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The Nanhua Basin of South China recorded complete Cryogenian

stratigraphic sequence from the Sturtian Glaciation (~717–660 Ma) to the

Marinoan Glaciation (~654–635 Ma). The interglacial Datangpo Fm in the

Nanhua Basin is divided into two members, and the first member consists of

the Mn-carbonate unit and the overlying black shale unit, containing a series

of large and superlarge manganese deposits. The metallogenic process of

manganese deposits is not clear, and the Mn-carbonates formed through the

precursor of Mn-oxide/oxyhydroxide reduction or directly precipitated from

an anoxic water column. Moreover, the redox conditions in the deep Nanhua

Basin during the precipitation of manganese deposits are also controversial.

In this study, the high-resolution nitrogen contents (TN), isotope

compositions, carbon isotope compositions of organic and inorganic

matter from the first member of the Datangpo Fm are analyzed. The d15N
values of the Mn-carbonate unit (+1.53‰ to +5.26‰, mean +3.36‰) are

higher than those of the overlying black shale unit (−3.74‰ to +3.54‰, mean

+0.89‰). The Mn contents show a negative relationship with TN but a positive

relationship with d15N in the Mn-carbonate unit, implying that the formation

of Mn-carbonates is related to redox variations. The relatively higher d15N
values in the Mn-carbonate unit indicated oxic conditions, and NH4

+can be

released and partially oxidized during the mineralization of organic matter,

resulting in the residual 15N-enriched NH4
+ being transferred into clay

minerals. Meanwhile, the lower d15N values in the black shale unit indicated

anoxic conditions, which recorded primary N isotope signals. The Mn-

carbonate unit is characterized by negative d13Ccarb values (−11.17‰ to

−5.22‰, mean −8.30‰), which show a positive relationship with d13Corg,

but a negative relationship with Mn contents, implying that the negative

d13Ccarb excursions were related to the organic matter degradation during

Mn-carbonate formation. The findings of this study indicated that the
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metallogenesis of manganese deposits in the Cryogenian Nanhua Basin was

constrained mainly by the oxic interval in the deep basin. The nitrogen and

carbon cycling process can provide new insights into geochemical cycling

after the Sturtian Glaciation.
KEYWORDS

Mn-carbonate, black shale, nitrogen isotope, carbon isotope, negative carbon isotope
excursions, metallogenesis
1 Introduction

The Earth experienced two global glaciation events in the

Neoproterozoic Era (~1,000–542 Ma), i.e., the older Sturtian

Glaciation (~717–660 Ma) and the younger Marinoan Glaciation

(~654–635 Ma) (Kirschvink, 1992; Hoffman et al., 1998; Hoffman

and Schrag, 2002). Sedimentary manganese deposits precipitated

widely during this period in Brazil, Namibia, India, and South

China (Roy, 2006; Yu et al., 2016). Mn was preserved as Mn-

carbonates in India and South China (Roy et al., 1990; Gutzmer and

Beukes, 1998; Yu et al., 2016; Zhou et al., 2016), but as Mn-oxides

interbedded with banded iron formations (BIFs) in Namibia and

Brazil (Bühn et al., 1992; Klein and Ladeira, 2004; Cabral et al.,

2011). A series of large–superlarge manganese deposits were

discovered in the post-Sturtian deep Nanhua Basin of South

China (Zhou et al., 2016, 2022).

It is generally considered that the metallogenic processes of the

manganese deposits in the Cryogenian Nanhua Basin of South

China experienced two stages (Yu et al., 2016, 2017; Wu et al., 2016;

Xiao et al., 2017). During Stage I, the dissolved Mn2+ sourced

mainly from hydrothermal activity (Wu et al., 2016; Yu et al., 2016)

were oxidized to Mn-oxides/oxyhydroxides under oxic conditions

and then sank to organic matter-enriched sediments. During Stage

II, the insoluble Mn-oxides/oxyhydroxides were reduced to Mn2+ in

porewater during the organic matter mineralization, which

subsequently reacted with HCO3
− and were preserved as Mn-

carbonates during the sedimentary-early diagenetic process

(2MnO2 + CH2O + HCO3
− → 2MnCO3 + H2O + OH−). The

organic matter acted as electron acceptor during the reduction of

Mn-oxides/oxyhydroxides and can be oxidized to 13C-depleted

HCO3
−. Both stages were mediated by microbial activities (Roy,

2006; Yu et al., 2016, 2019). The oxidation of dissolved Mn2+ was

mediated by enzymatic multicopper oxidase processes associated

with autotrophic microbial activity under oxic conditions (Tebo

et al., 2004; Morgan, 2005; Yu et al., 2019), whereas the Mn-oxide/

oxyhydroxide reduction to Mn2+ in porewater was mediated by

heterotrophic microbes under suboxic conditions (Yu et al., 2019),

similar to the Jurassic Úrkút manganese deposits in Hungary

(Polgári et al., 2012a, 2012b). However, an alternative
02
metallogenic process of the manganese deposits was recently

proposed, during which the Mn-carbonates were directly

precipitated from the anoxic water column in the Cryogenian

Nanhua Basin (Ai et al., 2023).

The redox conditions of the post-Sturtian Nanhua Basin are still

controversial. Some studies suggested that the deep Nanhua Basin

was anoxic, after which the oxygenation expanded (e.g., Cheng

et al., 2021; Wu et al., 2024). However, other studies have shown

that the deep Nanhua Basin experienced episodic ventilation,

similar to the Baltic Sea (Yu et al., 2016; Xiao et al., 2017; Ai

et al., 2021). Furthermore, the relationship between redox

conditions and the metallogenic process of sedimentary

manganese deposits in the Cryogenian Nanhua Basin still needs

to be further studied. The negative carbon isotope excursions of the

Mn-carbonate unit of the manganese deposits in the Cryogenian

Nanhua Basin were reported, ranging between −5‰ and −12‰

(mean ca. −8‰) (e.g., Li et al., 1999; Zhou et al., 2007; Chen et al.,

2008; Wu et al., 2016; Qu et al., 2018; Zhu et al., 2019; Pei et al.,

2020; Tan et al., 2021). The negative d13Ccarb excursions might be

related to organic matter, which can provide 13C-depleted carbon

(Li et al., 1999; Chen et al., 2008; Wu et al., 2016; Qu et al., 2018;

Zhu et al., 2019; Dong et al., 2023). However, how the 13C-depleted

organic matter affected the carbon isotope compositions of the Mn-

bearing sediments and whether the negative d13Ccarb excursions are

related to the formation of Mn-carbonates remain unclear.

