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The underwater Internet of Things (UIoT) and remote sensing are significant for

biodiversity preservation, environmental protection, national security, disaster

assistance, and technological innovation. Assigning tasks to autonomous

underwater vehicles (AUVs) is a fundamental challenge in underwater

technology and exploration. Remote sensing and AUVs are vital for pollution

detection, disaster prevention, marine observation, and ocean monitoring. This

work presents an optimized network connectivity using a multi-attribute

decision-making approach for underwater IoT deployment. A feature

engineering approach highlights the significant characteristics of underwater

things, incorporating remote sensing data, and a multi-objective optimization

method is used to select optimal UIoT for effective task allocation in deep-sea

environments. A balance between data transmission, energy economy, and

operational performance is necessary for efficient task distribution. Effective

communication algorithms and protocols are needed to maintain

environmental sustainability, protect marine ecosystems, and improve

underwater monitoring enhanced by remote sensing technologies. Multi-

criteria decision-making (MCDM) is beneficial for addressing various challenges

in underwater technology, considering factors such asmission objectives, energy

efficiency, environmental conditions, vehicle performance, safety, and much

more. The proposed criteria importance through intercriteria correlation

(CRITIC) methodology will assess technical competencies like communication,

resilience, navigation, and safety in an underwater environment, leveraging
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remote sensing and aiding decision-makers in selecting appropriate undersea

devices and vehicles for enhancing communication and transportation. This

method prioritizes characteristics and aligns them with specific objectives,

improving decision-making quality in the marine environment.
KEYWORDS

autonomous underwater vehicles, remote sensing, internet of underwater things,
acoustics sensor networks, marine applications
1 Introduction

Emerging technologies such as the Internet of Things (IoT),

machine learning, and big data analytics have revolutionized the

lifestyles of common people. In essence, the term “IoT” solely

pertains to the networking and communication stratum of the

infrastructures in the Information Society, which establish

connections between entities or devices and the Internet as well as

among themselves. Through the linkage of entities that are ubiquitously

present in our surroundings, the IoT has the potential to enhance our

interactions with it (Jahanbakht et al., 2021; Gu et al., 2024). The term

“underwater Internet of Things (UIoT)” describes an extensive

worldwide network of networked underwater items that use

embedded sensors, remote sensing technologies, tracking

technologies, and the Internet to sense, understand, and react to

their environment. Moreover, these gadgets can connect submerged

and aboveground objects, including phones. Every underwater object

has a fully functional virtual counterpart and is available to the public.

Devices are connected to the Internet via the IoT, and underwater

things are digitally identified via the underwater IoT (Domingo, 2012;

Mariani et al., 2021). However, the lack of advanced sensors limits

underwater surveillance technologies and sensor use. Low-power

sensors, accompanied by remote sensing, can help address this issue,

while marine sensors are crucial for ecological and environmental

sustainability and saving lives (Refulio-Coronado et al., 2021).

The collaboration between remote sensing and underwater

sensor networks (USNs) represents a significant advancement in

marine technology, facilitating more precise and effective

monitoring of oceanic conditions (Chen et al., 2022). USNs are

employed for oceanography, pollution detection, underwater

target detection, offshore exploration, and disaster prevention.

These networks utilize unmanned underwater vehicles (UUVs)

equipped with sensors specifically designed for underwater

environments (Sun and Boukerche, 2018; Zacchini et al., 2022).

The exchange of configuration, location, and motion information

among these devices is made possible through underwater wireless

acoustic networking. The UASN comprises diverse sensors and

vehicles collaborating to monitor tasks within a designated area

(Akyildiz et al., 2005). The next generation of USNs should have

key characteristics such as reliability, robustness, adaptability,

security, evaluability, efficiency, scalability, and intelligence, as
02
illustrated in Figure 1 (Luo et al., 2018). Remote sensing is

essential in these marine ecosystem procedures because it

enables the gathering of data from underwater regions that are

difficult to reach. The figure below depicts the fundamental

characteristics essential for the future iteration of USNs. These

characteristics guarantee that the USNs can operate efficiently and

dependably in submerged surroundings.

Underwater communications necessitate the continuous

monitoring of oceanic regions utilizing pre-existing technologies.

However, such monitoring can lead to data loss during an

interruption before recovery. To address this issue, it is

imperative to establish instantaneous communication between the

underwater instruments and the central control devices. This task is

achieved by creating a rudimentary underwater acoustic network,

which entails establishing a two-way acoustic connection between

various devices, including autonomous underwater vehicles

(AUVs) and sensors (Zhou et al., 2023). Remote sensing is

essential for supplementing these acoustic networks by offering

supplementary techniques for collecting data. This network is
FIGURE 1

Performance metrics of UWSNs.
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subsequently linked to a ground station, which can be connected to

a host system via radio frequency (RF) communications, such as the

Internet. Integrating the remote sensing data can augment the

flexibility of such systems. Unlike terrestrial wireless sensor

networks (WSNs), which trust radio waves for communication

purposes, USNs use acoustic waves, which places a new research

challenge in the scheme of MAC protocols. A comparison of

various technologies for underwater communication and remote

sensing is summarized in Table 1.

Underwater IoT (UIoT) applications utilize various network

layers, often defined by the open systems interconnection (OSI)

model and TCP/IP protocols. Remote sensing technologies can

enhance these applications by offering additional sources of data.

