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Introduction: Tidal marsh wetlands provide essential and valuable services to the

wider interconnected marine and coastal environment, although the complex

intertwined processes in morphological evolution remain insufficiently

understood owing to synchronized data scarcity, limiting the development of

numerical models and management strategies.

Methods: This study investigated the hydrodynamic, biological, sediment and

morphological processes on the Doulong tidal wetlands, Jiangsu, China, using a

one-year field dataset that captured spatial and seasonal variations.

Results and discussion: Our results indicate that biophysical interactions among

multiple processes could result in some overlooked sedimentary behaviours and

bio-morphological patterns in tidal marsh wetlands. Firstly, the dominance of

alongshore currents caused a rapid alongshore expansion of saltmarsh patches,

by which the marsh edge achieved seaward advancing, markedly different from

the widely reported cross-shore expansion. Secondly, results showed that the

particle size of sediment near the marsh edge coarsened when plants withered

and then fined when plants grew, indicating that the seasonal variation trend of

sediment grain size in saltmarshes was opposite to the trend of vegetation

biomass. Thirdly, the interaction between vegetation and stranded marine

debris formed banded debris zones within the saltmarsh, where debris bands

could cause a biomass reduction of up to 58%, disrupting the commonly-

observed parabolic biomass-elevation relationship. Meanwhile, the seasonal

variation of vegetation and hydrodynamics could alter the debris positions and

hence result in the formation of multiple parallel debris bands. Overall, this study
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provides a synchronized dataset and elucidates specific bio-morphological

relationships and processes that have thus far not been systematically

documented, enhancing the comprehensive understanding of tidal marsh

wetland evolution.
KEYWORDS

synchronized, seasonal, morphodynamics, alongshore expansion, biomass,
marine debris
1 Introduction

Tidal marsh wetlands, among one of the most productive and

biologically diverse ecosystems, provide valuable ecosystem

services, such as nutrient cycling, carbon storage, and habitat

provision (Barbier et al., 2011; Mudd and Fagherazzi, 2016;

Nahlik and Fennessy, 2016; Li et al., 2022). Meanwhile, they have

drawn widespread attention due to their coastal protection function

and potential land resources (Zhou et al., 2022a). As is the case for

other coastal depositional landforms, tidal wetlands are naturally

dynamic, however, due to climate change, sea level rise, human

activities, and the lack of adaptive management measures, marsh

wetlands are facing degradation and loss (Spencer et al., 2016; Wu

et al., 2017; Li et al., 2018; Chen et al., 2020a; Pannozzo et al., 2021).

Thus, understanding the morphodynamics, particularly the

longshore and seaward expansion or erosion of tidal marsh

wetlands is essential for their conservation and restoration.

As the buffer zone between land and sea, tidal marsh wetlands are

highly dynamic and heterogeneous (van de Koppel et al., 2005; Li

et al., 2019, 2021; Houttuijn Bloemendaal et al., 2021). The early

relevant research predominantly focused on either physical aspects,

such as hydrodynamics and sediment transport, or biological aspects,

such as vegetation dynamics and species diversity. These approaches

have significantly advanced our understanding of tidal marsh

functioning, but the isolated understanding of physical or biological

processes alone is insufficient to accurately elucidate the evolutionary

mechanisms of tidal marsh wetlands because biophysical interactions

play a crucial role. Field observations suggest that vegetation can

significantly attenuate tidal currents and waves related to plant

characteristics (Möller, 2006; Möller et al., 2014; Cao et al., 2021;

Evans et al., 2022; Wei et al., 2022). Correspondingly, plant growth in

different environments depends on hydrodynamics and landscape

(Fraaije et al., 2015; Chen et al., 2020b). Numerical models have also

attempted to consider the impacts of vegetation on estuarine and

coastal morphodynamics (Zhou et al., 2016; Best et al., 2018), but our

knowledge of biophysical relationships remains inadequate due to the

limited availability of synchronized biophysical field measurements.

In addition to the need for synchronized data, the unique

morphological patterns in tidal flats cannot be ignored. For example,

most studies on saltmarsh evolution have primarily focused on cross-
02
shore processes, particularly in modelling research (Zhou et al., 2016;

Zhao et al., 2017; van der Wal et al., 2023). There is a lack of how

wetland evolution might be connected to alongshore currents,

sediment transport and vegetation on open coasts. Besides, as marine

debris is becoming more common (Thiel et al., 2013; Browne et al.,

2015), its intrusion into the wetland system during spring tides and

storm events and retention during neap tides, can be a potentially

important biogeomorphological process control (Viehman et al., 2011).