This study focuses on the drillcore ZK2115, which is located in

the Gaodi Manganese Deposit, eastern Guizhou Province. The

high-resolution nitrogen and carbon geochemical data are

analyzed for the Mn-carbonate unit and the overlying black shale

unit of the post-Sturtian Datangpo Fm. Combined with the

previously reported total organic carbon (TOC) and Mn contents

in the study units, the redox proxy-d15N values suggested that the

deep basin was oxic during the precipitation of the Mn-carbonate

unit, which facilitated the metallogenic process of the manganese

deposits. The Mn-carbonate formation experienced the Mn2+

oxidation and reduction stages, leading to the negative d13Ccarb

excursions in the basal Datangpo Fm. Carbon and nitrogen cycling

in the Cryogenian is reconstructed, which can also provide new

insights for the global N–C cycling throughout Earth’s history.
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2 Geological background

The Nanhua Basin developed as a rift basin between the

Yangtze Block and Cathaysia Block during the breakup of the

Rodinia supercontinent in Neoproterozoic (Dalziel, 1991;

Hoffman, 1991; Moores, 1991; Li et al., 2008; Wang and Pan,

2009) (Figures 1A, B). The Nanhua Rift Basin consists of Wuling

and Xuefeng secondary rift basins and the Tianzhu–Huitong Uplift

between them. The Wuling Secondary Rift Basin consists of a series

of NE–SE-trending grabens and horsts (Zhou et al., 2016, 2022),

and a series of manganese deposits precipitated in the small grabens

of the rift basin in a similar spreading direction (Figure 1C).

The Nanhua Basin recorded complete Cryogenian stratigraphic

sequence, including the Tiesi’ao Fm, Datangpo Fm, and Nantuo Fm

(Figure 2A). The Tiesi’ao and Nantuo formations recorded

glaciomarine sediments during the Sturtian and Marinaon

glaciations, while the Datangpo Fm recorded the interglacial

sediments between the two global glaciations. The Datangpo Fm

is subdivided into two members, the first member consists of the

Mn-carbonate unit and the overlying black shale unit, while the

second member consists of gray siltstones. The manganese deposits

discovered in the Cryogenian Nanhua Basin are called “Datangpo-

type” manganese deposits. Moreover, the coeval cap carbonates

precipitated in the horsts of the Nanhua Basin (Yu et al., 2017,

2020). There are two types of manganese ores in the “Datangpo-

type”manganese deposits, i.e., banded ores (Figure 2B) and massive

ores (Figure 2C). In the “Datangpo-type” manganese deposits, the

thickness of the Mn-carbonate unit decreased from the center of the

basin to the edge, whereas the ore types changed from massive ores

to banded ores, accompanied by the decreasing Mn contents
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(Zhou et al., 2013, 2022). The study drillcore ZK2115 is located in

the Gaodi Manganese Deposit (Figure 1C).

The termination of the Sturtian Glaciation was globally

synchronous and limited to ca. 660 Ma through zircon U-Pb and

Re-Os dating (e.g., Rooney et al., 2015; Hoffman et al., 2017). The

similar radiometric ages were also reported in South China. For

example, the uppermost Tiesi’ao Fm yielded a Re-Os age of 660.6 ±

3.9Ma (Rooney et al., 2020). The Mn-carbonate unit of the Datangpo

Fm yielded zircon U-Pb ages of ca. 660 Ma through LA-ICP-MS (Yu

et al., 2017; Ma et al., 2023), SIMS (Wang et al., 2019a), ID-TIMS

(Zhou et al., 2004), CA-ID-TIMS (Rooney et al., 2020; Zhou et al.,

2020), and SHRIMP (Yin et al., 2006), with a Re-Os age of 660.6 ± 7.5

Ma (Pei et al., 2017). Moreover, the coeval post-Sturtian cap

carbonates in South China also yielded a similar zircon U-Pb age

of 658.8 ± 0.5 Ma via CA-ID-TIMS (Zhou et al., 2019). The

geochronological lines of evidence can also be used to constrain the

formation age of the “Datangpo-type” manganese deposits.

3 Samples and methods

The present study focuses on the drillcore ZK2115 (Figure 1). A

total of 38 samples were collected from the first member of the

Datangpo Fm, including 24 samples from the Mn-carbonate unit

(~11 m) and 14 samples from the black shale unit (~30 m).

The collected fresh samples avoiding veins were cleaned and

crushed to ~200 mesh before geochemical analyses. The TN

contents, inorganic carbon and oxygen isotope, and organic

carbon isotope compositions were conducted at the State Key

Laboratory of Geological Processes and Mineral Resources, China

University of Geosciences (Wuhan).
FIGURE 1

(A) Tectonic units of China. (B) Structure of the Nanhua Rift Basin on the southeast margin of the Yangtze Block (Zhou et al., 2016). (C) Distribution
of Datangpo-type manganese deposits in the Guizhou–Hunan–Chongqing adjacent area (modified from Zhou et al., 2016, 2022). The study drillcore
ZK2115 is marked by red stars.
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The TN contents were analyzed in an Elementar Vario MACRO

CUBE element analyzer, and the analytical precisions are better

than 0.02%. The inorganic carbon and oxygen isotope compositions

were analyzed using a MAT253 isotope ratio mass spectrometer.

The results are expressed in delta notation as per mil (‰) deviations

relative to Vienna Pee Dee Belemnite (VPDB) standard (d13C =

[(13C/12C)sample/(
13C/12C)VPDB − 1] * 1,000). The analytical

precisions are better than 0.1‰ based on two laboratory

standards (GBW04416 and GBW04417).