The data link layer uses a water channel for reliable transmission,

while the physical layer uses specialized underwater communication

technology. The OSI architecture uses a unique protocol

considering depth, distance, and energy efficiency for packet

routing (Luo et al., 2021). Remote sensing data can enhance and

refine these techniques. It also handles reliability issues at the

transport layer, improving latency and packet loss. The

application layer analyzes data from underwater sensor platforms

and devices to enable the implementation of IoT applications and

services (Jiang, 2018). The use of remote sensing at this layer

enables a more thorough analysis of data and the development of

applications. Figure 2 shows the data transmission between various

layers. The lower four layers of the OSI model comprise the main

functionalities required for reliable transfer, which are divided into

link and path levels. Link-level function objective is to lessen

transmission errors caused by interference, noise, and frame

collision between neighboring nodes. Path-level functions

endeavor to guarantee end-to-end consistent transfer via network

pathways, particularly by addressing packet losses.

AUVs utilized on underwater networks possess a promising

capability to enhance their operational reach by transmitting
Frontiers in Marine Science 03
control and data signals across extensive networks. AUVs and

remote sensing can increase this capability by adding data and

improving situational awareness. However, it should be noted that

the capacity of shallow water acoustic channels is constrained, and

numerous time-varying paths can result in significant symbol

interference, as well as notable dispersion and Doppler shifts. To

attain the necessary level of energy efficiency, underwater

networks necessitate a hierarchical architecture (Sozer et al.,

2000). Figure 3 shows the taxonomy of UASN and remote

sensing. Underwater wireless satellites, called UWSNs, are

crucial in coastal activities such as fish farm control, seabed

mining, and water monitoring. Various factors influence

underwater ecosystem instability, including temperature, lack of

sensing capability, pressure, noise, and water density fluctuations

(Abelson et al., 2020). Coping with several challenges, namely

transmission delays, high probability of bit errors, limited

bandwidth, and occasional loss of connectivity, poses significant

problems in this domain (Garcia et al., 2011; Lloret et al., 2011).

Moreover, RF signals are attenuated underwater, resulting in

lower data rates and lesson remote sensing at very low

frequencies. Alternatively, optical signals may not be useful due

to light scattering in the underwater remote sensing environment.

Acoustic modems fill a gap in existing technologies and must be

energy efficient and economical due to the limited energy

resources in the aquatic environment remote sensing. The

hardware required to transmit audio signals is inexpensive, but

transmission times are much slower than electromagnetic (EM)

modems, at about 1500 m/s (Frampton, 2006; Farr et al., 2010).

The UIoT and remote sensing haven’t received widespread

attention due to their recent discovery and lack of scientific

progress. Although 44% of the Earth’s people live 150 kilometers

or less from the ocean, 95% of the ocean’s surface remains

unexplored. Oceans cover 70% of the Earth’s surface and provide

habitat for nearly 500 million people. The development and use of
TABLE 1 Comparison of different technologies used for underwater communications and remote sensing.

Technology Working Frequency Modulation Distance (m) Data Rates (kbps)

EM Waves 2.4GHz CCK 0.16m 11Mbps

2.4GHz QPSK 0.17m 2Mbps

1KHz BPSK 2m 1Kbps

10KHz BPSK 16m 1Kbps

3KHz – 40m 100bps

5MHz – 90m 500Kbps

Acoustic Waves 800KHz BPSK 1m 80Kbps

70KHz ASK 70m 0.2Kbps

24KHz QPSK 2500m 30Kbps

12KHz MIMO-OFDM – 24.36Kbps

Optical Waves – PPM 1.8m 100Kbps

– – 10m 10Mbps

– – 11m 9.69Kbps
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underwater exploration in UIoT can have a significant impact on

people’s lives. Due to the advancement in remote sensing and

WSNs, the IoT has gained popularity for monitoring various

applications, including volcanic activity, forest fire detection, air

quality assessment, and home automation systems. However,

underwater applications face challenges like sensor deployment

and maintenance, energy acquisition, manufacturing costs,

sensing issues, and signal propagation issues. Advanced wireless

communication and sensing techniques are needed for underwater

applications, which can be achieved through three-dimensional (3D

space and algorithm placement). These networks offer

opportunities for systematic examination of the underwater
Frontiers in Marine Science 04
environment, including climate change impacts, deep-sea habitat

research, sensing applications, coral reef population observations,

ecological observation, military applications, mine exploration,

water quality monitoring, disaster prevention systems,

aquaculture supervision, and oceanic data collection and

navigation (Sendra et al., 2015; Khan et al., 2023). Thus, UWSNs

present a promising solution for various applications of remote

sensing in the open sea. This work’s key objectives are as follows:
• To expedite the use of modern technology for the AUV

navigation and sensing system to enhance communication

and networking.
FIGURE 3

The taxonomy of underwater acoustics sensor networks (UASNs).
FIGURE 2

The data transmission between different layers (Zhou et al., 2023).
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• To collect and retrieve various parameters, such as water quality,

pressure, etc., that directly influence the behaviors of aquatic life

and the UIoT.

• Using feature engineering strategy to highlight the significant

characteristics of underwater things for efficient and effective

sensing and tracking operations.

• To design a multifaceted criteria importance through

intercriteria correlation (CRITIC)-based approach to prioritize

and assess the essential attributes of UIoT for efficient task

allocation and sensing in UIoT.

