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Robust sensor selection based
on maximum correntropy
criterion for ocean
data reconstruction
Qiannan Zhang1, Huafeng Wu1*, Li’nian Liang1, Xiaojun Mei1

and Jiangfeng Xian2*

1Merchant Marine College, Shanghai Maritime University, Shanghai, China, 2Institute of Logistics
Science and Engineering, Shanghai Maritime University, Shanghai, China
Selecting an optimal subset of sensors that can accurately reconstruct the full state

of the ocean can reduce the cost of themonitoring system and improve monitoring

efficiency. Typically, in data-driven sensor selection processes, the use of Euclidean

distance to evaluate reconstruction error is susceptible to non-Gaussian noise and

outliers present in ocean data. This paper proposes a Robust Sensor Selection (RSS)

evaluation model based on the Maximum Correntropy Criterion (MCC) through

subspace learning, enabling the selection of robust sensor measurement subsets

and comprehensive data reconstruction. To more accurately quantify the impact of

varying noise magnitudes, noise weights were incorporated into the model’s

objective function. Additionally, the local geometric structure of data samples is

utilized to further enhance reconstruction accuracy through the selected sensors.

Subsequently, the MCC_RSS algorithm is proposed, which employs the Block

Coordinate Update (BCU) method to achieve the optimal solution for the

proposed model. Experiments conducted using ocean temperature and salinity

datasets validate the proposed MCC_RSS algorithm. The results demonstrate that

the sensor selection method proposed in this paper exhibits strong robustness,

outperforming comparativemethods under varying proportions of outliers and non-

Gaussian noise.
KEYWORDS

sensor selection1, Maximum Correntropy Criterion (MCC)2, robust3, data
reconstruction4, ocean5, subspace learning6
1 Introduction

In the field of oceanography, optimizing sensor selection is a critical area of research.

Effective sensor selection can directly impact sensor deployment and enhance our

understanding of the oceanic physical parameters. By tailoring sensor selection to meet

specific requirements, various objectives can be achieved, including cost reduction (Emily
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et al., 2020; Saito et al., 2023), energy efficiency (Ghosh et al., 2021),

conservation of communication resource (Yang et al., 2015),

assistance in localization (Mei et al., 2024), improved field

reconstructions (Santini and Colesanti, 2009; Zhang et al., 2018;

Nguyen et al., 2021; Santos et al., 2023) and enhanced state

predictions (Saucan and Win, 2020; Patan et al., 2022),

among others.

The sensor selection problem involves selecting the optimal p

positions from n candidate positions to achieve the desired

outcomes, a task recognized as NP-hard (Chamon et al., 2021).

This implies that an exhaustive search would need to traverse up to

n ! =½p ! (n − p) !� combinations, which is nearly impossible when the

number of candidate positions is large in ocean monitoring. General

solutions to the sensor selection problem include the following:

convex optimization (Joshi and Boyd, 2009), statistical methods

(Chepuri and Leus, 2015; Lin et al., 2019; Yamada et al., 2021),

heuristic methods (Khokhlov et al., 2019; Zhao et al., 2021; Meray

et al., 2023), information theory (Krause et al., 2008; Prakash and

Bhushan, 2023), dimensionality reduction (Yildirim et al., 2009;

Manohar et al., 2018; Jayaraman et al., 2019), machine learning-

based clustering (Kalinić et al., 2022), among others.

Data-driven sensor selection provides an excellent optimization

solution for selecting sensors from a large pool of candidate

locations in ocean monitoring. By analyzing the intrinsic

characteristics of known data, it identifies the most critical

geographical locations for reconstructing the entire physical field,

without requiring precise modeling or complex statistical analysis of

the monitoring object or requirements. However, these methods

typically evaluate the reconstruction effect based on the Euclidean

distance between the original and reconstructed data, which is

highly sensitive to non-Gaussian noise and outliers. This

sensitivity is particularly problematic in ocean monitoring, where

specific sudden events (such as tsunamis causing sensor failure,

communication interruptions, or data loss) can significantly impact

data quality. Consequently, noise in the data can severely affect the

effectiveness of sensor deployment. Moreover, greedy algorithms

such as Proper Orthogonal Decomposition (POD) and QR

decomposition cannot guarantee globally optimal results.

Building on the work of Zhou et al. (2019) on Maximum

Correntropy Criterion-based sparse subspace learning for feature

selection, we propose a novel sparse sensor selection method. This

method quantifies the similarity between the original data and the

reconstructed data using correntropy, thereby effectively mitigating

the impact of outliers on the feature selection process. Additionally,

the subspace learning approach allows for the simultaneous

updating of the feature selection matrix and the reconstruction

matrix, enhancing the accuracy of the reconstruction.

This work employs subspace learning based on the Maximum

Correntropy Criterion (MCC) for sensor selection. The main

contributions of this study are as follows:
Fron
• The application of the MCC for evaluating reconstruction

error supersedes the traditional Euclidean distance, thereby

enhancing the stability of results in the presence of non-

Gaussian noise and outliers. Additionally, noise weight is

employed to measure the MCC, and the higher entropy of
tiers in Marine Science 02
noise weight is utilized to achieve a noise distribution that

more accurately represents the distribution of real

system variables.

• In order to further improve reconstruction accuracy, a term

that preserves the local geometric structure between

samples was incorporated into the objective function to

minimize the similarity between the selected measurements.

• The adoption of subspace learning allows for the

simultaneous determination of both the sensor selection

matrix and the mapping for data reconstruction from low-

dimensional measurements to high-dimensional

measurements corresponding to this selection matrix.

• Experiments conducted on ocean temperature and salinity

datasets demonstrate that the proposed sparse sensor

selection method exhibits robust performance.
Subsequently, we review the related work in Section 2. Section 3

introduces the sparse sensor deployment model based on MCC,

with the solution algorithm detailed in Section 4. The proposed

algorithm is validated using ocean temperature and salinity datasets

in Section 5. Finally, Section 6 provides a summary and discussion.
2 Related works

The Euclidean distance is frequently utilized as a criterion for

measuring the reconstruction error in sensor selection problems.

Specifically, this involves using the Frobenius norm of the difference

between the original data and the reconstructed data, as follows:

C = argmin
C

‖X − X̂ ‖F (1)

where X ∈ Rn�m represents the original data, X̂ ∈ Rn�m

represents the reconstructed data, C ∈ Rp�n represents sensor

selection matrix, n represents the number of all candidate

locations for sensor selection, m represents the number of

samples and p represents the number of sensors to be selected.