Although vegetation plays an important role in capturing marine

debris, the shrubby nature of the salt marsh vegetation can trap such

debris for prolonged periods, ultimately leading to negative impacts on

the growth of vegetation (Uhrin and Schellinger, 2011; Corbau et al.,

2023). However, there is limited research on the distribution and

impacts of marine debris in saltmarsh areas.

This study provides a biogeomorphological field dataset from

the tidal marsh wetland on the central Jiangsu coast, China, to

address the following specific scientific objectives: (1) The

differences between the alongshore and cross-shore expansion

pattern of saltmarsh patches; (2) The seasonal distribution and

variation characteristics of vegetation biomass and sediment grain

size; (3) The impact of marine debris on saltmarsh vegetation

biomass and its movement characteristics. By addressing these

objectives, this study emphasizes the importance of synchronous

biogeomorphological observations when working towards better

prediction of coastal wetland change and thus a pro-active approach

towards the sustainable management of coastal wetlands.
2 Materials and methods

2.1 Study area

Field observations were conducted on the intertidal flat of

Doulong, the central region of the Jiangsu coast, China (Figure 1A).

The Jiangsu coast is located between the abandoned Yellow River Delta

and the Yangtze Estuary, with a total length of 954 km. Since the

Jiangsu coast is jointly influenced by fluvial and marine forcing, the

coastal environment is dynamic and characterized by spatio-temporal

morphological variations. The nearshore tides in the study area are

irregular semidiurnal, with a tidal range of 2.56 m on average and 3.40
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m during spring tides (data from Xinyanggang gauging station). The

overall evolution of the Jiangsu coast shows a pattern of erosion in the

north and accretion in the south (Chen et al., 2020b). In the northern

part of this study area is the Yancheng Wetland National Nature

Reserve. For nature conservation within the protected area, the

adjacent regions of the reserve are restricted from large-scale human

activities. Therefore, the observed saltmarsh in this study can be

recognized as a natural environment without intensive direct human

intervention. In 1982, Spartina alterniflora was introduced to the

Jiangsu coast because of its positive effects on sediment trapping and

coastal protection (Chung et al., 2004; Gao et al., 2014), and then

spread rapidly due to its strong adaptability and competitiveness

(Zhang et al., 2004). Spartina alterniflora has replaced the native
Frontiers in Marine Science 03
species Suaeda salsa as the dominant marsh community in the study

area. Recently, China has started to control and manage Spartina

alterniflora, but there was no human intervention during this

observation period.

Themarsh edges in the Doulong region represent cliffs and smooth

transitions. Zhao et al. (2017) observed the rapid formation of marsh-

edge cliffs in the Yancheng Nature Reserve core region over a period of

only some 5 years. Chen et al., (2020b) observed three different features

of the saltmarsh edge on the Doulong tidal flat, including marsh-edge

cliffs, marsh patches, and the coexistence of cliffs and patches.

To explore the seasonal changes in vegetation, hydrology and

morphology, measuring and sampling were undertaken in 2020.09.19,

2020.12.09, 2021.03.15, and 2021.07.16, which represented autumn,
FIGURE 1

The location of the study area (A) and an overview of the area and transects covered in the study (B). Sketch of the physical measurement station
(C) and vegetation and sediment sampling (D). Source of aerial images: © Planet Explorer.
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winter, spring, and summer, respectively. Four observation periods

were all during neap tides. The wind speed data during observation

periods was obtained from a nearby monitor station (Supplementary

Table 1). Based on the 8-day average wind speed, the wind speed in July

2021 was highest (4.356 m/s) and in September 2020 was lowest (2.112

m/s). Although the wind conditions were not similar during the four

observation periods, the seasonal variations in wind conditions could

be partially reflected in the hydrodynamic results.
2.2 UAV photography

Remote sensing images have been used to capture the

kilometer-scale morphological evolution, but existing data

provides insufficient temporal and spatial resolution data to

resolve seasonal-to-annual dynamics (Frazier and Page, 2000;

Marani et al., 2006; Yang et al., 2019). UAV (Unoccupied

Aerial Vehicle) observation technology has been widely used

to obtain information on kilometer-scale and seasonal-to-annual

resolution landscape evolution (Moffett et al., 2015; Dai et al., 2021;

Chen et al., 2022). Therefore, in this study, a rectangular UAV

monitoring zone was established at the marsh margin where the

evolution of features such as marsh-edge cliffs, marsh patches and

tidal creeks were most evident.