The rest of the article is organized as follows: Section II presents

the overall literature review in the domain of underwater things,

whereas Section III presents the methodology of the proposed

model. Moreover, Section IV illustrates the results and

discussions, while Section V concludes this work.
2 Literature review

Examining the extensive oceans, which cover two-thirds of the

Earth’s surface, requires UWSNs to understand this immense

expanse fully. Future projections suggest that the market for

AUVs is expected to grow substantially, with a compound annual

growth rate (CAGR) of USD 1.638 billion by 2025. This represents

a notable surge from the USD 638 million recorded in 2020.

The applications of AUVs can be commercial, oceanographic,

environmental, military, sensing, and more. Examples of

commercial activities are surveying, port monitoring, and

geophysical and archaeological research (Li et al., 2023; Wang

et al., 2023). Scientific/oceanographic missions require seabed

exploration, remote sensing, and water body exploration.

Environmentally significant applications include habitat

monitoring and water quality sampling. Anti-submarine warfare

and border security are examples of military/defense activities.

Shallow and medium water is the most typical deployments of

AUVs in coastal waters (Brasier et al., 2020; Duan et al., 2020).

Wireless charging in remote oceanic environments is expected to

drive steady growth in the foreseeable future. The AUV Repository

lists over 1,050 underwater platforms from over 350 universities,

including standard components like battery modules, propulsion

systems, sensing capacity, communication systems, navigation

systems, and collision avoidance systems (Tian et al., 2023).

However, the inertial navigation system’s long-term accuracy is

limited by accelerometer drift. To address this, ultra-short baseline

or long baseline transponder systems can be used, or simultaneous

localization and mapping (SLAM) can be employed (Cao et al.,

2021; Hoeher et al., 2021).

However, current networks are hardware-centric, rigid, and

need more resource-sharing capabilities. New models, such as

software-defined technologies, have emerged to improve UWSNs

by providing robustness, flexibility, adaptability, programmability,

resource sharing, and easy administration (Sun and Boukerche,

2018). These technologies include software-defined networking

(SDN), software-defined radio (SDR), network function

virtualization (NFV), cognitive acoustic radio (CAR), underwater

IoT sensing, and sensor clouds, turning network resources into
Frontiers in Marine Science 05
software, improving resource efficiency and simplifying network

management. These technologies could transform traditional

UWSNs into next-generation, software-based, programmable,

customizable, and service-oriented networks.

Many challenges arise when deploying IoT devices and

networks in aquatic environments or underwater IoT for remote

sensing purposes. These include challenges related to signal

propagation and transmission in water, building and maintaining

robust underwater positioning and navigation systems, optimizing

energy efficiency for long-term operation, data processing and

retrieval in low-bandwidth environments, and manufacturing

waterproof and durable hardware (Arul et al., 2021; Wei et al.,

2021). The data rates and usual bandwidth for underwater channels

with different ranges are shown in Table 2 (Moradi et al., 2012). The

underwater environment is particularly harsh and corrosive,

making it difficult to build long-lasting sensors, secure networks,

and keep sensors working as intended. Addressing these issues is

crucial for the successful implementation of underwater IoT

applications, from environmental monitoring to underwater

robotics and exploration.

Autonomous underwater vehicles, or AUVs, are automated

submersible platforms capable of operating at a maximum depth

of three thousand meters. In 1957, the self-propelled underwater

research vehicle (SPURV) became the inaugural AUV (Yang et al.,

2021). Over the past six decades, AUV techniques have undergone

significant advancements, enabling them to perform sensing tasks

autonomously without human intervention (Bai et al., 2018). AUV

navigation systems play a vital role in their operation by allowing

computers and onboard sensors to govern and guide their

movements. However, navigation and remote sensing can be

exceedingly challenging due to the attenuation of GPS signals in

submerged scenarios. Promising technologies, including

cooperative navigation (CN) and SLAM, which can be swiftly

implemented and adjusted with minimal infrastructure, are being

proposed as potential solutions to this predicament. AUVs typically

use batteries, but lithium batteries are now widely used due to their

rechargeability and cost-effectiveness (Rymansaib et al., 2023).

AUVs can serve as sensing platforms for various sensors,

including echo sounders, underwater laser scanners, forward-

looking sonars, and conductivity temperature depth sensors.

Ocean engineers are investigating over-actuated and under-

actuated underwater vehicles. Over-actuated vehicles align with

trajectories using surge, sway, and heave actuators, while under-

actuated vehicles pitch and yaw. Tolerable thrust forces, damping
TABLE 2 Typical bandwidth and data rates for underwater channels with
different ranges.

Span Range
(km)

Data
rate (kbps)

Bandwidth
(KHz)

Short Range <1 km 20 kbps 20-50 KHz

Medium
Range

1-10 km 10 kbps 10 KHz

Long Range 10-100 km 1 kbps 2-5 KHz

Basin-Scale 3000 km 10 bps <1 KHz
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limits, and inertia effects limit these models’ attitude. Marine vehicles

are managed remotely by input, status, and output barriers. A

supplementary system and Doppler Indicator (DI) optimization are

applied to track a fully-actuated underwater vehicle (He et al., 2022).

