenic pressures threaten marine

mammal populations’ health. Over 40% of the 134 recognized

marine mammal species are classified at high risk of global

extinction by the International Union for Conservation of Nature

(IUCN), an increase from only 25% in 2021 (Nelms et al., 2021;

IUCN, 2023). This is likely an underestimate as many species and

populations (102 out 209 (IUCN, 2023)) are data-deficient due to

uncertain distribution, population status, or taxonomic assignment,

and may have an especially high extinction risk (Braulik et al., 2023;

Borgelt et al., 2022). While regulatory actions have contributed to

the recovery of some populations (Valdivia et al., 2019; Lowry et al.,

2014; Herr et al., 2022), others remain under threat due to direct
02
and indirect effects of incidental catch, harvesting, pollution, marine

traffic, tourism, urban development, and climate change (Nelms

et al., 2021; Davidson et al., 2012; Avila et al., 2018). This is

concerning as marine mammals offer diverse ecosystem services

critical to ocean health, such as nutrient cycling and food web

stability (Estes et al., 2009; McCauley et al., 2015; Hammerschlag

et al., 2019; Roman and McCarthy, 2010).

Bycatch in fisheries is a significant threat to whales and dolphins

(Cetacea), with at least 300,000 individuals ensnared and killed

annually (Read et al., 2006; Elliott et al., 2023). In addition, some

fisheries compete with marine mammals for prey, and both fisheries

and shipping traffic can cause physical encounters, injuries, and

fatalities to marine mammals (Schoeman et al., 2020; International

Whaling Commission, 2023; Demaster et al., 2001). Although the

number of harvested marine mammals has dropped, several marine

mammal species are still consumed worldwide, and direct harvesting

is still a threat to tens of species (Avila et al., 2018; Skern-Mauritzen

et al., 2022).

Marine mammals are also adversely impacted by the

physiological stress responses induced by other oceanic and

coastal activities. For example, ecotourism - driven by a

fascination with marine mammals - exposes millions of people to

these animals globally and is a threat to 21% of the marine mammal

species included in the IUCN Red List of Threatened Species

(Bejder et al., 2022; IUCN, 2023). Similarly, noise pollution from

shipping, naval activities, sonar, and seismic operations is another

increasing threat to marine mammals. Noise pollution affects

marine mammals’ underwater echolocation and communication

strategies, inducing neuroendocrine stress responses that impact

energy budgets, diving, foraging, social interactions, reproduction,

and survival, and has been linked to whale strandings (Erbe et al.,

2019; NOAA, 2023; Southall et al., 2021; Williams et al., 2017).

Atmospheric and oceanic pollution is a worsening global

problem impacting marine mammal health (Landrigan et al.,

2020). Legacy and emerging chemical pollutants accumulate in

marine mammals, particularly affecting predators at high trophic

levels, such as polar bears and orcas (Remili et al., 2023).

Biomagnification and preferential consumption of fatty tissues

that accumulate pollutants such as liver and blubber increase the

risk of endocrine and metabolic disruption (Guo et al., 2023;
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Mortimer and Batley, 2023; Sanganyado et al., 2021; Weijs and

Zaccaroni, 2016; Fair and Houde, 2023). Thus, chemical pollutants

acting as endocrine and metabolic disruptors impair pre- and post-

natal development, reproduction, metabolic and immune health,

longevity, and may have further impacts on population dynamics in

marine mammals (Landrigan et al., 2020; Sanganyado et al., 2021;

Weijs and Zaccaroni, 2016; Desforges et al., 2018; Dietz et al., 2019).

Furthermore, plastic pollution - adding around 500,000 metric tons

to the oceans annually - poses additional threats through

entanglement and ingestion and as a carrier of chemical

pollutants (Commission, I.W, 2020; Fossi et al., 2020; Kaandorp

et al., 2023). Methodologies to delineate and prioritize chemical

pollutant drivers of biological processes are under development but

have not yet reached “prime time” regarding policy changes.

Beyond pollution, global climate change is likely to exacerbate

anthropogenic impacts and physiological stress in marine mammals

by intensifying habitat loss, altering ocean productivity, causing shifts

in prey range and abundance, releasing pollutants stored in the sea

ice, and increasing the frequency and severity of toxic algal blooms

and pathogen outbreaks (Read, 2023; Davidson et al., 2012; Albouy

et al., 2020; Gobler, 2020; Mahon et al., 2024). Conversely, the loss of

marine mammals may exacerbate the effects of climate change on

ecosystems, as large-bodied species play a role in carbon

sequestration, nutrient cycling, and other vital ecosystem services

(Pearson et al., 2023). Diverse stressors interact in complex ways, as is

the case for mixtures of chemical pollutants, challenging the study of

their combined effects (Wilson et al., 2016; Bestley et al., 2020;

Romero, 2004; Wada, 2019; Tartu et al., 2017; Erbe et al., 2018).