A DJI MATRICE 600 UAV was employed for the aerial field

surveys. The UAV was equipped with a ZENMUSE X5 16.0 MP

camera (Figure 1B). The same observation range and flight route were

set every time when the site was resurveyed. The observation domain

was approximability 1.5 km × 0.5 km, covering the marsh edges, tidal

creeks and frontal marsh patches. The flight altitude was 80 m and the

overlap rate of the images along the parallel or perpendicular direction

to the flight direction was 50%. These parameters were selected to

optimize the coverage of the observation area, endurance of the drone,

and image quality. The Agisoft PhotoScan software was used to process

the images with acquired GPS information. After aligning photos,

establishing the dense point cloud and constructing the mesh,

georeferenced orthoimages were generated. In this study, three drone

flights were conducted in December 2020, March 2021, and July 2021,

collecting a total of 1854 photos. These photos were processed into

three orthophotos showing the topography of the saltmarsh in

different seasons.
2.3 Hydrodynamic measurements

The observation area was divided into northern and southern

zones, with the cross-shore channel in the middle as a reference

(Figure 1B). To obtain changes in variables along the cross-shore

direction, two transects (transect S and transect N) were set in the

northern and southern zones. Due to the movement of the marsh edge

and the rapid development of marsh patches, it was challenging to

establish a long-term observation site within the saltmarsh. Therefore,

two hydrodynamic observation sites were ultimately set up on the

unvegetated flat with a distance of approximately 500 meters. In-situ

measurements (see below) were conducted at each site to allow a

comparison between the northern and southern zones (Figure 1B).
Frontiers in Marine Science 04
A self-made shelf fixed with 4 anchors was used to install the

instruments safely and firmly at each site (Figure 1C). All instruments

were self-contained and set up in advance.Water levels and waves were

recorded by a tide and wave logger (RBR), installed 20 centimeters

above the sea bed, and set to record every 20 minutes with a frequency

of 4 Hz for 4096 wave burst samples. An optical backscatter sensor

(OBS-3A) was attached to the shelf at a height of 20 centimeters above

the bed to monitor suspended sediment concentration (SSC), which

was set up in cyclic configuration at 1 Hz with an interval of 150

seconds. An Acoustic Doppler Current Profiler (ADCP) was deployed

in an up-looking configuration at 2 MHz with an interval of 150

seconds to extract the velocity profile.
2.4 Bathymetry observation and
sample collection

Topographic change along the transects was measured by Real-

Time Kinematic (RTK) dGPS instruments with an accuracy of 15 mm

in the vertical and 10 mm in the horizontal. On the S. alterniflora

marsh area, 8 vegetation sampling points were selected along each

transect to be representative of the specific general cross-shore surface

cover type in the vicinity (Figure 1D). The spacing between the four

points closer to the edge was approximately 20 m, while the spacing

between the four more landward points was approximately 50 m.

Surface sediment samples (upper 2–3 cm in depth) were collected at

the same points to determine themedian bed sediment grain size (D50),

with 8 samples from each transect in each season.

Each plant sample was a 0.5 m × 0.5 m quadrat, marked by a

PVC frame. The harvested plant samples were dried in a 90 ° oven

for 12 hours until they reached a stable dry weight, which is the

above-ground dry biomass. The grain size of the surface sediment

was measured using a laser particle size analyzer (Malvern 3000).
3 Results

In this study, the evolution of several morphological patterns

could be clearly observed using the UAV orthoimages, including

marsh-edge cliffs, marsh patches and channels, and even some

bands of stranded marine debris and unvegetated zones. The

transect data showed the detailed cross-shore distribution of bed

level, vegetation biomass and sediment. The on-site sensors

recorded the representative hydrodynamic data of the study area.
3.1 Evolutions of morphological patterns

In December 2020, the most prominent observation was the large

extent of marsh patches in the northern area, with the farthest cluster

located approximately 150 meters from the marsh edge (Figure 2A).

There was a tidal channel in the north surrounded by dense marsh

patches, which extended toward the south. In contrast, in the southern

area, there were only a few patches near the marsh margin. There was

also a tidal channel extending toward the north. The outline of the

marsh edge exhibited an irregular and jagged pattern. In March 2021,
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the northern patch area became sparser because the above-ground part

of the Spartina plant was withered during winter (Figure 2B). The

northern channel head extended southward by 50 meters and the

southern channel extended by 30 meters (Figure 2D). The marsh edge

experienced slight erosion and retreated. In July 2021, the northern

patch area showed noticeable changes, with its boundary extending

southward by around 180 meters compared to March 2021. Moreover,

the original patches had almost interconnected together and became

part of the marshland (Figure 2C). Because of this change, the northern

channel head was obstructed by vegetation, hindering its southward

expansion, and even retreated by 15 meters compared to March 2021.