In the event of a tracking error occurring within a confined area, the

vehicle simultaneously moves in both the rightward and forward

directions. Through simulations and experiments conducted under

three different scenarios, the efficiency of the proposed strategy has

been demonstrated with the tracking error confined to a narrow zone

(Cao et al., 2022). A novel open-water path planning strategy called

UP4O is designed for AUVs operating in challenging water

conditions (Yang et al., 2022). The strategy uses an environmental

encoder module to bind local obstacle data and combine it with

relative position, velocity, and ocean currents, resulting in continuous

operational decision-making using local dynamic information. The

system has a diverse state space with at least 26 actions, ensuring

motion accuracy and minimizing deviations from ocean current

vectors (Yan et al., 2014). Experimental results support UP4O’s

ability to accelerate convergence and provide smoother paths in

complex oceanic environments.

The domain of designing control systems for robotic arm

systems and underwater vehicles is explained. The main focus is on

themathematical analysis of singular perturbation theory.Twocontrol

rules were proposed: one that is more straightforward and partially

compensates for the sluggish subsystem and another that is a resilient

nonlinear control not influenced bymodel parameters. The stability of

both control rules is demonstrated using perturbation theory, and the

performance of the suggested controller in a closed-loop system can be

compared to that of a model-based correction (De Wit et al., 2000).

Marine robotics has revolutionized the use of remotely operated

underwater vehicles (ROVs) in science and industry, enabling

humans to perform tasks like moving objects across long distances.

The effectiveness of single- and multi-ROV systems depends on the

right tracking controller. Issues related to individual ROV tracking

include energy efficiency, Lyapunov-based model predictive control,

feedback and linearization techniques, adaptive algorithms,

proportional-derivative control, area tracking controllers, auto-

tracking controller adjustment, multivariate control techniques,

high-order adaptive sliding mode controllers, controllers based on

models (Yan et al., 2019). Following theDeepwaterHorizondisaster in

2010, public attention shifted to monitoring the subsurface sea

environment (Vasilijević et al., 2017). Remote sensing technologies

have proven effective for terrestrial disasters, but detecting and

measuring underwater pollution requires field methods (Hao et al.,

2022). A joint robotic system combining autonomous underwater and

unmanned autonomous surface vehicles is proposed to rapidly detect/

sense and quantify contaminants in the water column in situ. This

system enables real-time contamination readings while minimizing

human intervention and time commitments.

Autonomous underwater navigation relies on efficiency and

autonomy, with dead reckoning techniques relying on

proprioceptive data from compasses, Doppler Velocity Logs, and

Inertial Navigation Systems. However, positioning errors tend to

magnify over time, necessitating absolute georeferenced sources for

precise positioning. Time-of-flight (ToF) acoustic positioning

systems are the current method for correcting underwater
Frontiers in Marine Science 06
positions and sensing (Li et al., 2018). As technology and

hydroacoustic communication standards for AUVs continue to

advance, CN may become a highly accurate method for locating

multiple underwater vehicles. CN allows a group of AUVs to

mutually estimate their current positions based on relative

distance, velocity, and acceleration (Lyu et al., 2022). Figure 4

illustrates the USN and AUV architecture. The surface

components like satellites, drones, ships, base stations, surface

sinks, and servers aid communication and data management.

AUVs communicate with stationary seabed sensors and other

underwater mobile nodes. The Surface and underwater

components communicate by two-way packet exchange and via

wireless signals, safeguarding effective data collecting and network

coordination in diverse underwater environments.

By utilizing ocean currents as control inputs during way-point

tracking missions, the power consumption of the engine is reduced.

The controller effectively considers multiple constraints, such as those

related to the workplace, the vehicle’s maximum speed, sensing

capacity, the saturation of control inputs, and the presence of rare

obstacles. The proposed technology accounts for all the vehicle

dynamics, including ocean currents, enabling optimal thrust

determination to minimize errors in waypoint tracking (Heshmati-

Alamdari et al., 2019). Utilizing the ocean currents for control inputs

during waypoint tracking missions reduces the power consumption

of the engine. Analytical guarantees for stability and convergence are

established for closed-loop systems. The presented work focuses on

utilizing AUVs to monitor underwater pipelines and gather data

from submarine networks (SNs) within the transmission range. This

collected data is transmitted to a surface borehole using acoustic

communication technology. This approach reduces power

consumption, and the need for costly data re-transmissions is

avoided. This architectural framework is well-suited for data

applications that can tolerate latency and provide flexibility in

implementing submarine networks. Various algorithms for AUV

motion and remote sensing are put forth, and an investigation is

conducted to determine the impact of the system on network

performance. Furthermore, the system can be optimized by

considering design parameters, such as SN density, distance,

network reliability, medium access control (MAC), communication

channel conditions, security measures, and quality of service (QoS)

requirements (Jawhar et al., 2018).

Despite development in AUVs and underwater wireless sensor

networks (UWSNs), there are still several limitations. The existing

hardware-focused networks cannot exchange resources or familiarize

themselves with software-defined solutions. Accelerometer drift

disturbs navigation system accuracy, necessitating further research.

Due to energy efficiency, localization, sensing, and navigation system

resilience issues in demanding underwater environments, IoT device

installation and conservation must be enhanced. Current challenges

include creating long-lasting, water-resistant sensors and efficient

data processing in low-network settings. Novel control and path

planning systems like UP4O must also be authenticated in complex

marine surroundings. The existing problems must be addressed to

increase the performance, reliability, and expandability of AUVs and

UWSNs. This will enable future advanced, flexible, and effective

marine systems.
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3 Methodology

Multi-criteria optimization is crucial for selecting the most

efficient UIoT for underwater task assignment and sensing (Song,

2020; Fang et al., 2021). These devices must be chosen based on

energy efficiency, communication range, remote sensing capacity,

data transmission capability, durability, and adaptability to

dynamic oceanic environments. The effectiveness of IoT devices

depends on the specific objectives of underwater operations, such as

accurate data collection in oceanography and robust and durable

devices for marine remote sensing infrastructure repair work.