Before the nitrogen and organic carbon isotope analyses, the

carbonate portions should be removed. The powder samples were

treated with 4 M hydrochloric acid until the carbonates were

completely reacted. Then, the residues were rinsed by deionized

water for several times until pH tests gave a near-neutral value

(≥6.0). The samples were then centrifuged and dried in the oven at

50°C. The carbonate-free samples were analyzed using an EA

+MAT253 isotope ratio mass spectrometer. The results are also

expressed in delta notation as per mil (‰) deviations relative to the

VPDB standard (d13C = [(13C/12C)sample/(
13C/12C)VPDB − 1] *

1,000). The analytical precisions are better than 0.06‰, and the
Frontiers in Marine Science 04
analysis results are based on three laboratory standards

(GBW04407, GBW04408, and ACET).

The carbonate-free d15N values of the study samples were

analyzed in EA+IRMS (isotope ratio mass spectrometry; IsoPrime

100) at the State Key Laboratory of Marine Environmental Science,

Xiamen University. The results are reported using standard delta

notation as deviations (d15N = [(15N/14N)sample/(
15N/14N)standard −

1] * 1,000); the standard is atmospheric N2 with a d15N value of 0‰.

The analytical precisions are better than 0.1‰ based on laboratory

standards (USGS40, GUGS41, and IAEA-600).
4 Results

All geochemical data for the Mn-carbonate unit and the black

shale unit are given in Table 1. The TN contents range from 0.02%

to 0.12% (mean 0.06%) in the Mn-carbonate unit and from 0.07% to

0.10% (mean 0.08%) in the black shale unit (Figure 3). The d15N
values decrease from the Mn-carbonate unit (+1.53‰ to +5.26‰,

mean +3.36‰) to the overlying black shale unit (−3.74‰ to
FIGURE 2

(A) Cryogenian stratigraphic sequence of drillcore ZK2115 in the Nanhua Basin of South China. Two ore types of the “Datangpo-type” manganese
deposits precipitated in the basal Datangpo Fm, i.e., banded ores (B) and massive ores (C).
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+3.54‰, mean +0.89‰) (Figure 3). The d13Corg values vary from

−33.61‰ to −31.82‰ (mean −32.84‰) in the Mn-carbonate unit

and from −31.92‰ to −30.55‰ (mean −31.20‰) in the black shale

unit (Figure 3). Meanwhile, the d13Ccarb values range between

−11.17‰ and −5.22‰ (mean −8.30‰) in the Mn-carbonate unit,

while the d18O values range between −10.14‰ and −4.81‰ (mean

−8.57‰) (Figure 3). The C/N values range between 14.9 and 128.6

(mean 56.0) in the Mn-carbonate unit, which are higher than the

black shale unit (15.8 to 44.2, mean 25.8).
5 Discussion

5.1 The nitrogen and carbon isotope
evaluation of the post-Sturtian
Datangpo Fm

The nitrogen isotope compositions of sedimentary rocks are

used to reflect local redox conditions in the water column of ancient

oceans and reconstruct biogeochemical N cycling (e.g., Sigman

et al., 2009; Quan et al., 2013; Ader et al., 2014, 2016; Stüeken

et al., 2016). However, the d15N can be altered during diagenesis and

metamorphism to some extent (Robinson et al., 2012; Ader et al.,

2016). The d15N values can be elevated by 3‰–5‰ under oxic

diagenesis (Lehmann et al., 2002; Robinson et al., 2012), but the

d15N values would not alter or only decrease slightly (~1‰) due to

anaerobic degradation of organic matter under anoxic conditions

(Freudenthal et al., 2001; Lehmann et al., 2002; Möbius et al., 2010;

Robinson et al., 2012). During the metamorphism, isotopically light

N would preferentially escape, resulting in higher d15N in residual N

reservoirs (Ader et al., 2014). The N geochemical signals in

sediments can also be influenced by continental input, but the
Frontiers in Marine Science 05
detrital components in the Datangpo Fm were sourced from flood

basalt weathering (Yu et al., 2016), and no significant relationship

was found between Al2O3 and d15N in the Datangpo Fm (Wu et al.,

2024); thus, the input of continental N was limited in the first

member of the Datangpo Fm.

Nitrogen can be preserved in rocks as two forms, i.e., organic N

in organic matter and ammonium (NH4
+) bound with clay

minerals. Up to 60% of sedimentary N can be bound with clays

as NH4
+ within the sediments (Müller, 1977). The positive

relationship between TOC and TN indicates that N is sourced

frommarine primary organic matter (Calvert, 2004), while the weak

or no relationship indicates inorganic clay-bound N or reflects

terrigenous inputs (Calvert, 2004; Bristow et al., 2009). NH4
+ has a

similar charge and size to K+, which can substitute for K+ in

phyllosilicates (Müller, 1977; Freudenthal et al., 2001) after being

released through the degradation of organic matter (Busigny and

Bebout, 2013; Stüeken et al., 2016). In this study, TOC and TN show

no relationship (Figure 4A), but K2O and TN show positive

relationships in the Mn-carbonate unit [r = + 0.92, p(a) < 0.001]

and the black shale unit [r = + 0.66, p(a) < 0.01] (Figure 4B),

indicating that the N in sediments was bound with silicate, which

were transferred from organic matter.

During the burial diagenesis and metamorphism, organic N can

be preferentially lost over organic carbon, resulting in higher C/N

ratios. The Datangpo Fm did not experience metamorphism; thus,

the metamorphic influence on d15N can be negligible (Tu et al.,

2024; Wu et al., 2024). C/N shows no relationship with d15N in the

study units (Figure 4C), indicating that the preferential loss of N

during burial diagenesis did not alter the d15N values (Cremonese

et al., 2013). However, TN shows negative relationships with d15N [r

= −0.66, p(a) < 0.01] (Figure 4D) and C/N [r = −0.87, p(a) < 0.001]

(Figure 4E) in the Mn-carbonate unit, but no relationships in the
FIGURE 3

Geochemical profiles of drillcore ZK2115 for the first member of the Datangpo Fm, located in the Gaodi Deposit, Guizhou Province. TOC and Mn
contents are collected from Wang et al. (2019b).
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TABLE 1 Geochemical data of the drillcore ZK2115 in Gaodi Deposit, Guizhou Province.