Understanding the impacts of multiple stressors on marine mammals

is crucial for their conservation (Parsons et al., 2015; National

Academy of Sciences, Engineering, and Medicine, 2017). As in vivo

experimentation with marine mammals is restricted due to logistic

and ethical concerns, correlative field studies investigating the

relationships between exposure to a stressor and specific health

biomarkers have been widely used (Pallin et al., 2022; Trego et al.,

2019; Schaap et al., 2023). These studies have inherent limitations in

establishing cause-and-effect relationships and mechanistic

understanding (Foote et al., 2015; Dietz et al., 2019).

The extraordinary biology of marine mammals captivates many

fields, including evolutionary biology, physiology, and toxicology

(Manger, 2022); at the union of these disciplines lie the solutions to

understanding and predicting marine mammals’ response and

resilience to global change. For example, genomic insights can

unravel adaptations to cardiovascular and metabolic diseases and

the evolution of cancer resistance in large-bodied, long-lived

mammals such as whales (Steimle and Moskowitz, 2017; Sun

et al., 2022; Nagy et al., 2007; Silva et al., 2023; Vazquez et al.,

2022). The Earth Biogenome Project aims to sequence the genomes

of all eukaryotic species to understand the evolution of life at all

scales and to drive solutions for preserving biodiversity and

sustaining human societies (Lewin et al., 2022). The sequencing

of several marine mammal genomes is ongoing worldwide, which

increases our knowledge of their adaptive potential and facilitates

species’ conservation (Theissinger et al., 2023).

To maximize the impact of marine mammal and environmental

research at all levels, we suggest using an approach that
Frontiers in Marine Science 03
simultaneously leverages new and innovative ways to study top-

level (phenotype and environmental response) and bottom-level

(genomics and molecular biology) phenomena. This “middle-out”

approach includes in vitro studies with marine mammal cells, ex

vivo experiments with tissue slices and explants, and in silico

genome mining and modeling. These approaches can help resolve

physiological paradoxes, assess interactions between and impacts of

multiple stressors, and have many applications in conservation

biology (Schaap et al., 2023; Weijs and Zaccaroni, 2016; Lam

et al., 2020; Torres-Velarde et al., 2021; Allen et al., 2024;

Goksøyr, 2022). The prospects and challenges involved in

implementing such less-invasive approaches are discussed below.
2 Challenge #1: practical and ethical
limitations of in vivo experimentation
with marine mammals

Conducting in vivo experiments with marine mammals presents

significant challenges driven by logistical and ethical constraints

(Parsons et al., 2015; Williams and Hindle, 2021; Hawkins et al.,

2017; Hunt et al., 2013). Additionally, experimental manipulations

are restricted to captive animals, limited field interventions (Lam

et al., 2020; Ensminger et al., 2021a), and hormone and contaminant

profiling (O’Hara and Hart, 2018; Ross et al., 1995; De Swart et al.,

1996). Our proposal to circumvent these limitations consists of a

“middle-out” approach that combines ex vivo, in vitro, and in silico

studies, along with comparative functional genomics and

computational methods to gain an integrated, systems-level

understanding of basic and applied physiology and toxicology of

marine mammals (Figure 1) (Torres-Velarde et al., 2021; Bories et al.,

2021; Bjørneset et al., 2023; Khudyakov et al., 2022; Penso-Dolfin

et al., 2020; Godard et al., 2004; Hindle et al., 2019). This strategy

minimizes our impact on animals while facilitating experiments

involving multiple treatments and stressors under precisely

controlled conditions (Weijs and Zaccaroni, 2016).
2.1 Ethics of sampling marine mammals

A common paradox in biology is that the more endangered the

species, the more dire the need for invasive studies to understand

and manage their challenges. Over 40% of marine mammal species

are at high risk of global extinction (Nelms et al., 2021; IUCN,

2023). Hence, this paradox is especially critical due to the pressing

need to understand how environmental hazards threatening marine

mammals continue to expand in scope and scale. Handling marine

mammals for purposes such as tissue sampling for toxicological

studies and measurements for physiological determinations - or

even piloting a boat to the sampling site - can induce stress

responses that may adversely impact their health (Southall et al.,

2021). Moreover, different species present different ethical

challenges, which adds another layer of complexity. As such, any

approaches that reduce or eliminate intensive in vivo sampling

would simultaneously further conservation goals.
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2.2 Logistics involved in sampling
marine mammals

In addition to ethical limitations, there are significant logistical

challenges to studying marine mammals. These include regional and

international regulations that demand specialized knowledge and

dedicated efforts to procure, maintain, and coordinate research

permits. These regional regulatory apparatuses balance the need for

conservation while reducing research redundancy; however, distinct

regulatory regimes across regions lead to asymmetric research

capacity across the globe. Similarly, some marine mammal

populations sometimes span entire oceans and the resources

necessary to reach most marine mammals in oceanic environments

are either prohibitive or intractable. Even if the resources are in place,

logistical challenges often constrain timely sample preservation and

laboratory processing. For marine mammal studies specifically and to
Frontiers in Marine Science 04
maximize research efforts more generally, it is critical to facilitate the

open sharing of material and develop novel systems to enable

mechanistic marine mammal research.
3 Challenge #2: accessibility to
relevant tissue samples and
cell cultures