Multi-criteria optimization helps decision-makers select IoT

devices that align with operational goals and requirements. It also

addresses trade-offs between features like energy efficiency and data

transmission capabilities, ensuring the efficiency and effectiveness of

IoT deployments tailored to specific underwater sensing

applications. The optimal selection of vehicles based on multi-

criteria is shown in Figure 5. Starting with the UIoT, digital library

articles are assessed. These articles undergo feature engineering to

extract relevant features. The selected features are evaluated for

sufficiency. After recognizing significant attributes, ideal vehicles

are selected using multi-criteria evaluation.
3.1 Feature engineering

An important and challenging aspect of the UIoT is to identify

the unique characteristics of the underwater sensing environment
Frontiers in Marine Science 07
through an in-depth review of previous research (Zhu et al., 2023).

These characteristics include energy efficiency, water pressure,
FIGURE 4

Remote sensing communication and navigation in deep-sea environment.
FIGURE 5

Optimal selection of vehicles based on multi-criteria.
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contact closure, resistance to corrosion, salinity, sensing issues, and

temperature. Understanding and specifying these characteristics is

important for effectively deploying IoT devices in an oceanic

environment, as they directly affect network performance and

reliability. Functional engineering is essential for optimizing IoT

devices for specific underwater tasks such as oceanography, where

data accuracy is critical, or maritime/oceanic infrastructure

maintenance, where reliability and durability are priorities. As

feature development is versatile, IoT devices may be customized

to meet specific remote sensing needs. Functional engineering also

promotes using and integrating cutting-edge scientific innovations

and findings.

Engineers and researchers may uncover new possibilities and

chances that extend the remote sensing potential of IoT devices by

evaluating relevant literature and considering the latest developments.

In addition to revolutionizing IoT technology, this iterative approach

to feature developmentwill produce creative solutions for applications

emerging in underwater or oceanic environments. Feature engineering

is essential to underwater IoT, enabling decision-makers to select,

modify, and design IoT devices tailored to underwater remote sensing

applications’ needs and objectives. The UIoT is a network of

submerged devices and systems that enable efficient communication,

cooperation, and data transmission. These resilient and adaptable

systems allow aquatic systems to withstand environmental pressures

and recover fromdisturbances. Theirflexibility allows themtorespond

to dynamic changes and gather oceanic research and exploration data.

Interoperability and integration are significant in the IoT,

fostering collaboration and data exchange between devices. The

dependability and efficiency of underwater technologies ensure

consistent service provision, while their durability ensures

functionality over time. Tolerance mechanisms and collision

avoidance ensure secure sensing, navigation, and operations. Both

bound and unbound deployment options allow flexibility in

deployment. The visibility of the IoT enables real-time

monitoring and visualization of underwater conditions,

facilitating data analysis and seabed mapping for scientific

research and exploration. These capabilities enable multitasking,

responsiveness, and controllable sub-sea systems that provide

essential services and data analytics, revolutionizing the way we

explore and comprehend the vast depths of the ocean. The various

key characteristics of underwater vehicles are illustrated in Figure 6.
3.2 Decision making

Ocean engineering is a rapidly developing field that relies on

decision-making to guide undersea technologies. Researchers,

producers, and institutions are constantly improving underwater

vehicles to sense, navigate, and explore deep oceans (Rolland et al.,

2023). These vehicles are designed for security, resource

exploitation, remote sensing, ecological protection, and scientific

investigation. Their creation ensures wise choices for the submerged

environment, preserving marine ecosystems for future generations

and allowing exploration of mysterious deep-sea enclaves (Borja

et al., 2020). The ultimate goal is to provide creative and effective

solutions for the vast, unexplored oceans.
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3.3 Feature selection

The UIoT faces challenges in identifying unique underwater

characteristics like power usage efficiency, water pressure, sensing

issues, contact closure, corrosion resistance, salinity, and temperature

(Khalil et al., 2020). These factors directly impact the remote sensing

network’s performance and reliability. Functional engineering

promotes the use of state-of-the-art scientific discoveries and

innovations, allowing engineers and researchers to assess the

literature and consider recent advancements to uncover novel

attributes and capabilities. This iterative approach revolutionizes

IoT technology and provides innovative solutions for underwater/

oceanic applications. Functional design is at the core of the UIoT,

enabling decision-makers to choose, tailor, and design IoT devices to

meet underwater remote sensing application requirements.
3.4 Multi-criterial decision making in UIoT

The Internet of vehicles (IoV) presents a challenge for

policymakers and stakeholders in selecting optimal vehicle

solutions to improve operations and productivity. Multi-criteria

decision-making (MCDM) methodologies, such as the analytical

hierarchy process (AHP) and Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS), help assess and prioritize

vehicles across various dimensions, including fuel effectiveness,

connectivity, environmental impact, safety attributes, and cost

efficiency. These approaches provide a structured framework for

informed choices, enabling stakeholders to navigate various

alternatives, ultimately leading to efficiency, sustainability, and

innovation in the transformative sector.