15 13 18 13 TOC K2O Mn
C/N

(%) (%) (%)

1.0 3.2 0.2 16.9

1.2 3.0 0.2 17.7

1.3 2.9 0.1 20.8

1.9 3.3 0.1 25.6

2.9 3.1 0.2 41.8

3.1 3.3 0.4 44.2

2.7 3.5 0.5 39.5

1.9 4.0 0.3 30.9

1.3 4.7 0.2 15.8

1.7 4.1 0.3 24.4

1.7 4.1 0.4 20.0

1.6 4.0 0.2 22.0

1.8 4.4 0.2 22.6

1.6 4.4 0.2 19.3

1.6 3.4 5.7 25.4

2.8 1.3 18.3 80.3

2.1 1.2 18.1 49.4

2.6 0.6 24.5 63.0

1.8 3.0 9.7 28.9

2.6 0.5 22.8 81.3

2.0 4.1 0.9 23.2

2.7 0.6 24.0 76.0

2.9 3.0 0.9 38.8

1.6 5.5 2.8 14.9

2.6 0.5 26.1 107.5

2.3 2.1 14.2 44.5

(Continued)
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Formation Sample no.
Depth TN d N d Ccarb d O d Corg

(m) (%) (‰) (‰) (‰) (‰)

Datangpo Fm ZK2115-H49 1,597.40 0.07 3.54 −30.80

Black shale unit ZK2115-H47 1,599.40 0.08 3.52 −30.55

ZK2115-H45 1,601.40 0.08 0.23 −30.91

ZK2115-H43 1,603.40 0.09 −3.74 −30.97

ZK2115-H41 1,605.40 0.08 1.24 −30.92

ZK2115-H39 1,607.40 0.08 1.45 −31.11

ZK2115-H35 1,611.40 0.08 1.85 −31.92

ZK2115-H33 1,613.40 0.07 0.53 −31.21

ZK2115-H31 1,615.40 0.10 1.54 −31.22

ZK2115-H29 1,617.40 0.08 1.30 −31.64

ZK2115-H27 1,619.40 0.10 1.75 −31.33

ZK2115-H25 1,621.40 0.08 −0.61 −31.70

ZK2115-H23 1,623.40 0.09 1.33 −31.26

ZK2115-H21 1,625.40 0.09 −1.54

Datangpo Fm ZK2115-H19 1,627.40 0.07 3.22 −5.42 −8.91 −31.95

Mn-carbonate unit WX-32 1,627.90 0.04 −9.55 −8.17

ZK2115-H18 1,628.40 0.05 4.77 −7.25 −9.32 −32.81

WX-33 1,628.90 0.05 4.06

ZK2115-H17 1,629.40 0.07 3.87 −7.05 −7.64 −32.22

WX-34 1,629.90 0.04 −8.21 −9.55 −32.55

ZK2115-H16 1,630.40 0.10 2.72 −7.48 −10.41 −32.85

WX-35 1,630.90 0.04 −8.50 −10.25 −33.11

ZK2115-H15 1,631.40 0.09 2.04 −33.19

WX-36 1,631.70 0.12 2.67 −7.41 −9.02 −32.39

ZK2115-H14 1,632.00 0.03 −9.25 −9.15 −33.47

ZK2115-H13 1,632.40 0.06 3.78 −8.82 −9.38 −33.21
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https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


TABLE 1 Continued

d15N d13Ccarb d18O d13Corg TOC K2O Mn
C/N

(‰) (‰) (‰) (‰) (%) (%) (%)

3.69 −5.22 −6.12 −31.82 2.1 3.1 8.5 31.2

5.26 −8.78 −9.41 −32.62 1.1 0.3 24.5 64.1

4.95 −8.69 −8.14 −33.16 2.2 0.7 24.9 31.2

3.29 −9.69 −7.41 −33.09 2.6 1.2 19.9 73.0

1.53 −32.40 3.1 4.1 0.2 43.0

4.17 −8.97 −9.72 −33.61 2.5 0.3 26.9 128.6

2.57 −6.71 −8.52 −32.66 2.2 4.1 7.9 24.6

2.93 −7.97 −10.36 −32.58 2.2 4.2 2.2 25.6

−9.41 −4.81 −33.22 1.7 0.8 22.4 78.1

−10.40 −7.70 −33.31 1.9 0.7 23.1 80.0

−11.17 −7.46 −33.32 2.3 0.8 21.2 99.7
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Depth TN

(m) (%)

ZK2115-H12 1,632.80 0.08

ZK2115-H11 1,633.10 0.02

ZK2115-H10 1,633.40 0.08

ZK2115-H9 1,633.70 0.04

ZK2115-H8 1,634.10 0.08

ZK2115-H7 1,634.60 0.02

ZK2115-H6 1,635.10 0.11

ZK2115-H5 1,635.40 0.10

ZK2115-H4 1,635.70 0.02

ZK2115-H3 1,636.25 0.03

ZK2115-H2 1,636.55 0.03

ZK2115-H1 1,637.15 0.09

TOC, K2O, and Mn contents of whole rock samples are from Wang et al. (2019b, 2020).
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black shale unit (Figures 4D, E). Furthermore, the K2O and d15N
show a negative relationship in the Mn-carbonate unit [r = −0.80, p

(a) < 0.001], but no relationship in the black shale unit (Figure 4F).

These findings indicated that the N signals were altered by early

diagenesis in the Mn-carbonate unit, but the initial signals were

preserved in the black shale unit.

The sedimentary carbonates record contemporaneous paleo-

ocean chemistry and can be used to reflect ancient ocean

information. However, carbonates are susceptible to post-

depositional diagenesis, which can overprint primary geochemical

signals, such as the concentrations of trace element (Mn, Fe, Ca, and

Sr) and isotope compositions (d13C and d18O) (e.g., Swart, 2015;
Swart and Oehlert, 2018; Reis et al., 2019). Considering that Ca and

Sr can be replaced by Fe and Mn from carbonate lattice during

diagenesis, the elemental ratios, such as Mn/Sr and Fe/Sr, can be

used to identify diagenetic alteration (e.g., Banner and Hanson,

1990; Kaufman and Knoll, 1995; Kouchinsky et al., 2008; Swart,

2015). The sediments in the Mn-carbonate unit of the Datangpo Fm

were affected by strong hydrothermal activity, which can provide
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extra Mn and Fe to the sediments (Wu et al., 2016; Tan et al., 2021;

Li et al., 2022); thus, the element ratios cannot be used to reflect

diagenetic alteration in this study.