Typically, once the sensor selection matrix C is established, the

sensor’s measurement data can be acquired, which can be expressed

as: Y = CX. By designing an appropriate mapping based on the

measurement data Y, the reconstruction data X̂ can be obtained.

There is extensive research on data reconstruction aimed at

determining the mapping from measurement data to original data.

Examples include fluid reconstruction based on sparse

representation (Callaham et al., 2019; Xue et al., 2019) and

autoencoder networks (Erichson et al., 2020; Sahba et al., 2022).

In these studies, the subset of locations is typically selected in a

random manner. Some research focuses on mapping the original

fluid data to low-dimensional features using deep neural networks

(Özbay and Laizet, 2022; Zhang et al., 2023). These features reside

in a subspace of the high-dimensional space and are not directly

related to the sensor positions. Other research employs sensor

selection by designing sensor positions according to specific

partition rules, such as Voronoi tessellation (Fukami et al., 2021)

or predetermined positions in a divided grid (Model and

Zibulevsky, 2006), among others.
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Algorithms for sensor selection and dimension reduction, such

as the POD (Jayaraman et al., 2019) and QR decomposition

(Manohar et al., 2018; Zhang et al., 2023), primarily map high-

dimensional matrices to low-dimensional subspaces to obtain low-

dimensional location indices. However, POD relies on a base matrix

derived from Singular Value Decomposition (SVD) for data

reconstruction, with sensors typically selected at random. In

contrast, QR decomposition generally employs a greedy approach

to identify low-dimensional location indices with the highest energy

(e.g., spectral norm) to determine the measurement subset that can

best reconstruct the original data. While a greedy approach focuses

on the benefit of each individual step in the solution process, it often

neglects the impact on the overall solution.

There are also sensor selection methods for reconstruction that

integrate both dimension reduction and data reconstruction, such

as data-driven sparse sensing (Jayaraman and Mamun, 2020),

clustering for sensor select and regressive reconstruction in

(Dubois et al., 2022) and compress sensing (Carmi and Gurfil,

2013; Joneidi et al., 2020). According to the research by Peherstorfer

et al (Peherstorfer et al., 2020), the presence of noise in the data

exacerbates the impact of the noise on the results as the number of

selected locations increases. Furthermore, since these methods

utilize Euclidean distance for similarity measurement, they are

particularly susceptible to non-Gaussian noise or outliers in real-

world marine monitoring scenarios.

To minimize the impact of noise, (Zhou et al. (2019) proposed a

sparse subspace learning method based on MCC, which

simultaneously searches for the feature selection matrix and the

mapping. However, this method is primarily used for feature

selection in image and sound data. Generally, MCC, grounded in the

concept of correntropy from information theory, is adept at capturing

nonlinear relationships and complex structures within data. This

endows MCC with a significant advantage in handling complex

datasets, enabling it to more accurately reflect the true characteristics

of the data. By maximizing correntropy, MCC can effectively mitigate

the influence of outliers on the model. Additionally, MCC does not

depend on the specific distribution form of noise, thereby exhibiting

excellent performance when dealing with non-Gaussian noise.

Conversely, Guo et al. (Guo and Lin (2018) minimize the impact of

noise by identifying the noise indicator of the maximum entropy

distribution during low-rank matrix decomposition. These studies

suggest that MCC and entropy-based noise indicators can provide a

feasible solution for the problem of robust sparse sensor selection.
3 Model of robust sensor selection
based on MCC

This section introduces a model for robust sensor selection.

Initially, an error measure based on the Maximum Correntropy

Criterion (MCC) is proposed to enhance the robustness of sensor

selection. Subsequently, an objective function for the robust sensor

selection model is formulated utilizing this error measure. To

further augment the robustness of the model, noise indicators are

established, which impose additional constraints on the objective

function through the noise matrix.
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3.1 Reconstruction error based on MCC

In Information Theoretic Learning (ITL), correntropy has proven

effective in mitigating the impact of non-Gaussian noise and outliers

(Liu et al., 2007). The MCC has demonstrated its efficacy in robust

compressive sensing reconstruction (He et al., 2019). Consequently,

within this context, MCC is utilized as a standard to evaluate the

similarity between the original data and the reconstructed data for

robust sensor selection, as follows:

For any two random variables A and B, the correntropy is

defined as:

V(A,B) = E½k (A,B)� (2)

where E½�� represents the expectation operator, k (�, �) represents
kernel function which map the original variables to the Hilbert

functional space.

Generally, k (�, �) is adopted as a Gaussian kernel function. For

two given discrete variables ai and bi, then:

k (ai, bi) = ks (ai − bi) = exp ( −
(ai − bi)

2

2s 2 ) (3)

where s represents kernel bandwidth.

The similarity between variables ai and bi can be measured

using the correntropy estimator as follows:

~Vs (A,B) =
1
m

∑
m

i=1
ks (ai − bi)           (4)

where m represents sample number.

MCC aims to find the maximum correntropy of the difference

between two variables, which is utilized to estimate probability

distributions with maximum correntropy under given constraints.

According to the principles of linear subspace learning, once the data

representation in a low-dimensional subspace is obtained via the feature

selection matrix, the data can be reconstructed using a transformation

matrix thatmaps the low-dimensional data back to the high-dimensional

space. Consequently, the reconstruction of data from the low-

dimensional measurements Y to high-dimensional estimated data X̂ is

defined through the transformation matrix T ∈ Rn�p, as follows:

X̂ = TY = TCX (5)

According to Equations 1, 4, 5, the error measure of data

reconstruction based on MCC is defined as follows:

JMCC =o
m

i=1
exp

− ‖ sTi − TCsTi ‖2
2s 2

� �
(6)

where, si represents the i-th sample of original data X, TCsTi
represents the i-th sample of reconstructed data X̂ . (·)T denotes the

transpose of the matrix.
3.2 Model of robust sparse
sensor selection

Building on the aforementioned content, the robust sensor

selection model employing MCC is formulated to determine an
frontiersin.org

https://doi.org/10.3389/fmars.2024.1467519
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


)

Zhang et al. 10.3389/fmars.2024.1467519
optimal selection matrix C, such that the correntropy error specified

in Equation 6 is maximized, as follows:

Ĉ = argmax
C

1
2o

m

i=1
exp

− ‖ sTi − TCsTi ‖2
2s 2

� �

  s : t : C ∈ 0, 1f gp�n,C1n�1 = 1p�1,

     ‖C1p�1 ‖0 = p :