The UIoT aims to revolutionize underwater activities by

combining interconnectivity, data sharing, and real-time

monitoring. It enhances operational efficiency and predictability

by enabling effective task control, route tracking, sensing, and

location determination. UIoT’s manoeuvrability, adaptability,

multitasking, resource management, continuous integration, and

efficient telemetry further enhance operational capabilities. It also

provides durability, protection, safety, and resilience, promoting

real-time monitoring and accountability in harsh environments.

The responsiveness of IoT systems supports their reliability and

interoperability, enabling seamless functioning and interaction.

These capabilities can potentially revolutionize underwater

remote sensing operations and usher in a new era of subsurface

exploration and data collection. The overall methodology of this

study is represented in Section 4, and the characteristics that are

collected by properly analyzing existing approaches are presented

in Table 3.
4 Results and discussions

The detailed methodology and the evaluation results of the

proposed approach are presented in the below subsections.
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4.1 CRITIC approach

A technique utilized in MCDM to help with complex selection

procedures where multiple factors require evaluation is called the

CRITIC choice-making strategy. It works especially well when

assessing and ranking choices or alternatives in situations where

there is a lot of ambiguity and mutual dependence. Rather than

considering each decision criterion separately, CRITIC focuses on

their interrelatedness. Adapting to complicated and evolving

decision situations, reducing subjectivity in weight distribution,

and understanding hidden linkages between factors are only a few

advantages of the CRITIC technique. It provides an organized and

systematic manner to rank and incorporate multiple factors during

the selection process, making it an extremely valuable tool across a

wide range of industries, including sustainability management,

engineering, finance, and healthcare. When everything is said and

done, the CRITIC choice-making strategy offers a solid and

methodical way to handle complicated problems that need a

careful examination of criteria connections. These steps involved

in the mechanism of the CRITIC calculation are portrayed

in Figure 7.
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The CRITIC technique assesses every criterion’s significance by

considering its relationships to other factors in addition to subjective

perceptions. This implies that the method considers the possible

consequences of altering one of the factors on others, resulting in a

more accurate and comprehensive depiction of the decision problem.

Decision-makers estimate every criterion’s relative importance to all

other factors by comparing them pairwise, creating an inter-criteria

correlation matrix. After that, the ultimate weights for the criteria are

obtained by subjecting this matrix to a number of mathematical

operations, many of which include dynamic investigation.

Furthermore, all the chosen factors in the proposed work are

beneficial. The chosen factors impact the alternatives more, which we

can find after determining their weightage. The weights were assigned

to every criterion based on their importance, according to expert

opinion, using a scale ranging from one (1) to nine (9). The one value

illustrates the equal significance of one factor over another. In contrast,

the ninevalues state the extreme significanceof one factorover another

while comparing them against each other using the CRITIC approach.

A 7 * 7matrix has been constructed using Equation 1, and weights are

distributed among criteria as per expert opinion. These factors have

been properly comprehensively compared against each other to
FIGURE 6

Various key characteristics of underwater vehicles.
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determine the precise weightage of each criterion and determine their

significance and impacts on the required alternatives. The evaluation

matrix has been designed for eight alternatives based on specific

factors. The maximum and minimum values have also been
Frontiers in Marine Science 10
determined from every column, which states that every maximum

value is the highest and theminimum is the lowest due to the beneficial

nature of all the criteria. The alternatives have been set in rows, while

the criteria have been set in columns, as depicted in Table 4.
FIGURE 7

Representation of various (CRITIC approach) steps for underwater Things.
TABLE 3 Multi-criteria-based optimal feature selection of underwater vehicles.

Alternatives
Criteria

C1 C2 C3 C4 C5 C 6 C7

Meth 1 Communication Connectivity Endurance Sharing Collaboration Transmission Propagation

Meth 2
Tasks
Management

Path Monitoring Surveillance
Real-
time Monitoring

Predictability Sensing Data Collection

Meth 3 Positioning Navigation Localization Positioning Tracking Detection Tethered

Meth 4 Oceanography Exploration Virtualization Seafloor mapping Sampling Visibility Deployment

Meth 5 Service Provision Forecasting Multi-tasking
Resource
Management

Integration Telemetry Controllability

Meth 6 Robustness Protection Resilience Security Tolerance Durability Shielding

Meth 7
Real-
time Operation

Accountability Responsiveness Storage Processing Reliability Interoperability

Meth 8 Adaptiveness Recovery Resistance
Collision
Avoidance

Elasticity Rejuvenation Upgradation
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X = ½Xij�

X11 X12 … X1n

X21 X22 … X2n

X31 X32 … X3n

X41 X42 … X4n

… … : :

… … : :

Xm1 Xm2 … Xmn

2
666666666666664

3
777777777777775

(1)

Here, the original matrix has been normalized through the

utilization of Equation 2, as given below;

�Xij =
Xij −min (Xij)

max (Xij) −min (Xij)
(2)

Where, �Xij indicates the normalized outputs, and it is essential

to realize that normalization does not account for the kind

of criterion.

The constructed matrix has been undergone to normalize

original values by utilizing Equation 2 to reduce subjectivity and

remove errors. The outcomes obtained from the entire calculation

of the normalization process are listed in Table 5.

Equation 3 has been applied to the normalized matrix to obtain

the standard deviation outputs. The entire calculation and obtained

outputs are listed in Table 6.