Lack of access to tissue samples and cell cultures severely limits

research on the impacts of chemical and other stressors on marine

mammals. Critical issues include sample collection, exchange,

storage logistics, incomplete source animal data, and research

permit requirements. Low animal accessibility, climate, weather

patterns, and distance to laboratory facilities often hinder sample

collection. Quality and type of tissues and reliable animal access
FIGURE 1

“Middle-out” systems approach, which combines ex vivo, in vitro, and in silico methods. The proposed approach is crucial to conduct research with
marine mammals where in vivo experimentation is generally not applicable. In this way, an understanding of how marine mammals will respond to
anthropogenic pressures such as climate change, noise pollution, and contaminants at the individual and population levels can be achieved through
in vitro and ex vivo experimentation and in silico modeling. The proposed approach may be implemented as follows: First, levels of stress hormones,
metabolites, or contaminants of interest are measured in tissues from live or recently deceased animals to establish reference ranges (Desforges
et al., 2018; Tartu et al., 2020, 2017; Guo et al., 2021). Next, primary cells or tissues are used to test the effects of varying stressor concentrations and
combinations on cell and tissue function (Routti et al., 2016; Torres-Velarde et al., 2021; Kashiwabara et al., 2023; Desforges et al., 2018; Rajput
et al., 2021; Lühmann et al., 2020). These functional tests may also incorporate other stressors exacerbated by climate change, such as alterations in
nutrient levels, oxygen tension, temperature, and pH. The role of specific pathways may be tested using functional tools such as gene
overexpression, knockdown, and pharmacological manipulations (Torres-Velarde et al., 2021; Lam et al., 2020). In some cases, in vitro and ex vivo
studies can be integrated with in vivo experimentation in amenable systems to determine whether cell and tissue responses are scalable to the
organismal level (Ensminger et al., 2021a; McCormley et al., 2018). Functional experiments may also be conducted using in silico modeling to predict
responses to genetic and environmental variations (Hanna et al., 2020). Data generated by this approach may be incorporated into models such as
the Population Consequences of Multiple Stressors (PCoMS) to predict the impacts on individual survival and reproduction and, by extension, on
population stability (Pirotta et al., 2023; Keen et al., 2021). Potential limitations to the proposed approach include the use of primary cells and tissues,
which have a finite lifespan, the use of few tissue and cell types due to the limitations of sampling live marine mammals and species-specific
differences in tissue structure, amenability to culture, and response to stressors (Lambilotte, 2024). The latter impacts the ability to understand how
tissue responses are integrated at the organismal level but may be overcome by coupling in vitro and ex vivo studies with in vivo experimentation in
select systems. Furthermore, contaminant and hormone exposure experiments do not always recapitulate the complexity of pollutant cocktails and
signaling molecules likely experienced by marine mammals in vivo but offer the advantage of disentangling the interactions between individual
components. Figure generated in BioRender; icons from BioRender or noaa.org (orca and elephant seal); phylogeny from (Christmas et al., 2023);
crystal structure from Protein Data Bank (2O9I).
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differ among live, stranded, by-caught, euthanized, and hunted

animals. Suitable and reproducible storage and preservation of

samples, tissues, and cell cultures is critical for research but

depends on field logistics and laboratory equipment availability.

While metadata from the source animal (e.g., species, sex, age class,

body condition, reproductive state, health status, photo ID, specific

population, and past exposure to contaminants or other stressors)

are essential for functional data interpretation, they are often

limited or unavailable. Permits required for sample collection and

exchange vary by country and species, usually creating bureaucratic

challenges (Parsons et al., 2015). Finally, financial resources needed

to provide reliable and equitable storage and access, such as

ultralow-temperature freezer equipment, dedicated personnel

responsible for inventory and user management, shipping costs,

and assistance and training of low-income or traditionally

underrepresented researchers or institutions, present an

additional challenge.

To be feasible and reproducible at scale, a middle-out approach

for endangered marine mammals requires a strategic plan to

generate, store, and access a collection of tissues and cells within

a framework that allows equitable and cooperative material

exchange. Experimentation in cells and tissues offers a bridge

between in vivo techniques and functional molecular biology

(Godard-Codding et al., 2011; Lam et al., 2020; Madelaire et al.,

2022; Debier et al., 2020; Godard et al., 2006; Godard-Codding and

Fossi, 2018; Boroda, 2017), providing unique insights into the

impacts of contaminant exposure and response to stressors in

marine mammals (Kanter et al., 2002). The establishment of

tissue cultures, such as precision-cut adipose tissue slices (Debier

et al., 2020; Kashiwabara et al., 2023) and other organotypic models

would enable the investigation of responses that are a closer

reflection of in vivo conditions (Khudyakov et al., 2017), and

unveil physiological mechanisms, such as metabolism, fasting,

stress physiology while providing a holistic understanding of

multi-cellular complexity, extracellular interactions, and organ

structure and function (Khudyakov et al., 2022; Godard et al.,

2004; Debier et al., 2020; Godard et al., 2006; Tranganida et al.,

2023; Deyarmin et al., 2020, 2019; Khudyakov et al., 2018).