Diagenesis can also decrease the original d13C and d18O values

in carbonates (e.g., Kaufman and Knoll, 1995; Melezhik et al., 2005;

Derry, 2010; Swart, 2015; Reis et al., 2019), and the d18O values are

more sensitive to diagenetic alterations (e.g., Banner and Hanson,

1990; Kaufman et al., 1991; Ray et al., 2003; Swart, 2015). When

d18O > −10‰, it indicates a small effect of diagenesis (Kaufman and

Knoll, 1995). Meanwhile, the positive correlation between d13Ccarb

and d18O values is another sensitive indicator of diagenetic

alterations (e.g., Kaufman and Knoll, 1995; Knauth and Kennedy,

2009; Derry, 2010; Bishop et al., 2014; Swart, 2015; Swart and

Oehlert, 2018). In recent studies, the correlation between d13Corg

and d13Ccarb values is also used to evaluate the influence of

diagenesis. If sedimentary carbonates are not influenced by

meteoric water (Oehlert and Swart, 2014), the covaried d13Corg

and d13Ccarb values are thought to retain original carbon isotope

records (e.g., Knoll et al., 1986; Johnston et al., 2012; Meyer et al.,
FIGURE 4

Cross-plots of TOC-TN (A), K2O-TN (B), C/N-d15N (C), TN-d15N (D), TN-C/N (E), and K2O-d15N (F) in the Mn-carbonate unit (red color) and the overlying
black shale unit (blue color) of the Datangpo Fm in the drillcore ZK2115. TOC and K2O contents are collected from Wang et al. (2019b, 2020).
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2013). In this study, the d18O values of most samples in the Mn-

carbonate unit are higher than −10‰, the d13Ccarb and d18O values

show no relationship (Figure 5A), and the d13Corg and d13Ccarb

values show a strong positive correlation [r = + 0.85, p(a) < 0.001]

(Figure 5B), implying that the d13Ccarb values are not altered by

diagenesis. Based on the diagenetic indicators, the Mn-carbonate

unit recorded original carbon isotope signals and can be used to

trace paleo-ocean geochemical information.
5.2 Redox conditions of the deep basin and
constraints on manganese mineralization
in the Cryogenian Nanhua Basin

Nitrogen has multiple valence states (−3 to +5) and is preserved

as different types depending on redox conditions (Ader et al., 2014,

2016; Sigman et al., 2009; Canfield et al., 2010; Stüeken et al., 2016).

The nitrogen species are complex, including nitrate, nitrite,

ammonium, and N2. The transformation between different

species occur through different pathways, such as N2 fixation,

nitrification, denitrification, and anammox, which are

accompanied by different N isotope fractionations (i.e.,

d15Nproduct − d15Nreactant). As atmospheric N2 cannot be directly

utilized by most living organisms, N2 fixation by aerobic or

anaerobic autotrophs (nitrogen fixers) is the only pathway for

atmospheric N2 to enter the marine N cycle. Atmospheric N2 is

transferred to organic matter as NH4
+ through N2 fixation, and this

process generates minor N isotope fractionation (−2‰ to +1‰),

except under Fe2+-enriched conditions or in thermophilic cultures

where it can reach −4‰ (Zerkle et al., 2008; Stüeken et al., 2016).

Bioavailable N in the ocean (e.g., NH4
+ and NO3

−) is originally

sourced from organic matter. Nitrification, which can transfer

NH4
+ to NO3

−, occurs under oxic conditions. When NH4
+ is

partially oxidized, the residual NH4
+ is enriched with 15N.

Denitrification occurs in anoxic water columns and sediments,

and can transfer NO3
− to N2. When NO3

− is completely

consumed, the N isotope generates no isotope fractionation.

However, when NO3
− is not completely consumed in the water

columns, 14N-enriched NO3
− is preferentially reduced, resulting in

significant N isotope fractionation (~−20% to −30%; Sigman et al.,
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2009). The N isotope fractionation during denitrification that

occurs under anoxic sediments is negligible, because NO3
− is

completely consumed in porewater (Sigman et al., 2009;

Cremonese et al., 2013). Anammox occurs under strictly anoxic

conditions, and N2 is generated through the reaction of NH4
+ and

NO2
-. This is another important pathway by which N is lost from

the ocean N cycle.

In the Mn-carbonate unit and the black shale unit of the

Datangpo Fm, N was bound to silicates, which was sourced from

organic matter. N was initially preserved in organic matter as NH4
+

and formed through N2 fixation. The d15N values of organic matter

N were low, because of the minor N isotope fractionation during

this process and the low d15N values of atmospheric N2 (0‰).

During the sinking of the generated organic matter into the

sediments, the oxidation processes almost had no effect on the N-

bearing biomass (Wu et al., 2024). When NH4
+ was released from

organic matter during organic matter mineralization, there was

small isotope fractionation owing to its efficiency (Möbius, 2013). If

the released NH4
+ remains stable under anoxic conditions, N

isotope fractionation during non-quantitative NH4
+ assimilation

can be significant (Dorg-NH4+: up to −27‰) when [NH4
+] is greater

than 20 mM, resulting in 15N-depleted organic matter (Pennock

et al.,1996; Stüeken et al., 2016), but it decreases strongly as the

availability of NH4
+increases, and no fractionation is generated

when it is completely consumed. The elevated d15N values in

sediments throughout Earth’s history might be related to intense

denitrification under suboxic conditions, compared with the

relatively low d15N values recorded under oxic and anoxic

conditions (e.g., Quan et al., 2013), but other studies attributed

this to oxic diagenesis (Stüeken et al., 2016). When the released

NH4
+ was partially oxidized under oxic conditions, oxidation rate

was rapid, and 14N was preferential oxidized, resulting in residual

NH4
+ characterized by higher d15N values. The nitrification of

NH4
+ generated the highest d15N in sediments at ~2.7 Ga (up to

+50‰; Thomazo et al., 2011). Considering the changes in TN and

d15N during early diagenesis, the deep water was probably oxic

during the precipitation of the Mn-carbonate unit, which can result

in a negative relationship between TN and d15N (Figure 4D),

whereas the deep water was anoxic during the precipitation of the

black shale unit.
FIGURE 5

Cross-plots of d13Ccarb-d18O (A) and d13Ccarb-d13Corg (B) in the Mn-carbonate unit of the Datangpo Fm in the drillcore ZK2115.
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In the Mn-carbonate unit of the Datangpo Fm, the Mn contents