However, the southern tidal channel head continued to extend

northward by around 200 meters. Vegetation patches started to

emerge on both sides of the southern channel as part of an

expansion of the southern marsh edge (Figure 2D).

Two distinct morphological patterns were observed within the

saltmarsh: the debris bands and the bare/unvegetated zones
Frontiers in Marine Science 05
(Figure 2). The debris zones were mainly composed of various

types of materials, including abandoned bamboo and fishing nets,

plastics, glass bottles and other organic matter (Figure 2H). The

debris zones are distributed in band-like patterns and generally

parallel to the saltmarsh edge. However, the edges of the debris

bands were not strictly straight, resulting in spatial inconsistency in

the width. In this study, relatively straight portions were selected to

define the boundaries of debris bands, and the distance between them

was used to determine the width of the debris bands. In the north area

of the saltmarsh, there were three obvious debris bands (DB) in

December 2020. DB1 was located closest to the landward side, with a

width of approximately 12 meters. The main debris material in DB1

was bamboo, forming a meandering band. Because of the different

primary waste materials, the other area with marine debris was

divided into DB2 and DB3. DB2 was primarily composed of

marine debris and had a width of approximately 16 meters. DB3

was mainly comprised of organic matter, with the widest width of
FIGURE 2

The UAV orthoimages of the tidal flat at Doulong Harbor in (A) December 2020, (B) March 2021 and (C) July 2021. (D) showed the outlines of
morphological patterns. The white and yellow dashed boxes, magnified in (E), (F) and (G), showed the evolution of the debris bands (DB) and
unvegetated zones (UZ). (H) showed the common debris.
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about 37 meters. The organic matter included marsh plant litter,

eroded plant stems and grass from sea or river (Figure 2E). In terms

of the alongshore length of the debris bands, DB1 traverses the entire

northern saltmarsh, while DB2 andDB3 gradually narrow and deflect

toward the sea as they get closer to the northern side (Figure 2A). In

March 2021, the width and length of DB1 remained relatively

constant without obvious changes. There was little debris and plant

litter left at the original location of DB2 and DB3, but a new debris

band, DB4, occurred adjacent to DB1. DB4 was also composed of

debris and plant litter, with a smaller width of 21 m compared with

DB2 and DB3 (Figure 2F). Another difference between DB4 and

DB2/DB3 was that DB4 traversed the entire northern saltmarsh

without large width change (Figure 2B). In July 2021, the width of

DB1 decreased to 8m because of the expansion of the nearby marsh,

with plants growing between the bamboo debris. DB4 also narrowed

from 21 m to 10 m but mainly because large plant clusters grew in the
Frontiers in Marine Science 06
original plant litter area. There was also a new debris band (DB5)

formed, 7m wide, with relatively less debris and much closer to the

sea compared with other bands (Figure 2G). These three bands not

only exhibited similar widths but also had comparable alongshore

lengths. The northern portions of both DB1 and DB4 had finally

become incorporated into the saltmarsh. (Figure 2C).

Inside the saltmarsh, there was another kind of special zone

without, or with very few, plants, which we here defined as the

unvegetated zone (UZ). Different from debris bands, the shape and

distribution of the blank areas were more irregular, a rectangle

encompassing the majority of the unvegetated area was selected as

the boundary of the UZ, and its dimensions were considered as the

length and width of the UZ (e.g., UZ1 in Figure 3E). In December

2020, an unvegetated zone (UZ1) was present near DB1,

approximately 6 meters wide and 41 meters long (Figure 2E).

UZ1 remained the same in March 2021, but a new unvegetated
FIGURE 3

Bed level change of the transect S (A) and the transect N (B). Marsh edge points shift of the transect S (C) and the transect N (D).
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zone (UZ2) appeared, which was band-like and located closer to the

marsh edge (Figure 2F). In July 2021, the size of UZ1 decreased to

about 34 m × 5 m because of the growth of plants, but there was still

no plant cluster inside the unvegetated zone. However, UZ2

disappeared in July, as it had become entirely vegetated by marsh

plants (Figure 2G).
3.2 Variation of bed level and marsh
edge shift

The cross-shore bed level changes of transect S and transect N

both showed that there was an elevation difference between the

marsh platform and the unvegetated flat, transitioning through a

gentle slope (Figures 3A, B), placing both into the “smooth

transition” type of saltmarsh-edge landscapes (Allen, 2000).

However, they exhibited distinct evolutionary trends.