Standard Deviation (sj) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(ci − c)2

n − 1

r
(3)

Figure 8 plots the calculated standard deviation values for every

criterion. The correlation coefficient outputs have been obtained by

comparing two pairs of criteria in the normalized matrix. The

required values of the correlation coefficient between pairs of

criteria have been identified, as listed in Table 7 and Figure 9.

rjk = om
i=1(rij −  ѓj)(rik −  ѓk) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(om
i=1(rij −  ѓj)2  om

i=1(rik −  ѓk)2
q

 
(4)
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The required values have been achieved through the use of

Equation 5. Every correlation coefficient value mentioned above has

been subtracted from one, and then these values are added in a row-

wise manner to get the required values according to the equation.

The calculated outputs of the measure of conflict are outlined in

Table 8.

Measure of conflict = (on
j0=1(1 − r0jj)) (5)

The calculated outcomes, known as the measure of conflict of

every criterion, are plotted in Figure 10. The required outputs,

known as the quantity of information, have been achieved through

the application of (Equation 6). These values are obtained by

multiplying the measure of conflict outputs with the standard

deviation scores as per the quantity of information formula. The

calculated outcomes of the quantity of information are listed in

Table 9.

Quality of information (Cj) = s j � on
j 0=1(1 − rjj

0)
� �

(6)

The calculated scores of the quantity of information have been

plotted in Figure 11, which improves visibility and understanding of

the calculated outcomes.

According to Equation 7, every single value of the quantity of

information has been divided by the total of the values of the

quantity of information in order to get the required weights of every

criterion to determine the relative importance of the factors and

identify their effects on the numerous essential alternatives. The

calculated weightage of each criterion in the study is displayed in

Table 10.

Criteria weights (Wj)=
Cj 

 on
j=1Cj

(7)

The weightage of each criterion calculated by the CRITIC

procedure is plotted in graphical form, as shown in Figure 12 to

increase the readability and clarity for the user to easily understand

the relative importance of numerous essential criteria chosen and

evaluated in the study. A criterion with the highest weight indicates

a greater significance and high effect on the chosen alternatives, as

followed by the remaining criteria in a sequence.

The CRITIC technique will prioritize the primary

characteristics of submersible vehicles, enabling decision-makers

to optimize vessel deployment. The appropriate vehicles will be

selected, and tasks will be assigned to them, leading to higher

success rates, enhanced security measures, efficient resource

allocation, and improved underwater operations accuracy. The

technique is valuable for investigating subsea technologies and

enhancing vessel deployment in the undersea IoT.

Comparing the proposed work with previous systems shows

notable differences in important performance measures, such as the

distribution of trust values, the time it takes for data to go from one

end to another, the lifespan of individual nodes, and the time it

takes for the system to reach a stable state, see Table 11. The

proposed technique showcases the most minimal end-to-end

latency of 50 ms, suggesting very efficient data transfer, whereas

the other alternatives display the highest delay of 65 ms. The
TABLE 4 Evaluation matrix.

Criteria C1 C2 C3 C4 C5 C6 C7

Alternatives

Meth 1 3 7 2 5 6 8 4

Meth 2 9 4 6 2 8 3 5

Meth 3 2 5 3 7 4 6 3

Meth 4 5 2 7 3 9 4 6

Meth 5 7 6 2 4 5 2 4

Meth 6 4 3 5 6 2 7 5

Meth 7 6 4 8 2 3 5 2

Meth 8 8 2 4 3 7 6 3

MAX 9 7 8 7 9 8 6

MIN 2 2 2 2 2 2 2
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proposed work exhibits the highest trust value distribution (0.95),

indicating a greater level of reliability among network nodes. In

contrast, the other approach demonstrates the lowest trust value

distribution (0.85), implying inferior trust management. The

suggested work has the greatest node lifespan, lasting for 200
Frontiers in Marine Science 12
hours, compared to the other job with a shorter node lifetime of

175 hours. This emphasizes the energy efficiency of the proposed

work. In addition, the suggested work demonstrates the fastest

convergence time of 30 seconds, which indicates a rapid

stabilization of the network. In contrast, the comparison work has
FIGURE 8

Standard deviation outputs.
TABLE 5 Normalized matrix.

C1 C2 C3 C4 C5 C6 C7

Meth 1 0.142857143 1 0 0.600 0.571 1 0.500

Meth 2 1 0.4 0.66666667 0 0.857 0.16666667 0.75

Meth 3 0.000 0.600 0.16666667 1 0.28571429 0.667 0.250

Meth 4 0.428571429 0.000 0.83333333 0.2 1 0.333 1.000

Meth 5 0.714 0.800 0 0.400 0.429 0.000 0.5

Meth 6 0.286 0.200 0.5 0.800 0.000 0.833 0.750

Meth 7 0.571428571 0.400 1 0 0.143 0.500 0.000

Meth 8 0.857142857 0 0.33333333 0.200 0.714 0.667 0.250
TABLE 6 Calculation of standard deviation.

C1 C2 C3 C4 C5 C6 C7

Meth 1 0.142857143 1 0 0.600 0.571 1 0.500

Meth 2 1 0.4 0.66666667 0 0.857 0.16666667 0.75

Meth 3 0.000 0.600 0.16666667 1 0.28571429 0.667 0.250

Meth 4 0.428571429 0.000 0.83333333 0.2 1 0.333 1.000

Meth 5 0.714 0.800 0 0.400 0.429 0.000 0.5

Meth 6 0.286 0.200 0.5 0.800 0.000 0.833 0.750

Meth 7 0.571428571 0.400 1 0 0.143 0.500 0.000

Meth 8 0.857142857 0 0.33333333 0.200 0.714 0.667 0.250

Std deviation 0.350 0.362 0.377 0.370 0.350 0.339 0.327
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FIGURE 9

Correlation coefficients.
TABLE 7 Calculation of correlation coefficient between criteria.