show a strong negative relationship with TN [r = −0.86, p(a) <
0.001] (Figure 6A), but a positive relationship with d15N [r = +0.85,

p(a) < 0.001] (Figure 6B), implying that the metallogenesis of the

manganese deposits was related to N geochemical signals. When

large amounts of Mn-carbonates were reduced from Mn-oxides/

oxyhydroxides, abundant organic matter can be degraded,

accompanied by enhanced release of NH4
+. However, low

contents of N and 15N-enriched NH4
+ were transferred to silicate,

indicating that 14N-enriched NH4
+ was preferentially consumed,

which may be related to oxic conditions in the deep basin. Under

oxic conditions, significant N isotope fractionation can occur when

NH4
+ was partially oxidized, resulting in residual NH4

+

characterized by relatively higher d15N values.

The redox conditions in the deep Nanhua Basin are not clear in

the basal Datangpo Fm. For example, Fe speciation in the Mn-

carbonate unit of the Datangpo Fm recorded oxic intervals in the
Frontiers in Marine Science 10
Yangjiaping section (Li et al., 2012), but anoxic conditions in the

Xiushan section (Ma et al., 2019), Gaodi and Xixibao sections

(Cheng et al., 2021), Daotuo and Datangpo sections (Wu et al.,

2024), and the overlying black shale unit (cf. Wu et al., 2024).

Additionally, Corg:P and Ce/Ce* recorded oxic–suboxic conditions

in the Mn-carbonate unit and anoxic conditions in the black shale

unit (Yu et al., 2016; Xiao et al., 2017; Ai et al., 2021). The findings of

this study showed that the Mn-carbonate unit recorded oxic

intervals, and the redox variations in the deep Nanhua Basin were

related to the episodic ventilation by density flow, which can

transfer oxygen to deep water and result in intermittent

oxygenation (Yu et al., 2016). Episodic ventilation facilitated the

metallogenesis of the manganese deposits in the Nanhua Basin, and

the dissolved Mn2+ was first oxidized to Mn-oxides/oxyhydroxides

in the oxic deep Nanhua Basin, which were reduced and ultimately

preserved as Mn-carbonates in the sediments (Yu et al., 2016, 2017;

Wu et al., 2016; Xiao et al., 2017).
FIGURE 6

Cross-plots of Mn-TN (A), Mn-d15N (B), TOC-d13Corg (C), TOC-d13Ccarb (D), Mn-TOC (E), and Mn-d13Ccarb (F) in the Mn-carbonate unit (red color)
and the overlying black shale unit (blue color) of the Datangpo Fm in the drillcore ZK2115. TOC and Mn contents are collected from Wang
et al. (2019b).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1469283
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1469283
5.3 Anomalous d13Ccarb excursions in the
post-Sturtian Nanhua Basin, South China

5.3.1 Carbon isotope evolution of organic matter
after the Sturtian Glaciation

Based on the Snowball Earth hypothesis (Kirschvink, 1992;

Hoffman et al., 1998; Hoffman and Schrag, 2002), the ice sheet

prevailed on Earth during Neoproterozoic global glaciations, and

even reached the equator. However, the ecosystem did not

completely collapse during the extreme icehouse climate. For

example, the evidence of organic molecules and biomarkers

indicates that photosynthesis never ceased during the Sturtian

Glaciation, even though the rate was low (Olcott et al., 2005;

Wang et al., 2008; Riedman et al., 2014). The organic matter

generated through photosynthesis was preserved in glacial

sediments, which were characterized by low TOC contents (mean

0.12%; McKirdy et al., 2001; Olcott et al., 2005; Pei et al., 2020).

After the Sturtian Glaciation, the ice sheet melted, accompanied

by a transition from icehouse climate to greenhouse climate

(Hoffman et al., 1998; Yonkee et al., 2014; Scheller et al., 2018),

and the chemical weathering intensity was enhanced, leading to the

transfer of large amounts of nutrients into the ocean (e.g., Rieu et al.,

2007; Zhu et al., 2019; Ai et al., 2020a; Wang et al., 2020; Wei et al.,

2020; Li et al., 2022). At the end of the Sturtian Glaciation, microbes
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began to flourish (e.g., Zhu et al., 2019; Ai et al., 2020b). The

planktonic biotas were widespread and abundant after the

glaciation (Riedman et al., 2014). Moreover, the rise of algae

(including cyanobacteria) with great diversities contributed to the

organic matter inputs in the post-Sturtian sediments (Brocks et al.,

2017; Zhu et al., 2019; Ai et al., 2020b). In the Nanhua Basin, the

post-Sturtian Datangpo Fm sediments were strongly affected by

hydrothermal activity (Wu et al., 2016; Yu et al., 2016; Tan et al.,

2021; Li et al., 2022), which can also provide essential nutrients for

life in the ocean, promoting microbial breeding and increasing the

rate of photosynthesis (Tribovillard et al., 2006; Dick et al., 2013).