Cell, explant, and organotypic cultures can be derived from

most marine mammal tissues and have a variety of downstream

applications (Lam et al., 2020; Godard et al., 2004, 2006;

Kashiwabara et al., 2023; Khudyakov et al., 2017). While dermal

fibroblasts are the most used cultures due to skin tissue accessibility,

fibroblasts obtained from other tissues, adipocytes, stem cells,

myoblasts, endothelial cells, and trophoblasts have been cultured

successfully, increasing research opportunities (Torres-Velarde

et al., 2021; Allen et al., 2024; Routti et al., 2016; Louis et al.,

2015; Griffeth et al., 2014; Johnson et al., 2012). Most marine

mammal cell cultures are primary monocultures, but the field is

evolving to include directly reprogrammed and immortalized cell

lines, induced pluripotent stem cells, organoids, explants, and

organotypic (tissue slice) cultures (Godard et al., 2004; Debier

et al., 2020; Kashiwabara et al., 2023; Tranganida et al., 2023;

Bennett et al., 2017; Robinson et al., 2018). Nevertheless, the

scope of available cultures remains limited in the type of source

organs and species, while validation and standardization of newer
Frontiers in Marine Science 05
methodologies are still ongoing. Additionally, primary cell cultures,

explants, and organotypic cultures have a finite lifespan, limiting

experimentation and resource sharing. Developing collaborative

research pipelines between researchers with funding and access to

animals and laboratories that can derive, store, and share cells and

tissues may democratize access to marine mammal tissues

for experimentation.
4 Challenge #3: open access to
harmonized methods and datasets

In silico studies, such as simulations and computational

genomics, have transformed our ability to approach traditional

physiological, toxicological, and evolutionary research questions.

However, these studies depend on the availability of the prerequisite

data, such as genomic, epigenetic, and experimental data.

Furthermore, functional and computational studies highly depend

on the experimental methods’ robustness and reproducibility. As

the field progresses toward new frontiers, standardizing and

generating open-source methods become increasingly crucial.

The need for standardization and standard reference sets

extends beyond biological samples to wet and dry lab

methodologies. Standardized methods expand the impact of

research products across disciplines. Endeavors such as ENCODE,

GTEx, and HuBMAP have developed standardized reference

datasets across a range of tissues, enabling an era of exponential

research and development by democratizing access to high-quality

functional data and by standardizing best practices for future data

collection (ENCODE Consortium, 2012; Carithers et al., 2015; Jain

et al., 2023). Similarly, creating and standardizing bioinformatic

datasets and methods across tissues and species for marine

mammals will provide a necessary resource for future

physiological and toxicological investigations.

Open and collaborative protocol development and sharing

would optimize researchers’ time and resources. For example,

optimal conditions for establishing and culturing marine mammal

cell lines and tissues often deviate from traditional protocols due to

their unique metabolic adaptations and tissue structures (Lam et al.,

2020; Routti et al., 2016; Louis et al., 2015; Boroda et al., 2020;

Burkard et al., 2015; De Miranda et al., 2012). While some

modifications are necessary due to cell type- and species-specific

quirks, heterogeneity due to trivial technical factors, such as reagent

sources, lot-to-lot variability, and environmental controls, results in

wasted research effort. Foreseeing these failures requires a space

where researchers can share finalized, successful methods and their

failed attempts.
5 Challenge #4: ethical and equitable
research practices - community
interaction and training

We have a responsibility to center ethical and equitable

practices in our work. When research is ingrained with these
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values, its quality and impact are greatly improved; however,

scientific systems do not always incentivize ethical practices, and,

in many cases, cell culture and genetics work have enacted harm

(Beskow, 2016; Forsberg et al., 2013; Watson, 2014; Botkin et al.,

2012; Couzin-Frankel, 2010; Mello and Wolf, 2010; Millum, 2010;

Beattie et al., 2011; Mackey and Liang, 2012; Tanner et al., 2021). As

research with marine mammal cell cultures expands, we must

ensure ethics and equitability are ingrained into every aspect of

our studies, from engagement with local communities to fostering

an inclusive research community.
5.1 Community interaction and outreach

Scientists must obtain tissue samples to establish marine

mammal cell cultures, which may rely on engagement with local

communities through fieldwork partnerships. It is imperative to

develop equitable rather than extractive relationships with

researchers from low-income countries and local Indigenous

communities in which input is solicited while generating ideas

and before beginning data collection, with the expectation of a

bidirectional exchange of knowledge and acknowledgment of

contributions (Mackey and Liang, 2012; Hosseini et al., 2022;

Buck and Hamilton, 2011). The data and resources generated

during these collaborations should be available through open-

access platforms and in addition to publishing journal articles,

these data should be disseminated in accessible formats such as

maps, outreach initiatives, and infographics. As charismatic

megafauna, marine mammals have a strong potential to attract

public attention and raise environmental awareness (Albert et al.,

2018). Science communicators and stakeholders can foster

belonging and engagement by identifying shared values.
5.2 Minimizing wildlife disturbance