(7)

For ease of solution, as suggested in reference (Zhou et al.,

2016), the binary variables of C in the constraint conditions are

relaxed to a continuous form. Additionally, to further enhance

reconstruction accuracy, the local geometric structure preservation

term, as utilized in feature selection (Liu et al., 2014), is

incorporated. Based on the representation form of the

reconstructed data in Equation 5, this local geometric structure

preservation term is transformed into: Tr(CXLXTCT ). Then:

Ĉ = argmax
C

1
2o

m

i=1
exp

− ‖ sTi − TCsTi ‖2
2s 2

� �
−
m
2
Tr(CXLXTCT )

  s : t :  C ∈ Rp�n
+

(8)

where m represents a predefined coefficient, L ∈ Rm�m refers to

the graph Laplacian matrix that captures the local geometric

structure of all data samples. To better measure the relationship

between samples, the Linear Preserve Projection (LPP) method is

employed to obtain the L matrix, as described in (Liu et al., 2014).

Additionally, C is a non-negative matrix.

Simultaneously, to constrain the sparsity of the solution, a

sparse regularization term for the selection matrix C is

incorporated:

Ĉ = argmax
C

1
2o

m

i=1
exp

− ‖ sTi − TCsTi ‖2
2s 2

� �
−
m
2
Tr(CXLXTCT) − a ‖C ‖2, 1

  s : t :  C ∈ Rp�n
+

(9)

Here, the ‘2,1-norm of the selection matrix C is introduced to

control its column sparsity and prevent the selection of too many

redundant sensor positions. a represents the sparse coefficient of

selection matrix C.
3.3 Model enhancement based on
noise weight

Moreover, the noise weight matrix has been demonstrated to

effectively enhance the robustness of outlier estimation during the

process of low-rank matrix decomposition (Guo and Lin, 2018).

The sensor selection problem can be conceptualized as a full state

reconstruction leveraging the sparse characteristics of the low-rank

matrix. Consequently, we estimate noise using both severe noise

and smaller noise weight matrices, respectively, to further mitigate

the impact of non-Gaussian noise and outliers on the sensor

selection process, as well as the model and measurement noises.

Under this condition, the smaller noise weight matrix is
Frontiers in Marine Science 04
incorporated into the error evaluation based on MCC as follows:

JMCC =o
m

i=1
exp

− ‖Wi ⨀ (sTi − TCsTi ) ‖2
2s 2

� �
(10)

whereWi represents the i-th columns of the smaller noise weight

matrix W ∈ Rn�m, ⨀ represents Hadamard product operator.

Simultaneously, to mitigate the impact of severe noise (such as

outliers) on the results, we have incorporated a regularization term

‖ �W ‖1 for the severe noise matrix �W ∈ Rn�m, ensuring its

sparsity. Furthermore, according to the maximum entropy theory,

a higher entropy of the noise distribution better represents the

actual distribution of system variables. Consequently, we have

included an entropy term for both severe and minor noise to

align the results more closely with the true distribution.

Therefore, Equation 9 is modified as follows:

C← argmax
C

1
2o

m

i=1
exp

− ‖
ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖2
2s 2

� �
−
m
2
Tr(CXLXTCT

− a ‖C ‖2,1
   − b ‖ �W ‖1 −go

i,j
(wij logwij + �wij log �wij)

 s:t: W + �W = 1, W and  �W ∈ ½0, 1�n�m

  C ∈ Rp�n
+

(11)

where wij ∈ W and �wij ∈ �W, b represents coefficient of

regularization term ‖ �W ‖1 and g represents coefficient of entropy
of noise. Equation 11 presents the final model for our robust

sensor selection.

4 Algorithm for robust
sensor selection

To address the Gaussian kernel function in the model, the half-

quadratic optimization technique was employed to simplify the

objective function in Equation 11. Subsequently, due to the

presence of non-convex components that render direct solution

challenging, the Block Coordinate Update (BCU) iterative method

(Xu and Yin, 2013), is utilized to resolve the problem in Equation 11.
4.1 Reformulation via half-
quadratic optimization

For the correntropy utilizing the Gaussian kernel function, the

maximum value calculation through sample accumulation can be

interpreted as Welch’s M-estimation. Consequently, it can be

approximated using half-quadratic optimization techniques. Let:

x =
‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖2

2s 2 (12)

According to the half-quadratic optimization (He et al., 2014),

we obtain:

f(x) = sup
qi

qix − j(qi)f g (13)
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where qi represents a scalar variable, f(x) = exp ( − x) is

denoted as the kernel function satisfies the condition of finding

minimum correntropy. Consequently, we obtain:

j(qi) = qi − qi ln ( − qi), and:

exp
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖2
2s2

� �

= sup
qi

qi
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖22
2s 2 − j(qi)

� �
(14)

where i = 1, 2,⋯,m. In order to streamline the description

process, let:

FMCC
1 (C,T ,W , q)

=
1
2o

m

i=1
qi
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖22
2s 2 − j(qi)

� �
(15)

Then, let:

F(C,T ,W, q) = FMCC
1 (C,T ,W, q) +

m
2
Tr(CXLXTCT ) (16A)

E(W) = b ‖ �W ‖1 +go
i,j
(wij logwij + �wij log �wij) (16B)

Consequently, the objective function of Equation 11 can be

reformulated as:

C← argmax
C

F(C,T ,W , q) − a ‖C ‖2,1 −E(W)

 s:t: W + �W = 1, W  and  �W ∈ ½0, 1�n�m

  C ∈ Rp�n
+

(17)
4.2 Iterative method by BCU

According to the BCU method described in (Xu and Yin, 2013),

the objective function of Equation 17 can be optimized by

sequentially updating and iterating the variables C, T, W and q.
During the update of one variable, the remaining three variables are

held constant. The iterative process continues until the termination

condition is satisfied, which occurs when the objective function

reaches its maximum value and no further significant updates can

be made.