In this study, the Mn-carbonate unit and the black shale unit of

the Datangpo Fm are characterized by high TOC contents (mean

2.2% and 1.8%, respectively; Wang et al., 2019b) (Figure 3), which

are consistent with previous studies in this basin (Figure 7; e.g., Wei

et al., 2016; Zhu et al., 2019, 2022; Ai et al., 2020a, 2021; Tan et al.,

2021; Li et al., 2022; Zhao et al., 2022). The high TOC contents were

also recorded in the coeval clastic sedimentary sequences, such as

the Twitya Fm in Canada (Sperling et al., 2016), the Arena Fm in

East Greenland (Scheller et al., 2018), the MacDonaldryggen

Member of the Elbobreen Fm in Svalbard (Kunzmann et al.,

2015), and the Tapley Hill Fm and Aralka Fm in Australia

(McKirdy et al., 2001; Bowyer et al., 2023). The TOC contents

show a decreasing trend from the Mn-carbonate unit and black
FIGURE 7

Mn, TOC, and d13C profiles for first member of the Datangpo Fm of Lijiawan area (A; Li et al., 2022), Datangpo area (B, C; Zhou et al., 2007; Tan
et al., 2021), Gaodi area (D; Pei et al., 2020), and Yanglizhang area (E; Zhu et al., 2019) in Guizhou Province and Gaodongyuan area in Chongqing
City (F; Zhu et al., 2019). TSA, Tiesi’ao Fm.
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shale unit to the overlying gray shales (only discovered in limited

areas) and the second member of the Datangpo Fm (mean 0.25%

and 0.12%, respectively; Li et al., 2012; Peng et al., 2019; Zhu et al.,

2019, 2022; Shen et al., 2022). This finding may be related to the

elevated oxygenated environment and rapid deposition rates, which

were not conducive to the preservation of organic matter (Zhu et al.,

2019). Whether the organic matter preserved in the sediments was

derived from primary productivity through photosynthesis needs to

be further studied. The detrital materials of the first member of the

Datangpo Fm were sourced from weathering of continental flood

basalts (Yu et al., 2016; Ai et al., 2020a), and the amount of recycled

organic matter input from continents was small; thus, this kind of

organic matter in the Datangpo Fm can be ignored (Burdige, 2007;

Peng et al., 2019). Thermal maturation during diagenetic or

metamorphic processes preferentially removes the light isotopic

composition for organic carbon isotopes, resulting in negative

correlations between the TOC and d13Corg values (Clayton, 1991;

Hayes et al., 1999), but the TOC and d13Corg values in the study

sections show no relationship (Figure 6C), indicating that the

d13Corg values were not altered by diagenetic or metamorphic

alterations. Additionally, the microbial sulfate reduction process

played a significant role during the organic matter degradation, but

the seawater sulfate concentration in Neoproterozoic was extremely

low (Hurtgen et al., 2002; Zhao et al., 2022), implying that organic

matter consumption by microbial sulfate reduction was extremely

low. The above findings showed that the organic matter preserved

in the Datangpo Fm was mainly the product of photosynthesis after

the glaciation and recorded the original carbon isotope signals.

The carbon isotope compositions of organic matter show a

gradually increasing trend from the Mn-carbonate unit (mean

−32.46‰) to the overlying black shale unit (mean −31.20‰)

(Figures 3, 7), and this shift can also be observed in other

sections across the Nanhua Basin (e.g., Wei et al., 2016; Ai et al.,

2020a, 2021; Pei et al., 2020; Tan et al., 2021; Li et al., 2022). The

high-resolution d13Corg values also show an increasing tendency in

the complete Datangpo Fm between the Sturtian and Marinoan

glaciations (Peng et al., 2019; Zhu et al., 2022; Bowyer et al., 2023),

which was consistent with the MacDonaldryggen Member of the

Elbobreen Fm in Svalbard (ca. −34.0‰ to −30.4‰, Halverson,

2011; Ader et al., 2014) and the Arena Fm in East Greenland

(−33.7‰ to −30.7‰, Scheller et al., 2018). The increasing d13Corg

values in the post-glacial sediments may be related to the burial of

large amounts of organic matter. During photosynthesis, the lighter
12C was preferentially utilized and incorporated into organic matter,

resulting in low d13C values of organic matter. With the increasing

burial of organic matter into post-glacial sediments, large amounts

of 12C were fixed in the sediments, resulting in higher carbon

isotope compositions of organic matter generated in later stages.

Therefore, the long-term organic carbon isotope evolution in the

post-Sturtian interval was related to the burial of organic matter

generated through photosynthesis.
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5.3.2 The negative d13Ccarb excursions in the
manganese deposits of the Nanhua Basin

The Mn-carbonate unit of the Datangpo Fm is characterized by

negative carbon isotope excursions, ranging from −11.17‰ to

−5.22‰ with a mean of −8.30‰ (Figure 3), similar to the carbon

isotope compositions of coeval manganese deposits in the Nanhua

Basin, such as Datangpo, Xiushan, Gucheng, and Xiangtan

manganese deposits (Figure 7; e.g., Li et al., 1999; Zhou et al.,

2007; Chen et al., 2008; Wu et al., 2016; Qu et al., 2018; Zhu et al.,

2019; Pei et al., 2020; Tan et al., 2021; Dong et al., 2023). The

d13Ccarb values of the Mn-carbonate unit are lower than those of the

overlying black shale unit in South China (−6.76‰ to −5.15‰,

mean −5.94‰; Zhu et al., 2019) (Figure 7F) and coeval marine

clastic sediments globally, such as the Arena Fm shales in East

Greenland (−7.88‰ to +1.42‰, mean −3.39‰, n = 18; Scheller

et al., 2018) and the Tindelpina Shale Member of the Tapley Hill Fm

in South Australia (−6.7‰ to +1.5‰, mean −3.59‰, n = 39;

McKirdy et al., 2001; Giddings and Wallace, 2009). However, the

d13Ccarb values of the basal Datangpo Fm are lower than the carbon

isotope compositions of the mantle (−5‰; Kump and Arthur,

1999); thus, the influence of the mantle on the negative carbon

isotope excursions can be excluded. Many studies suggested that

this phenomenon was related to organic matter degradation, which

can provide 13C-depleted carbon (Li et al., 1999; Chen et al., 2008;

Wu et al., 2016; Qu et al., 2018; Zhu et al., 2019). The TOC and

d13Ccarb show no relationship (Figure 6D), indicating that the

inorganic carbon isotope compositions of the Mn-carbonates

were not influenced by the TOC contents. Meanwhile, the Mn

contents show no relationship with TOC (Figure 6E), but a negative

relationship with d13Ccarb [r = −0.66, p(a) < 0.01] (Figure 6F),

implying that the organic matter was sufficient for the Mn reduction

and that the d13Ccarb values were influenced by Mn-carbonate

formation. The elevated Mn-carbonate formation indicated

enhanced organic matter mineralization, resulting in more 12C-

enriched C being transferred to CO3
2− and ultimately preserved in

Mn-carbonates, which were characterized by lower d13Ccarb values.