A constant challenge for wildlife biologists is obtaining data while

minimizing harm to the animals and environments studied. Over the

past several decades, the ability to collect biological samples from

marine mammals with decreasing levels of disturbance has increased

(Danovaro et al., 2016; Gilbey et al., 2021; Stat et al., 2017; Suarez-

Bregua et al., 2022). These developments include non-invasive

sampling of matrices other than tissues for contaminant and

hormone analyses and remote (dart) biopsy collection, which does

not require direct animal handling (Hunt et al., 2013). This growing

field should consider whether to establish consistent ethical practices

and norms surrounding sample collection. For example, many tissues

are only accessible from freshly deceased individuals, which may be

acquired through whaling or Indigenous harvest (Pugliares et al.,

2007; Becker et al., 1997). The marine mammal research community

has an ethical obligation to consider the impact of its participation in

these institutions, and it may be necessary for the community to

delineate which sources and circumstances meet the ethical standards

of responsible research. Moreover, establishing and sharing cell lines

through a research network would allow the opportunity to reduce
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sampling, environmental footprint, and potential disturbance to

focal animals.
5.3 Equitable recruiting and
training practices

Current systems for recruiting and retaining diverse researchers

fall short, hindering research development and innovation. Many

researchers in marine mammal science begin their careers with

unpaid positions, such as full-time internships. Marginalized

groups are particularly disadvantaged and burdened by

uncompensated work, leading to high rates of attrition (Millum,

2010; Beattie et al., 2011; Mackey and Liang, 2012). Providing fair

compensation is critical for increasing the retention of early career

scientists; thus, funding for stipends and financial support is crucial

to fill these gaps (Spencer et al., 2005; Bruthers et al., 2021; Grady,

2005; Dutz et al., 2023; McGee et al., 2012). Establishing a research

coordination network would provide funding support for research

and training, connect trainees with mentors within the network,

and improve retention for diverse early-career researchers.
6 How and when do we get there?

A middle-out approach for studying the complex relationship

between genotype, environment, and phenotype solves some of the

challenges associated with the study of marine mammals while

enabling new avenues of experimental research that shine a light on

the current and future response of these species to a changing global

environment. Recent studies focusing on the biology of the

northern elephant seal (Mirounga angustirostris, Inset 1) and

the polar bear (Ursus maritimus Inset 2) serve as examples of the

success of this approach in addressing complex questions in marine

mammal physiology and toxicology. To this end, we propose the

creation of repositories for the establishment and distribution of not

only validated tissue samples, cells, and other reagents but of

detailed and standardized methods and protocols to maximize the

utility of these samples.

The goals of the repository are four-fold: 1) promote inter-

institutional collaboration; 2) facilitate entry into and research in all

facets of marine mammal biology; 3) accelerate the application of

cutting-edge techniques to marine mammal species; and 4)

maximize the field’s ability to characterize and predict ongoing

and future responses of marine mammals to global ocean changes.

This repository, and the community supporting it, would detail best

practices for isolation, management, and characterization of marine

mammal tissue cultures, host comprehensive protocols with

detailed information on unfruitful approaches, identify specific

reagents in support of these practices, and link samples with

tissue- and species-specific omics-level data. Additionally, by

coordinating the collection, preservation, storage, and distribution

of samples, this community will strengthen the utility of each

sample while minimizing redundant or wasteful collection efforts.

Accordingly, this endeavor requires a synchronized effort across

disciplines to ensure the construction of complete and accessible
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methods and sample repositories. Challenges in this process include

addressing intellectual property issues, as methods are often

developed or applied years before their resulting publications.

Additionally, we envision a collaborative research and training

network through which the sharing of methodological knowledge

and resources will facilitate interdisciplinary efforts to streamline

and accelerate the publication of marine mammal cell culture

resources. Ultimately, a coordinated approach to solutions

founded in principles of open science will provide a path toward

a standardized, robust, and equitable international research

program poised to address threats and inform regulatory

solutions to marine mammals and global ocean health.
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et al. (2024). Top predator status and trends: ecological implications, monitoring and
mitigation strategies to promote ecosystem-based management. Front. Mar. Sci 11,
1282091. doi: 10.3389/fmars.2024.1282091

Fossi, M. C., Baini, M., and Simmonds, M. P. (2020). Cetaceans as ocean health
indicators of marine litter impact at global scale. Front. Environ. Sci 8, 586627.
doi: 10.3389/fenvs.2020.586627

Gilbey, J., Carvalho, G., Castilho, R., Coscia, I., Coulson,M.W., Dahle, G., et al. (2021). Life
in a drop: Sampling environmental DNA for marine fishery management and ecosystem
monitoring. Mar. Policy 124, 104331. doi: 10.1016/j.marpol.2020.104331

Gobler, C. J. (2020). Climate change and harmful algal blooms: insights and
perspective. Harmful algae 91, 101731. doi: 10.1016/j.hal.2019.101731