Criteria C1 C2 C3 C4 C5 C6 C7

Criteria

C1 1.000 -0.339 0.296 -0.819 0.429 -0.646 0.045

C2 -0.339 1.000 -0.650 0.341 -0.242 0.073 -0.241

C3 0.296 -0.650 1.000 -0.613 0.090 -0.206 0.096

C4 -0.819 0.341 -0.613 1.000 -0.504 0.532 0.000

C5 0.429 -0.242 0.090 -0.504 1.000 -0.359 0.490

C6 -0.646 0.073 -0.206 0.532 -0.359 1.000 -0.215

C7 0.045 -0.241 0.096 0.000 0.490 -0.215 1.000
F
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TABLE 8 Calculation of measure of conflict.

C1 C2 C3 C4 C5 C6 C7 Measure
of Conflict

C1 0.000 1.339 0.70373712 1.81892302 0.57142857 1.64609574 0.95545646 7.034

C2 1.339 0 1.650 0.65856832 1.24196696 0.92704422 1.24142866 7.058

C3 0.70373712 1.650159294 0 1.61343836 0.90983304 1.2058396 0.90360746 6.987

C4 1.818923025 0.65856832 1.61343836 0 1.50395263 0.46818398 1 7.063

C5 0.571428571 1.241966959 0.90983304 1.50395263 0 1.35894208 0.51002106 6.096

C6 1.646095738 0.927044217 1.2058396 0.46818398 1.35894208 0 1.21488612 6.821

C7 0.95545646 1.241428656 0.90360746 1 0.51002106 1.21488612 0 5.825
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FIGURE 10

Measure of conflict outcomes.
TABLE 9 Calculation of quantity of information.

Standard Deviation Measure of Conflict Quantity of Information (Cj)

C1 0.350 7.034 2.462

C2 0.362 7.058 2.552

C3 0.377 6.987 2.636

C4 0.370 × 7.063 2.616

C5 0.350 6.096 2.133

C6 0.339 6.821 2.309

C7 0.327 5.825 1.907
F
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FIGURE 11

Quantity of information values.
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the slowest convergence time of 37 seconds, highlighting the

superior performance of the proposed work. The data

demonstrates that the suggested methodology surpasses other

methods in all measurable dimensions, emphasizing reducing

delay and maximizing trust, node lifetime, and speedy convergence.
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5 Conclusion

The impact of 5G and 6G communication networks on underwater

technology drives rapid growth in the IoT market. As a result,

underwater automobiles, vessels, tracking devices, and surveillance

devices, such as s, environmental sensitivity observation equipment

and advanced aquatic study instruments, have emerged. These

technologies have the potential to transform our understanding of the

underwater oceanic environment and contribute to the long-term

management of ocean resources. The Internet of underwater vehicles

is an exciting breakthrough in the IoT area that is transforming sub-

aquatic operations and communications. It has energy-efficient

communication modules, quick data processing, flexible sensors,

remote sensing capability, and better mobility. The Internet of

underwater vehicles enhances sub-aquatic vehicle communication

capabilities while also accelerating job completion, resulting in a more

productive, automatic, and adaptive sub-aquatic network. These

advancements in technology bring up new avenues for subaquatic

applications, environmental surveillance, and marine exploration. In

this study, the CRITIC technique is proposed to examine and evaluate

appropriate UIoT characteristics such as localization, sensing,
TABLE 10 Calculation of weights.

Quantity
of Information

Weights Weights in
Percent (%)

C1 2.462 0.148 14.82%

C2 2.552 0.154 15.36%

C3 2.636 0.159 15.87%

C4 2.616 0.157 15.74%

C5 2.133 0.128 12.84%

C6 2.309 0.139 13.90%

C7 1.907 0.115 11.48%

Sum 16.614 1.000 100%
FIGURE 12

Illustration of criteria weights.
TABLE 11 Comparison with other approaches.

Work End-to-End Delay (ms) Trust Value Distribution Node Lifetime (hrs) Convergence Time (s)

(Jawhar et al., 2018) 62 0.89 195 36

(Song, 2020) 57 0.86 178 34

(Li et al., 2018) 60 0.90 190 32

(Lyu et al., 2022) 65 0.85 175 37

(Jahanbakht et al., 2021) 55 0.88 180 35

(Heshmati-Alamdari
et al., 2019)

58 0.87 185 33

Proposed 50 0.95 200 30
frontiersin.org

https://doi.org/10.3389/fmars.2024.1468481
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ullah et al. 10.3389/fmars.2024.1468481
positioning security, privacy, resource allocation, and optimization.

These multi-characteristics will assist decision-makers in assessing

correlations and interdependencies between various characteristics,

which is critical for effective and well-informed decision-making in

dynamic UIoT environments and for modifying Vehicles with multi-

features to achieve specificobjectives inunderseaoperations.Developing

an integrated approach to submerged technology, ensuring the

effectiveness and safety of underwater remote sensing systems, and

developing energy-saving solutions to increase the lifespan of

underwater vehicles are various domains that need further research

and exploration to achieve the objectives of ocean andmarine engineers.
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