Let Ĝ k = ∇CF(Ĉ
k,Tk,Wk, qk) denote the block-partial gradient

of function F( � ) at Ĉ k during the k-th iteration. Throughout the

iteration process, the variables are updated as follows:

Ck+1 = argmax
C∈RP�N

+

〈 Ĝ k,C − Ĉ k 〉−
LkC
2
‖C − Ĉ k ‖2F −a ‖C ‖2,1 (18A)

Tk+1 = argmax
T

 FMCC
1 (Ck+1,Tk,Wk, qk) (18B)

Wk+1 = argmax
W

 FMCC
1 (Ck+1,Tk+1,Wk, qk) + E(Wk) (18C)
Frontiers in Marine Science 05
qk+1 = argmax
q

 FMCC
1 (Ck+1,Tk+1,Wk+1, qk) (18D)

In our algorithm, LkC is defined as follows:

LkC = ‖Tk ‖22 ‖Xk ‖22 ‖Wk ‖2 +m ‖XLXT ‖2 (19)

And LkC > 0 denotes the Lipschitz constant of Ĝ k, which can be

determined according to Equation 41 in the Appendix.

In Equation 18A, Ĉ k represents an extrapolated point for the

update of C:

Ĉ k = Ck + wk
C(C

k − Ck−1) (20)

where wk
C ≥ 0 represents the extrapolation weight as defined in

the BCU method (Xu, 2015), and it is typically set as follows:

wk
C = min (ŵ k

C , dw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lk−1C =LkC

q
) (21)

where dw < 1 and ŵ k
C = (tk−1 − 1)=tk, with:

tk = 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4(tk−1)2

q� �
=2 (22)

and t0 = 1.

In the aforementioned iterative update process, the treatment of

C differs from that of the other three variables. Specifically, C is

updated using a block proximal gradient method, whereas the

remaining variables are updated directly through block

maximization. The primary reason for this distinction is that C is

a matrix composed of binary elements (0 and 1), making it

challenging to solve directly. The detail solution process for each

variable is as follows:

4.2.1 Solution for sensor selection matrix
In order to facilitate the determination of sensor selection

matrix C, we first derive the equivalent form of Equation 18A as

follows:

max
C∈Rp�n

+

1
2
‖C − Ĉ k −

Ĝ k

LkC

� �
‖2F +

a ‖C ‖2,1
LkC

(23)

Let Z = Ĉ k − Ĝ k=LkC and l = a=LkC . For any given column c ∈
C, z ∈ Z, by decomposing the problem in Equation 23 into n

independent subproblems, each subproblem can be solved

corresponding to a column of matrices C and Z, respectively, as

referenced in (Zhou et al., 2016; Zhou et al., 2019) as follows:

argmin
c≥0

1
2
‖ c − z ‖22 +l ‖ c ‖2 (24)

Equation 24 can be resolved by applying Theorem 1 as

presented in reference (Zhou et al., 2016), as follows:

Theorem 1 (Zhou et al., 2016). Given z, let W represents the

index set of the positive elements of z. Then the solution c of

Equation 24 is given as:

(A). For any i ∉ W, c∗i = 0;

(B). If ‖ zW ‖2 ≤ l, then c∗W = 0; otherwise, c∗W = ( ‖ zW ‖2 −l)
zW=‖ zW ‖2.
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Based on the aforementioned Theorem 1, after updating each

column’s variable c and subsequently combining all columns, the

updated matrix C can be obtained.

4.2.2 Solution for transformation matrix
The solution for transformation matrix T can be obtained by

directly maximizing Equation 18B in a block-wise manner, as

follows:

Tk+1 = argmax
A

1
2o

m

i=1
qi
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖22
2s 2 − j(qi)

� �
(25)

Equation 25 is equivalent to:

Tk+1 = argmax
A

1
2
‖

ffiffiffiffiffiffiffi
Wk

p
⨀ (Xk − TCk+1Xk) ‖2F (26)

By taking the first-order partial derivative of the right-hand of

Equation 26 with respect to T, and setting the result to zero, we

obtain the following expression:

Wk ⨀ (Xk − TCk+1Xk)(Ck+1Xk)T = 0 (27)

The solution to Equation 27 can be derived as follows:

Tk+1 = Xk(Ck+1Xk)T(Ck+1Xk(Ck+1Xk)T)† (28)

where ( � )† represents the pseudoinverse, Xk represents updated

data matrix under impact of intermediate variable q which will be

introduced later.

4.2.3 Solution for noise weight matrix
With respect to the noise weight matrixW subproblem, solving

Equation 18C is equivalent to solving the following equation:

Wk+1 ← argmax
W

 FMCC
1 (Ck+1,Tk+1,Wk, qk) + E(Wk)

  s:t: W + �W = 1, W  and  �W ∈ ½0, 1�n�m
(29)

In order to facilitate the solution, the Lagrange multiplier

method is employed to relax the aforementioned equation,

yielding the following result:

L(wij, �wij, ri) = 1
2 wij½Xk − Tk+1Ck+1Xk�2ij + b �wij + g (wij logwij + �wij log �wij)

+ri(wij + �wij − 1) 

(30)

where ri denotes the Lagrange multiplier.

∂L
∂wij

= 1
2 ½Xk − Tk+1Ck+1Xk�2ij + g logwij + g + ri = 0,

∂L
∂�wij

= b + g log �wij + g + ri = 0,

∂L
∂ri

= wij + �wij − 1 = 0

(31)

Further derivation of the solution to Equation 31 yields:

wk+1
ij ←

1

exp ((½X − Tk+1Ck+1Xk�2ij=2 − b)=g ) + 1
(32)

At the same time, �wij can be updated as: �wk+1
ij = 1 − wk+1

ij .
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4.2.4 Solution for q

By computing the partial derivative of Equation 13 with respect

to qi, we obtain:

qi = − exp ( − x) (33)

Substituting Equation 12 into Equation 33, we have:

qk+1 = − exp
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖22
2s 2

� �
(34)

Simultaneously, update Xk to:

Xk+1 = Diag

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−
qk+1

2s 2

s0
@

1
AXk (35)

The entire iterative method proposed by BCU for solving

Equations 18A–D is referred to as the Maximum Correntropy

Criterion-based Robust Sensor Selection (MCC_RSS) algorithm.

To elucidate the iterative process of the MCC_RSS algorithm more

clearly, we present it in the form of a flowchart, as depicted in

Figure 1. Herein, the output J represents the locations of selected

sensors. For the sake of clarity, the total objective function in

Equations 18A-D is expressed as follows:

O(C,T ,W , q) = F(C,T ,W, q) − a ‖C ‖2,1 −E(W) (36)
4.3 Theoretical analysis

4.3.1 Convergence analysis
To facilitate the convergence analysis, we present Theorem 2

and Lemma 1 as follows:

Lemma 1: At k-th iteration with fixed C and T, the solutions of

W in Equation 32 are global optimal.