Godard, C. A., Smolowitz, R. M., Wilson, J. Y., Payne, R. S., and Stegeman, J. J.
(2004). Induction of cetacean cytochrome P4501A1 by b-naphthoflavone exposure of
skin biopsy slices. Toxicological Sci 80, 268–275. doi: 10.1093/toxsci/kfh124

Godard, C., Wise, S., Kelly, R., Goodale, B., Kraus, S., Romano, T., et al. (2006). Benzo
[a] pyrene cytotoxicity in right whale (Eubalaena glacialis) skin, testis and lung cell
lines. Mar. Environ. Res 62, S20–S24. doi: 10.1016/j.marenvres.2006.04.016

Godard-Codding, C. A., Clark, R., Fossi, M. C., Marsili, L., Maltese, S., West, A. G.,
et al. (2011). Pacific Ocean–wide profile of CYP1A1 expression, stable carbon and
nitrogen isotope ratios, and organic contaminant burden in sperm whale skin biopsies.
Environ. Health Perspect 119, 337–343. doi: 10.1289/ehp.0901809

Godard-Codding, C. A., and Fossi, M. C. (2018). “Field Sampling Techniques and
Ecotoxicologic Biomarkers in Cetaceans,” inMarine Mammal Ecotoxicology: Impacts of
Multiple Stressors on Population Health. eds. M. C. Fossi and C. Panti (Elsevier), 237–
259. doi: 10.1016/B978-0-12-812144-3.00009-7

Goksøyr, A. (2022). “Whales and polar bear in a petri dish: decoding marine
mammal toxicology through in vitro and in silico approaches” in 32nd ESCPB
Conference (European Society for Comparative Physiology and Biochemistry), Naples,
Italy, Aug. 28-31, 2022.

Grady, C. (2005). Payment of clinical research subjects. J. Clin. Invest 115, 1681–
1687. doi: 10.1172/JCI25694

Green, A., and Larson, S. (2016). A review of organochlorine contaminants in
nearshore marine mammal predators. J. Environ. Anal. Toxicol 6, 2161–0525.1000370.
doi: 10.4172/2161-0525
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Vázquez-Medina, J. P., Zenteno-Savıń, T., Tift, M. S., Forman, H. J., Crocker, D. E.,
and Ortiz, R. M. (2011). Apnea stimulates the adaptive response to oxidative stress in
elephant seal pups. J. Exp. Biol 214, 4193–4200. doi: 10.1242/jeb.063644

Wada, H. (2019). Damage-fitness model: the missing piece in integrative stress
models. Stress 22, 548–562. doi: 10.1080/10253890.2019.1614556

Watson, P. H. (2014). Biobank classification: communicating biorepository diversity.
Biopreserv Biobank 12, 163–164. doi: 10.1089/bio.2014.1231

Weijs, L., and Zaccaroni, A. (2016). Toxicology of marine mammals: new
developments and opportunities. Arch. Environ. contamination Toxicol 70, 1–8.
doi: 10.1007/s00244-015-0233-9

Wiig, Ø., Amstrup, S., Atwood, T., Laidre, K., Lunn, N., Obbard, M., et al. (2015).
Ursus maritimus. IUCN Red List Threatened Species 2015, e. doi: 10.2305/
IUCN.UK.2015-4.RLTS.T22823A14871490.en

Williams, T. M., Blackwell, S. B., Richter, B., Sinding, M.-H. S., and Heide-Jørgensen,
M. P. (2017). Paradoxical escape responses by narwhals (Monodon monoceros).
Science 358, 1328–1331. doi: 10.1126/science.aao2740

Williams, C. L., and Hindle, A. G. (2021). Field physiology: studying organismal
function in the natural environment. Compr. Physiol 11, 1979–2015. doi: 10.1002/
cphy.c200005

Williams, C. L., and Ponganis, P. J. (2021). Diving physiology of marine mammals
and birds: the development of biologging techniques. Philos. Trans. R. Soc. B 376,
20200211. doi: 10.1098/rstb.2020.0211

Wilson, J., Berntsen, H. F., Zimmer, K. E., Verhaegen, S., Frizzell, C., Ropstad, E.,
et al. (2016). Do persistent organic pollutants interact with the stress response?
Individual compounds, and their mixtures, interaction with the glucocorticoid
receptor. Toxicol. Lett 241, 121–132. doi: 10.1016/j.toxlet.2015.11.014