Therefore, the negative carbon isotope excursions in the post-

Sturtian Nanhua Basin were related to the metallogenic process of

the manganese deposits, similar to the Ediacaran manganese

deposits in the northern margin of the Yangtze Block (Zhang

et al., 2024a, 2024b). These lines of evidence also suggested that

the Mn-carbonates were mainly precipitated with the precursor of

Mn-oxides/oxyhydroxides (Yu et al., 2016, 2017; Wu et al., 2016;

Xiao et al., 2017). However, a previous study suggested that part of

Mn-carbonates can precipitate directly from anoxic water columns,

which are characterized by small grains (<2 mm) and core–shell

structures (i.e., a minor Ca-carbonate core enclosed by a Mn-

carbonate shell) (Ai et al., 2023). This process of Mn-carbonate

formation can occur when the deep basin was episodic anoxic, but it

is not the major metallogenic process. Furthermore, only small

amounts of Mn-carbonates can be formed through this process.
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5.4 N–C cycling in the post-Sturtian
Nanhua Basin, South China

Based on this study, we propose a new nitrogen and carbon

cycling model for the post-Sturtian Nanhua Basin. During the

Sturtian Glaciation, photosynthesis rates were relatively weak

during extreme icehouse climate, and the recorded OM contents

in glacial sediments were low (mean 0.12%; McKirdy et al., 2001;

Olcott et al., 2005; Pei et al., 2020). After the Sturtian Glaciation, the

ice sheet melted accompanied by the transition to greenhouse

climate. The ecosystem recovered, photosynthesis rates increased

dramatically, and 12C was preferentially utilized and incorporated

into the organic matter during this process (Knauth and Kennedy,

2009). Large amounts of organic matter generated by

photosynthesis were preserved in the Mn-carbonate unit of the

Datangpo Fm, which was characterized by high TOC contents

(mean 2.2%) with a mean d13Corg of −32.84‰ (Figure 8A). During

the formation of organic matter, atmospheric N2 was fixed in

organic matter as NH4
+. The organic matter (including Norg) then

sank into the sediments. During the postglacial interval, episodic

ventilation in the deep Nanhua Basin transferred large amounts of

oxygen into the deep basin (Feng et al., 2010; Li et al., 2012; Yu et al.,

2016; Dong et al., 2023), which led to intermittent oxic conditions in

the deep Nanhua Basin. Hydrothermally sourced Mn2+ was

oxidized to Mn-oxides/oxyhydroxides and then reduced to Mn-

carbonates after being co-buried with organic matter in the

sediments (Yu et al., 2016, 2017; Wu et al., 2016; Xiao et al.,

2017). During this process, organic matter acted as an electron

acceptor and facilitated the reduction of Mn-oxides/oxyhydroxides.
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During early diagenesis, Norg was preferentially released over Corg.

Moreover, Norg was released as NH4
+ from organic matter, part of

which was oxidized to NO3
− in the oxic deep basin, and significant

N isotope fractionations were generated during this process. This

residual NH4
+ was bound with silicates and characterized by

elevated d15N values (mean +3.36‰). During organic matter

mineralization driven by Mn-carbonate formation, 13C-depleted

C led to negative d13Ccarb excursions (mean −8.30‰).

During the deposition of the black shale unit of the Datangpo Fm,

the photosynthesis rates were still high, and the sediments were also

characterized by high TOC contents (mean 1.8%) (Figure 8B). With

the burial of 13C-depleted organic matter after the Sturtian

Glaciation, the latterly formed organic matter was characterized by

higher carbon isotope compositions (mean −31.20‰), which caused

the d13Corg values in the black shale unit to be higher than the Mn-

carbonate unit and show an increasing trend during the postglacial

interval (Figure 3). During this period, the deep water was anoxic and

covered by oxic surface water. After the OM (including Norg) sank,

NH4
+ was released from the organic matter, part of which diffused

into anoxic deep water without N isotope fractionation. The residual

NH4
+ was bound to silicate, which recorded the original d15N signals

(mean +0.89‰). Moreover, the seawater DIC reservoir in the black

shale unit inherited the carbon isotope compositions of the Mn-

carbonate unit, but the organic matter degradation facilitated by Mn-

carbonate formation ceased; thus, the 13C-depleted carbon input was

lacking. Therefore, the d13Ccarb values in sediments showed negative

d13Ccarb excursions (mean −5.81‰; Zhu et al., 2019; Pei et al., 2020)

but were greater than the underlying Mn-carbonate unit

(mean −8.30‰).
FIGURE 8

Nitrogen and carbon cycling model in the Mn-carbonate unit (A) and the black shale unit (B) of the Datangpo Fm after the Sturtian Glaciation.
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6 Conclusions

The Nanhua Basin of South China recorded the complete

Cryogenian stratigraphic sequence from the Sturtian to the Marinoan

glaciations, and the manganese deposits precipitated in the interglacial

Datangpo Fm. The main findings of this study are as follows:
Fron
1. After the Sturtian Glaciation, the Mn-carbonate unit is

characterized by relatively high d15N values (mean +3.66‰),

implying the oxic conditions in the Mn-carbonate unit. The

oxic deep basin facilitated the Mn2+ oxidation to Mn-oxides/

oxyhydroxides, which were ultimately reduced and preserved

as Mn-carbonates in the sediments. Therefore, the

metallogenic process of the manganese deposits was mainly

constrained by redox variations, which experienced two stages.

The overlying black shale unit is characterized by relatively low

d15N values (mean +0.89‰), indicating the anoxic conditions

during this period.

2. During the reduction of Mn-oxides/oxyhydroxides, organic

matter was mineralized, resulting in 13C-depleted CO3
2− being

formed and preserved in Mn-carbonates. The Mn-carbonate

unit recorded the negative d13Ccarb excursions (mean −8.30‰),

which were caused by the Mn-carbonate formation. Carbon

cycling in the deep Nanhua Basin was strongly affected by the

metallogenesis of the Cryogenian manganese deposits.

3. The nitrogen and carbon cycling processes in the post-

Sturtian Nanhua Basin were influenced by redox variations,

and the N–C cycling model in the Cryogenian Nanhua Basin

was reconstructed. This model can also provide new insights

for the biogeochemical cycling in other ocean systems.
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