Proof: The W obtained by Equation 32 is the global optimal

because it is solved by Lagrange multiplier method and the

Equation 29 is convex with the fixed C and T.

Theorem 2: The sequence of O(Ck,Tk,Wk, qk)
� �

, which is

generated by the whole objective function in Equation 36

converges monotonically.

Proof: According to the BCU principle and Lemma 1, in the

process of iterative optimization, we have:

O(Ck,Tk,Wk, qk)
� �

≤ O(Ck+1,Tk,Wk, qk)
� �

≤ O(Ck+1,Tk+1,Wk, qk)
� �

≤ O(Ck+1,Tk+1,Wk+1, qk)
� �

≤ O(Ck+1,Tk+1,Wk+1, qk+1)
� �

(37)

During each iteration, the energy of the objective function

progressively increases through four sequential updates. Additionally,

the objective function has an upper bound. Consequently, the

MCC_RSS algorithm exhibits monotonic convergence.
4.3.2 Computational complexity
For the MCC_RSS algorithm, its computational complexity is

determined by the number of samples m, the number of location

features n in the original data matrix X, and the number of sensors
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to be selected p. The complexity of each variable update process is

as follows:

Update sensor selective matrix C: np2 + nm2 +m2 + nm + n2 + n3

Update transformation matrix T: pm + p2 + p3 + 2np

Update noise weight matrix W: n2 + 2nm

Update variable q and X: 2nm + nm2Disregarding the sparsity of

the original data matrix X, and by omitting the lower-order terms, the

resultant time complexity is given by: O(n3 + nm2 + np2 + p3).
5 Experimental evaluation and results

The MCC_RSS algorithm we proposed is compared with the

QR-based sensor selection outlined in (Manohar et al., 2018), POD,

and two random selection method. In these methods, data

reconstruction is carried out by SVD basis (RS) and sparse

representation [SR (Callaham et al., 2019)] respectively. To better

demonstrate the robustness of the MCC_RSS method, we also

compared the proposed algorithm with the MSE_RSS method
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[where MSE refers to the use of the Frobenius norm to evaluate

the difference between the original data and the reconstructed data

as in (Zhang et al., 2024)].
5.1 Dataset and experimental description

5.1.1 Datasets description
5.1.1.1 Ocean temperature

The ocean temperature data utilized in this study is derived

from the IAP Global Ocean Temperature Dataset of version IAPv4

(Cheng et al., 2024a) provided by Institute of Atmospheric Physics

(IAP), Chinese Academy of Sciences. This dataset includes bias-

corrected data from various observational systems within the World

Ocean Database as well as data obtained through model simulations

by research group of IAP (Cheng and Jiang, 2016; Cheng et al.,

2017). Together, these ensemble data constitute the full-state global

ocean temperature data. Due to the extensive matrix operations

involved in the algorithm and the limitations of our computer
FIGURE 1

Flowchart of MCC_RSS algorithm.
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memory, a subset of the dataset was selected. Specifically, ocean

temperature data from the North Pacific region was used here, with

a geographical range of 65°N latitude to 10° S latitude, and 78°W

longitude to 99°E longitude. The spatial resolution accuracy is

1°×1°, encompassing a total of 10,188 geographical coordinates as

the sensor selection locations. In this study, sea surface temperature

at vertical levels of 0m is used to conduct the experiments. In

addition, the temporal resolution is monthly, with a total of 996

samples spanning from 1940 to 2022. Of these, the first 800 samples

are used as the training dataset, and the remaining samples are used

as the test dataset.

5.1.1.2 Ocean salinity

The ocean salinity data utilized in this study is also derived from

the IAP Global Ocean Salinity Dataset (Cheng et al., 2024b). This

dataset also includes bias-corrected data from the World Ocean

Database and the IAP research group, as well as model simulation

data (Cheng and Jiang, 2016; Cheng et al., 2020). Similar to the

temperature data, salinity data from the North Pacific region,

sharing the same geographical range, were extracted. The

geospatial resolution is 1°×1°. This ocean salinity dataset

encompasses 41 vertical levels ranging from 0 to 2000 meters. For

this experiment, the salinity data from the first vertical level were

used. The temporal resolution of this dataset is monthly, spanning

from January 1940 to December 2021, comprising a total of 984

samples. Of these, the first 800 samples are used as training data,

while the remaining samples are used as test data.

5.1.2 Quality of reconstruction
The performance of the proposed method is evaluated by

reconstruction errors, which are represented as follows:

Rerror =
‖Test − T̂ est ‖2

‖Test ‖2
(38)

Wherein Test is input test data from the test set, T̂ est is

reconstructed by T from Equation 28 and the sensor’s

measurement data Ytest = CJ � Test, as T̂ est = T � Ytest . J is

obtained from the sensor selection methods and CJ is the

corresponding sensor selection matrix.

5.1.3 Experimental setting
The hardware and software environment used in the

experiment is shown in Table 1.

The specific parameter settings for the MCC_RSS algorithm are

as follows: a=1×106, b=1×10-5, g=1×10-4, m=1×10-4, with the

maximum number of iterations set to 400. During the execution
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of the MCC_RSS algorithm, the data is first normalized, followed by

iterative updates of each subproblem solution based on BCU. The

selection of these parameters is determined according to the

algorithm’s iterative process. Specifically, inappropriate

parameters can lead to non-convergence of the objective function

or premature termination of iterations. For instance, the value of a
affects the solution process of Equation 23; an unsuitable a will

prevent effective updates of matrix C. We determined the specific

value of a by observing the algorithm’s iterative process during

experiments. Similarly, the values of b and g influence the solution
of the weight matrix W. Inappropriate values can cause the

elements wij of Equation 32 to quickly converge to infinity or a

constant, such as 1/2 (this conclusion can be easily derived by

analyzing the relative relationship between b and g in Equation 32).

The value of m is selected based on the overall distribution range of

the objective function, ensuring it does not affect the convergence

speed of the objective function value. Finally, among several

alternative parameter combinations, the aforementioned

parameters were selected as they exhibited the lowest error in the

absence of noise.

To compare the robustness of different methods, we introduced

varying proportions of outliers into the training data to simulate the

loss conditions of actual oceanographic data. Considering the

impact of non-Gaussian noise, we use the a-stable distribution to

simulate heavy-tailed non-Gaussian noise, setting the signal-to-

noise ratio parameter to 60. The alpha value (denoted as a0 to avoid

confusion with the model parameter a) is used to control the

magnitude of the heavy tail, with a0 set to1.