Zhao, Y., Zhang, K., Giesy, J. P., and Hu, J. (2015). Families of nuclear receptors in
vertebrate models: characteristic and comparative toxicological perspective. Sci. Rep 5,
8554. doi: 10.1038/srep08554
frontiersin.org

https://doi.org/10.1080/10643389.2020.1806663
https://doi.org/10.1016/j.jhazmat.2023.132203
https://doi.org/10.3389/fmars.2020.00292
https://doi.org/10.3389/fmars.2020.00292
https://doi.org/10.1038/s41598-022-24529-3
https://doi.org/10.1021/es2016389
https://doi.org/10.1093/icesjms/fsac096
https://doi.org/10.1578/AM.47.5.2021.421
https://doi.org/10.1177/0193841X04273329
https://doi.org/10.1177/0193841X04273329
https://doi.org/10.1187/cbe.20-12-0300
https://doi.org/10.1038/s41598-017-12501-5
https://doi.org/10.1016/bs.ctdb.2016.08.008
https://doi.org/10.3389/fmars.2022.987774
https://doi.org/10.3389/fmars.2022.987774
https://doi.org/10.1186/s12864-022-09024-3
https://doi.org/10.1093/icb/icab140
https://doi.org/10.1016/j.scitotenv.2020.137327
https://doi.org/10.1016/j.scitotenv.2020.137327
https://doi.org/10.1038/s41598-017-16820-5
https://doi.org/10.1038/s41598-017-16820-5
https://doi.org/10.1016/j.tig.2023.01.005
https://doi.org/10.1152/ajpregu.00052.2021
https://doi.org/10.1016/j.envpol.2022.120688
https://doi.org/10.1021/acs.est.8b06487
https://doi.org/10.1021/acs.est.8b06487
https://doi.org/10.1371/journal.pone.0210164
https://doi.org/10.1101/2022.09.07.506958
https://doi.org/10.1101/2022.09.07.506958
https://doi.org/10.1242/jeb.063644
https://doi.org/10.1080/10253890.2019.1614556
https://doi.org/10.1089/bio.2014.1231
https://doi.org/10.1007/s00244-015-0233-9
https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T22823A14871490.en
https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T22823A14871490.en
https://doi.org/10.1126/science.aao2740
https://doi.org/10.1002/cphy.c200005
https://doi.org/10.1002/cphy.c200005
https://doi.org/10.1098/rstb.2020.0211
https://doi.org/10.1016/j.toxlet.2015.11.014
https://doi.org/10.1038/srep08554
https://doi.org/10.3389/fmars.2024.1466968
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Vazquez et al. 10.3389/fmars.2024.1466968
Appendix

Inset 1: The middle-out approach and its
use to understand elephant seal physiology

Northern elephant seals (Mirounga angustirostris) provide

unparalleled research accessibility among marine mammals. Since

their recovery from a near total population collapse in the 1800s,

northern elephant seals have re-colonized much of their historical

range along the California coast (Lowry et al., 2014). Fortuitously for

Challenge 1, animals established large coastal rookeries near major

research institutions (Año Nuevo State Reserve, Point Reyes National

Seashore) in the mid to late 20th century (Le Boeuf et al., 2011). By

providing easy access to these animals, these rookeries have facilitated

extensive research on elephant seal behavior, physiology, and life

history while also enabling conservation management and

monitoring of responses to changing environmental conditions.

Comprehensive in vivo studies of elephant seal physiology have

provided a wealth of data for future work, including biologging,

endocrine and metabolic challenges, isotopic tracer and metabolic

flux experiments, contaminant analyses, translocation, and various

“omic” investigations (Crocker et al., 2016; Green and Larson, 2016;

Williams and Ponganis, 2021; Blix, 2018; Andrews and Enstipp,

2016; Allen and Vázquez-Medina, 2019; Ensminger et al., 2021b).

Research in elephant seals over the past decade has also examined

variables influencing baseline variability in stress hormone levels

and organismal and tissue-specific responses to stress and low

oxygen levels during various life history stages (Ensminger et al.,

2021a; Deyarmin et al., 2019; Vázquez-Medina et al., 2011; Meir

et al., 2009; Peterson et al., 2023; Pujade Busqueta et al., 2020;

Jelincic et al., 2017; Northey et al., 2023; McCormley et al., 2018;

Ensminger et al., 2014; Khudyakov et al., 2015, 2017).

More recently, in vivo studies in elephant seals have been

complemented by in vitro and ex vivo approaches, which have

enabled genetic manipulations, subcellular resolution of stress

pathways and contaminant responses, and combinatorial stress

exposure experiments (Lam et al., 2020; Debier et al., 2020; Del

Águila-Vargas et al., 2020; Pirard et al., 2023). For example, the

function of a cortisol-responsive gene previously identified in vivo

was examined in cultured elephant seal muscle cells (myotubes) using

RNA-seq, pharmacological manipulations, and siRNA gene

knockdowns, and found to regulate mitochondrial function and

organelle dynamics during prolonged glucocorticoid elevations,

providing a mechanistic explanation underlying the resilience of

elephant seal muscle tissue to corticosteroids (Torres-Velarde et al.,

2021; Khudyakov et al., 2015). Similarly, previously identified

cytoprotective pathways conferring hypoxemic tolerance to

elephant seals were found to be induced during experimental

hypoxia exposure in cultured vascular endothelial cells (Allen et al.,

2024; Allen and Vázquez-Medina, 2019; Vázquez-Medina et al.,

2011). Moreover, precision-cut adipose tissue slices were recently

used to disentangle the role of cortisol and epinephrine in the

transcriptional response of blubber to stress, which was previously

described in vivo, as well as to determine how the presence of
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bisphenol contaminants alters such responses (Kashiwabara et al.,

2023; Pirard et al., 2023; Khudyakov et al., 2017).