In the following experiments, Po=20% indicates that the

proportion of outliers is 20%. Meanwhile, Sn=60 means that the

signal-to-noise ratio of non-Gaussian noise is 60.
5.2 Reconstruction for ocean temperature

5.2.1 Compared with comparative methods
5.2.1.1 Reconstruction for different test snapshot

Figure 2 illustrates the comparison of reconstruction errors

between the proposed method and the comparative methods for

different snapshots in the test set. The number of selected sensors is

set to 10. Due to the presence of random components in the

comparative methods, each baseline method was executed 10

times, and the median error of the results was taken for

comparison. Referring to Figure 2A, when there are outliers and

noise in the training data, the reconstruction errors of the

comparative methods increase rapidly. This indicates that the

effectiveness of the QR and SR methods in the comparative

methods is highly dependent on the quality of the training

dataset. In contrast, the proposed MCC_RSS method can still

minimize the impact of noise and maintain a low reconstruction

error even in the presence of outliers and noise, achieving relatively

stable reconstruction of test snapshots. Referring to Figure 2B, when

the proportion of outliers in the training data increases and noise is

still present, the proposed MCC_RSS method still exhibits the

lowest reconstruction error compared to the comparative

methods. Although the reconstruction error increases slightly
TABLE 1 Experimental environment.

Hardware

Memory 16.0 GB

CPU
AMD Ryzen 5
5600G @3.9GHz

Software
Programming Language Matlab

Operating System Windows 11 Professional
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compared to the case with weaker noise, the overall difference is

small. This fully demonstrates that the proposed MCC_RSS method

is minimally affected by noise in the training dataset during data

reconstruction, and its sparse sensor selection process has

good robustness.

Figure 2 also illustrates that the reconstruction errors of

different methods fluctuate over different time periods. Despite

the varying degrees of noise contamination in the training data, the

proposed MCC_RSS method effectively captures these temporal

fluctuations with only 10 selected sensors, demonstrating

superior stability.

5.2.1.2 Reconstruction for one test snapshot

To better reflect the sensitivity of different methods to outliers, a

10-fold cross-validation approach was employed. The results for

each method, based on a single snapshot with p = 10, are compared

and illustrated in Figure 3. Figure 3A demonstrates that the overall

reconstruction error of the proposed method is consistently than

that of other methods after multiple validations. Figure 3B indicates

that even as the number of outliers increases, the reconstruction

error of the proposed method remains lower than that of the other

three methods, with only the POD method occasionally achieving

lower reconstruction error. However, overall, the results of the

proposed method are highly stable, with outcomes remaining

concentrated even after multiple experiments. In contrast, the

results of the comparative method exhibit a larger distribution

range and lack stability across multiple validations. This stability is

primarily due to the iterative optimization algorithm proposed in

this paper, which focuses on gradually approaching the optimal
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solution until the algorithm termination condition is met. In the

comparative method, the reconstructing based on the basis or

orthogonal basis of SVD decomposition is significantly influenced

by the data itself, leading to the instability of the solution.

Based on Figure 4, we present a randomly selected snapshot

from the test set along with the corresponding reconstruction maps

using different methods. In this scenario, the outlier ratio is set to

20%, and the signal-to-noise ratio is 60. The red dots in each

reconstruction map indicate the sensor locations selected by the

respective method. As shown in Figure 4B, the method proposed in

this paper can effectively reconstruct the sea surface temperature

distribution in the North Pacific region using only 10 selected

sensors for this snapshot. Among the compared methods, only the

POD method can relatively reconstruct the temperature

distribution for this snapshot, but it still contains numerous noise

points. Naturally, the reconstruction results vary for different

snapshots, as indicated by the numerical comparison of

reconstruction errors mentioned above. Although the POD

method performs relatively well for this particular snapshot, the

numerical results demonstrate that its reconstruction error is still

higher than that of the proposed method when only 10 sensors are

selected, and its stability is compromised by the randomly chosen

sensor locations.

5.2.1.3 Reconstruction error by different number
of sensors

Figure 5 presents a comparison of reconstruction errors for

different methods when varying the numbers of selected sensors,

under noise conditions of Po=20% and Sn=60%. To mitigate the
FIGURE 2

Reconstruction error for temperature comparation. (A) Po =20%, Sn=60; (B) Po =40%, Sn=60.
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influence of random factors, the comparative methods were

subjected to 10-fold cross-validation. The error comparison

results in Figure 5 indicate that when the training data contains

noise, the proposed MCC_RSS method consistently achieves

significantly lower reconstruction errors than other comparative

methods, regardless of the number of sensors selected. Additionally,
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while the reconstruction errors of the comparative methods

decrease as the number of sensors increases, the reconstruction

error obtained by the proposed method shows almost no significant

change. The primary reason for this is that, in the proposed method,

after obtaining a C matrix through subspace learning, the column

indices (i.e., sensor locations) are determined by selecting the
FIGURE 3

Reconstruction error of temperature for a snapshot. (A) Po =20%, Sn=60; (B) Po =40%, Sn=60.
FIGURE 4

Reconstruction error of temperature for a snapshot. (A) Snapshot of test; (B) Reconstructed temperature by MCC_RSS; (C) Reconstructed
temperature by POD; (D) Reconstructed temperature by QR; (E) Reconstructed temperature by SR; (F) Reconstructed temperature by RS.
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columns with the largest 2-norms for a given number of sensors.

Therefore, once the training data is given, the low-dimensional

subspace obtained through subspace learning is fixed, and selecting

more sensors does not contribute additional useful information to

the identified subspace. This results in the reconstruction error

remaining nearly constant regardless of the number of sensors.

Consequently, a very small number of sensors can still achieve good

reconstruction performance. In contrast, the comparative methods

increase the number of features used as the number of sensors

increases, leading to a reduction in reconstruction error. Therefore,
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the proposed method is more suitable for scenarios requiring a

limited number of sensors.

5.2.2 Compared with MSE_RSS methods
To better demonstrate the effectiveness of the MCC method in

improving robustness, we compare the proposed MCC_RSS method

with the MSE_RSS method, as shown in Figure 6. The primary

difference betweenMSE_RSS and MCC_RSS lies in the measurement

of the discrepancy between the original and reconstructed data, with

MSE_RSS lacking the local geometric structure preservation
FIGURE 5

Reconstruction error of temperature by different number of sensors.
FIGURE 6

Comparison between MCC_RSS and MSE-RSS of ocean temperature. (A) No additional noise; (B) Po =20%, Sn=60.
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term. The update formulas for Lipschitz constant of MSE_RSS

are presented as: LkC = ‖Ak ‖22 ‖X ‖22 ‖Wk ‖2, where X remains

unchanged during the iteration process.

The reconstruction error results shown in Figure 6A indicate

that even for subspace learning on training data without added

noise, the sensor subset selected by the proposed MCC_RSS method

achieves superior data reconstruction performance compared to the

MSE_RSS method. This is primarily because, even without

additional noise in the ocean temperature training data, the

original data inherently contains model noise introduced during

the ocean data assimilation process. The sensor selection method

based on MCC proposed in this paper can minimize the impact of

such noise as much as possible. Furthermore, Figure 6B presents the

reconstruction results of these two methods when the training data

contains 40% outliers and non-Gaussian noise. The results

demonstrate that, with more severe noise, the difference in

reconstruction performance between the sensor subset selected by

the proposed MCC_RSS method and the MSE_RSS method further

increases. This indicates that the proposed MCC_RSS method, by

using MCC as the measure of the difference between the original

and reconstructed data, is better able to mitigate the impact of noise

on the results when the training data contains noise.
5.3 Reconstruction for ocean salinity

5.3.1 Compared with comparative methods
5.3.1.1 Reconstruction for different test snapshot

Figure 7 presents a comparison of the reconstruction errors

between the proposed method and the comparative methods for
Frontiers in Marine Science 12
ocean salinity data, with the number of sensors selected being 10.

From Figures 7A, B, it can be observed that when the training data

contains varying levels of noise, the reconstruction errors of the

proposed MCC_RSS method are consistently lower than those of

the comparative methods. Additionally, the reconstruction errors

still reflect the periodicity of the ocean data to a certain extent. As

the level of noise contamination in the training data increases, the

reconstruction errors of all methods decrease. However, compared

to the comparative methods, the decrease in reconstruction error

for the proposed MCC_RSS method is less significant. This further

demonstrates that, when selecting sensors for ocean salinity data,

the proposed MCC_RSS method is less affected by the noise present

in the data compared to the comparative methods.
5.3.1.2 Reconstruction for one test snapshot

Figure 8 presents a comparison of reconstruction error for a

randomly selected sample (snapshot) using 10-fold cross-

validation, with p=10. From Figures 8A, B, it can be observed that

despite variations in outliers and noise distribution in the ocean

salinity training data during multiple implementations of both the

proposed method and the comparison method, the reconstruction

error distribution of the proposed MCC_RSS method remains

relatively concentrated, indicating better algorithm stability. In

contrast, the reconstruction error distribution of the comparison

method becomes more dispersed when the noise distribution in the

training data changes. Additionally, the proposed method

consistently achieves the lowest reconstruction error. This result

further demonstrates that the MCC_RSS algorithm, based on MCC

subspace learning, can iteratively learn a relatively stable low-
FIGURE 7

Reconstruction error for salinity comparation. (A) Po =20%, Sn=60; (B) Po =40%, Sn=60.
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dimensional subspace under different conditions, thereby ensuring

that the selected subset of sensor measurements exhibits good

robustness and achieves better data reconstruction.

Figure 9 presents a comparison of the reconstruction effects of

different methods on the aforementioned randomly selected

snapshot, with the noise in the training data set to Po=20% and

Sn=60%. The red dots indicate the positions of the sensors selected
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by the different methods. As shown in Figure 9B, the proposed

MCC_RSS method achieves effective reconstruction of ocean

salinity data with only a subset of 10 sensors, successfully

capturing the main characteristics of the salinity distribution in

the North Pacific region when compared to the test snapshot. The

POD method, while slightly inferior to the proposed method, also

generally reflects the main patterns of salinity distribution in the
FIGURE 8

Reconstruction error of salinity for a snapshot. (A) Po =20%, Sn=60; (B) Po =40%, Sn=60.
FIGURE 9

Reconstruction error of salinity for a snapshot. (A) Snapshot of test; (B) Reconstructed salinity by MCC_RSS; (C) Reconstructed salinity by POD;
(D) Reconstructed salinity by QR; (E) Reconstructed salinity by SR; (F) Reconstructed salinity by RS.
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North Pacific region. However, the other three comparative

methods fail to capture the salinity distribution characteristics

with only a subset of 10 sensors. This indicates that, even with a

certain level of noise in the training data and a limited number of

sensors, the sensor subset selected by the proposed MCC_RSS

method can still achieve effective data reconstruction.

5.3.1.3 Reconstruction error by different number
of sensors

Figure 10 presents a comparison of the reconstruction errors

for different methods when selecting varying numbers of sensors.

The noise in the training data is set to Po=40% and Sn=60. As

shown in the figure, the proposed MCC_RSS method consistently

achieves the lowest reconstruction error compared to the

comparative methods, regardless of the number of sensors

selected. Additionally, as the number of sensors increases, the

reconstruction error remains relatively stable. As previously

mentioned, once the proposed MCC_RSS method determines

the matrix C corresponding to the low-dimensional subspace,

the indices of the selected sensors, regardless of their number, are

derived from the entries of matrix C with the largest 2-norms of

the columns. This selection process does not significantly alter the

obtained subspace, further demonstrating that the low-

dimensional subspace derived from the proposed method is

relatively stable. Consequently, it is more suitable for scenarios

with fewer sensors compared to the comparative methods.

In contrast, for the comparative methods, particularly the QR and

RSmethods, the reconstruction error decreases rapidly as the number

of selected sensors increases. However, they are still significantly

affected by noise, and their reconstruction errors are not as favorable

as those of the proposed method. The SR method, which relies more

heavily on the library established from the training data, is the most

affected by noise. Comparatively, the PODmethod performs closer to

the proposed method in terms of ocean salinity reconstruction and

can reasonably reconstruct salinity data with different numbers of
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sensors. Nevertheless, its error remains significantly higher than that

of the proposed method.

Therefore, utilizing the sensors selected by the proposed

MCC_RSS method for data reconstruction can achieve more

desirable results, particularly when the number of sensors is limited.