These and other studies in elephant seals may be used as a

proof-of-concept to illustrate the biological relevance of in vitro and

ex vivo systems in marine mammal research (e.g., many of the same

stress-responsive genes were identified using both in vivo and in

vitro/ex vivo experiments). The accessibility of free-ranging

elephant seals for tissue sampling facilitates the development of

cell lines, genetic manipulation techniques, and tissue culture

approaches relevant to Challenge 2. These resources, which

should be broadly disseminated to the marine mammal

community (Challenge 3), can then be applied to other marine

mammal systems from which tissue collection is limited. Most

importantly, the accessibility of elephant seals on beaches near large

population centers and universities, rather than in remote locations

or at sea, facilitates the inclusion of diverse researchers, including

undergraduate students as outlined in Challenge 4. Involving

undergraduate students in research in ecology and other fields -

including elephant seal research - has resulted in significant gains in

inclusivity and diversity in post-graduate research programs and

STEM fields more broadly (Jones et al., 2010; Brint and Cantwell,

2010; Linn et al., 2015; Awad and Brown, 2021; Stanfield et al.,

2022). However, as stipulated in Challenge 4, continuous efforts

must be made to minimize research impacts on these animals, and

all work with elephant seals must be conducted in agreement with

Indigenous communities and state and national parks in which

their rookeries are located.
Inset 2: Studying endocrine-disruptive
effects of chemical pollutants in polar
bears using the middle-out approach

The polar bear (Ursus maritimus) offers another compelling

example of the value of the middle-out approach in advancing our

understanding of how pollutants disrupt endocrine function in

marine mammals. The polar bear is a top predator with a

circumpolar distribution, inhabiting ice-covered Arctic waters.

Classified as vulnerable by the IUCN Red List of Threatened

Species, polar bears face numerous stressors, including climate

change, pollution, pathogens, and increasing Arctic resource

exploration and development (Wiig et al., 2015). Despite logistical

and practical challenges in studying polar bears (Challenge 1),

sample collection has been possible due to national population

monitoring programs and subsistence harvest.

Related to Challenge 2, skin biopsies collected during polar bear

monitoring in Svalbard, Norway, allowed the establishment of

adipose tissue-derived stem cells (Routti et al., 2016). Further

studies showed that exposure to chemical mixtures influenced the

transition of these cells to adipocytes (Routti et al., 2016). In addition,

skin biopsies from live-captured bears and liver samples from

subsistence harvests were instrumental in mechanistic in vitro

studies on nuclear receptors, which act as transcription factors that

regulate essential physiological processes, including metabolism, the

endocrine and immune systems, and reproduction (Zhao et al., 2015).

Research on polar bears has revealed that various chemical pollutants
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modulate nuclear receptors in vitro, particularly those involved in

lipid metabolism and detoxification (Lille-Langøy et al., 2015; Routti

et al., 2019; Hwang et al., 2019). Comparative testing on human

transcription factors showed species-specific differences, further

supported by in silico protein structure modeling (Lille-Langøy

et al., 2015; Routti et al., 2019). The binding affinities of pollutants

to polar bear nuclear receptors have also been predicted using in silico

methods followed by in vitro testing (Routti et al., unpublished

(Hwang et al., 2019).

In parallel with in vitro experiments, samples were collected from

over a hundred free-ranging adult female polar bears to explore the

relationship between pollutant exposure and various parameters

related to energy metabolism, including gene expression, circulating

hormones, lipids and lipoproteins, and metabolites (Tartu et al.,

2017). Additionally, transcriptomic analyses were performed on

adipose tissue samples from polar bear mother-cub pairs (Herst

et al., 2020). Also, a study in male polar bears from Canada

investigated changes in the liver metabolome in relation to

contaminant exposure (Morris et al., 2019). Altogether, these

findings suggest that pollutant exposure disrupts lipid metabolism

in polar bears. Both in vitro and correlative field approaches provide

strong evidence of pollutant-mediated thyroid disruption in these

animals (Braathen et al., 2004; Gutleb et al., 2010; Simon et al., 2011;

Bytingsvik et al., 2013; Bourgeon et al., 2017).

Training the next generation to develop and utilize in vitro tools

is crucial for polar bear studies (Challenge 4). Young researchers

have been trained to analyze complex field data, whereas

experienced researchers have primarily carried out sample

collection following the guidelines of national authorities. In

conclusion, these studies highlight how in vitro and in silico

research on nuclear receptors, experimental studies on stem cells,

and correlative field studies provide valuable insights into the

mechanisms by which pollutants impact polar bears and their

physiological condition in the wild. Ongoing research on cellular

models and the development of tissue-based cultures will further

enhance our understanding of how pollutant exposure disrupts

biological processes in polar bears while providing resources and

material for the wider marine mammal community (Challenge 3).
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