5.3.2 Compared with MSE_RSS methods
Figure 11 shows the experimental results of the proposed

MCC_RSS method and the corresponding MSE_RSS method on

global ocean salinity data, using 10 sensors. As shown in

Figure 11A, when no additional noise is introduced to the

training data, there is no significant difference in the

reconstruction errors between the two methods. Differences are

observed only in specific time samples, such as in the trough region

between sample indices 100 and 140, where the error of the

MCC_RSS method is smaller than that of the corresponding

MSE_RSS method. In Figure 11B, when the training data

contains noise, it is evident that the overall fluctuation of the

reconstruction error of the MCC_RSS method is significantly

smaller than that of the MSE_RSS method. The average error of

the MCC_RSS method is 0.0375, while the average error of the

MSE_RSS method is 0.0391. This further demonstrates that the

proposed method can more effectively mitigate the impact of noise.
6 Conclusion and discussion

Considering the distinct low-rank characteristics of ocean data,

we explored how to optimally utilize subspace learning methods to

derive a more reasonable low-dimensional subspace of high-

dimensional ocean data. This approach facilitates the selection of

low-dimensional measurements from sensors that better meet the

requirements. Based on this premise, we develop a robust sensor

selection method that establishes an evaluation function based on

the Maximum Correntropy Criterion (MCC) and selects sensor
FIGURE 10

Reconstruction error of salinity by different number of sensors.
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subsets to reconstruct the full state ocean data through subspace

learning. Compared to the Euclidean distance used in existing

methods, MCC demonstrates superior robustness in evaluating

the discrepancies between reconstructed data and original data,

particularly in the presence of varying levels of noise in the original

data. The model also incorporates noise weighting and optimizes

noise distribution using entropy terms, effectively controlling sparse

severe noise and mitigating the impact of non-Gaussian noise and

outliers. The use of noise weighting in the proposed method allows

for better identification of varying levels of noise during the

subspace learning process. This reduces the impact on the learned

subspace, resulting in more stable reconstruction outcomes for

sensor selection under different noise conditions.

Furthermore, the integration of the local geometric structure of

data samples further enhances the reconstruction accuracy achieved

by the selected sensors. By minimizing the similarity of the selected

sensor measurement subset through the graph Laplacian matrix

between samples, the reconstruction capability of the selected

sensors for the full state data is further improved. To better solve

the model’s evaluation function, the half-quadratic BCU method

was employed, effectively addressing the challenge of solving the

non-convex parts of the objective function. During the iterative

solving process, the selection matrix, transformation matrix, and

noise weighting matrix continuously evolve towards the optimal

solution. This ultimately results in the learned low-dimensional

subspace, along with the corresponding selection and

transformation matrices, achieving superior data reconstruction

outcomes. Additionally, the model effectively converges to the

optimal solution with a low number of iterations.
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Compared to the benchmark methods, our approach performs

better and yields highly robust solutions under varying noise

conditions. Specifically, the proposed method demonstrates that

even with data containing different levels of noise, it can achieve

effective data reconstruction using a smaller number of sensors.

This makes it particularly suitable for ocean data reconstruction

where the number of sensors is limited. This provides a valuable

reference for future ocean environment monitoring systems on how

to deploy fewer sensors more efficiently.

In our future work, we will explore how to improve the method

proposed in this paper to reduce its computational complexity. For

example, after preliminary screening of location features using

statistical methods such as variance analysis and correlation

coefficients, BCU iterative solving can be performed, or location

features can be grouped and optimized separately before combining

the results. For the parameter selection, we will also explore more

scientific methods, such as grid search and Bayesian methods, to

obtain parameter values that can achieve the optimal convergence

results of the objective function. In addition, the method proposed

in this paper does not make a significant contribution to the results

when the number of sensors increases. Therefore, with the increase

in the number of selected sensors, further exploration is needed to

obtain a better low-dimensional subspace that can introduce more

effective information. Potential improvements include

incorporating oceanographic knowledge to screen location

features, thereby identifying the most valuable candidate locations

for monitoring. Alternatively, oceanographic models can be used to

assess the value of each location feature, facilitating the

optimization of a data-driven sensor selection model.
FIGURE 11

Comparison between MCC_RSS and MSE-RSS of ocean salinity. (A) No additional noise; (B) Po =20%, Sn=60.
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Appendix A

The Lipschitz constant LkC could be obtained by computing the

derivative of C in Equation 18A Ĝ k = ∇CF(Ĉ
k,Tk,Wk, qk).

Through matrix calculation, it is easy to derive:

∇CF(C,T ,W , qk)

= TT ½W⨀ (Xk − TCXk)�(Xk)T − mCXLXT (39)

where Xk is the updated data at i-th iteration by variable q.

Given two matrix variables Ĉ and ~C, then we have:

‖∇CF(Ĉ ,T ,W) − ∇CF(~C,T ,W) ‖F
= ‖TT ½W⨀ (Xk − TĈXk)�(Xk)T − mĈ XLXT − TT

½W⨀ (Xk − T ~CXk)�(Xk)T + m~CXLXT ‖F
= ‖TT W⨀½T(Ĉ − ~C)Xk�� �

(Xk)T + m(~C − Ĉ )XLXT ‖F

≤ ‖TT W⨀½T(Ĉ − ~C)Xk�� �
(Xk)T ‖F +m ‖ (~C − Ĉ )XLXT ‖F

≤ ‖T ‖22 ‖Xk ‖22 ‖W ‖2 ‖ Ĉ − ~C ‖F +m ‖XLXT ‖2 ‖ ~C − Ĉ ‖F
= ‖T ‖22 ‖Xk ‖22 ‖W ‖2 +m ‖XLXT ‖2
	 


‖ Ĉ − ~C ‖F
(40)

The inequality part in above equation is transformed according

to the Cauchy-Schwarz inequality. By Equation 40, we have the

Lipschitz constant LkC as:

LkC = ‖Tk ‖22 ‖Xk ‖22 ‖Wk ‖2 +m ‖XLXT ‖2 (41)
Appendix B

To facilitate reading, a nomenclature listing used in this study is

provided here; please refer to Table A1.

TABLE A1 Abbreviations and Full Term.

Abbreviation Full Term

MCC Maximum Correntropy Criterion

RSS Robust Sensor Selection

BCU Block Coordinate Update

NP-hard
Non-deterministic Polynomial-

time hard

POD Proper Orthogonal Decomposition

SVD Singular Value Decomposition

ITL Information Theoretic Learning

LPP Linear Preserve Projection

SR Sparse Representation

RS Random Selection

MSE Mean Square Error
F
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