The southern marsh edge point shifted seaward by 7.6 m from

September 2020 to December 2020, then retreated by 2.5 meters

from December 2020 to March 2021, and subsequently shifted

seaward again by 6.6 meters from March 2021 to July 2021

(Figure 3C). The movement distance between each season was

less than 10 meters, indicating a gradual seaward expansion of the

southern saltmarsh over annual time scales but with seasonal

oscillation. The northern marsh edge point also shifted seaward,

but the movement was much larger and the distance reached 113.5

m fromMarch 2021 to July 2021 (Figure 3D). From December 2020

to July 2021, the vertical elevation of both the southern and

northern edge points increased. The increase of the northern

point (0.24m) was slightly greater than that of the southern

point (0.17m).

The mean bed levels of the marsh platform and unvegetated flat

were calculated to show the overall evolutionary trend (Figure 4). Due

to the accuracy of 15 mm in the vertical elevation data, the results in
Frontiers in Marine Science 07
Figure 4 that conflict with the accuracy were only used for reference

to obtain a general trend. From September 2020 to December 2020,

the southern marsh and unvegetated flat overall experienced erosion,

with the mean bed level decreasing by 0.02 m. The southern marsh

and unvegetated flat started to accrete in December 2020, but the

overall accretion of the southern marsh was little (0.01 m). With

respect to the northern area, the mean bed levels of the marsh and

unvegetated flat overall increased, but there was a decrease of 0.25 m

in the northern marsh from March 2021 to July 2021. Moreover,

there was a difference of approximately 0.1 m between the northern

and southern bare flats, which indicated the presence of a tiny

alongshore slope from north to south in the study area.
3.3 Processes of wave and water level

Hydrodynamic parameters were measured at two fixed sites,

considered representative of the southern and northern regions,

respectively (Figure 5). The southern site recorded the significant

wave height (Hs) for four seasons, with the maximum values being

0.41 m in September 2020, 0.32 m in December 2020, 0.25 m in

March 2021, and 0.40 m in July 2021 (with maximum average wind

speed), respectively. The northern Hs presented a similar trend,

with the maximum values for the same respective time periods

being 0.23 m in December 2020, 0.25 m in March 2021, and 0.42 m

in July 2021, respectively. Hs in the north were thus smaller in

winter, the same in spring, and slightly larger in summer than Hs in

the south. Water depths above the wetland surface at the northern

site were consistently lower than those at the southern site reflecting

the higher northern bed levels.

It should be noted that the hydrodynamics data in this study

was collected during neap tides, which may be weaker than that

during spring tides. Thus, future research is required to gain

extended data covering longer periods.
FIGURE 4

The mean bed level change of the marsh and unvegetated flat region.
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3.4 Distributions of vegetation
and sediment

The above-ground biomass of Spartina alterniflora varied in a

similar way along the cross-shore transects in both the southern and

northern marsh (Figures 6A, B). Starting from the marsh edge, the

distribution of southern biomass towards the land exhibited a

bimodal pattern with two peaks and two troughs. The troughs

were mainly distributed in the range of 120 - 170 m and 250 - 300 m

(see Figure 3). The maximum biomass values for each season were

2.78 kg m-2 in autumn, 2.55 kg m-2 in summer, 2.21 kg m-2 in

winter, and 1.63 kg m-2 in spring. However, the trough values were

lowest in summer, 0.81 kg m-2 in Area S1 and 0.60 kg m-2 in Area S2

(Figure 6A). The seasonal differences were also reflected in the

shifting range and position of the low-biomass zones, with the

larger range observed in December 2020 (as shown by the dashed

line range in Figure 6A). As mentioned above (section 3.1), these

low-biomass zones were related to the debris bands and unvegetated

zones, which were located inside the saltmarsh and whose position

changed over time. The northern biomass distribution also showed
Frontiers in Marine Science 08
the same mobile low-biomass zones. Because of the extensive

seaward expansion of the northern marsh, a third new low-

biomass zone appeared in July 2021 (Figure 6B). Moreover, the

minimum biomass in March 2021 approached zero, indicating the

presence of an unvegetated zone (e.g., UZ2 in Figure 2F).

The median sediment grain size near the marsh edge varied

seasonally. At the southern edge point, the median grain size was

6.21 mm in summer, 7.77 mm in autumn, 12.30 mm in winter, and

12.86 mm in spring, indicating that the median grain size increased

from summer to spring (Figure 6C). Meanwhile, the cross-shore

distribution of the median grain size also showed zones of finer

sediments, but located in different regions to the regions with low

above-ground biomass. These particle-size lows were located more

landward in September 2020, March 2021 and July 2021, while the

lowest particle size in December 2020 was closer to the sea. The

northern cross-shore distribution of median grain size exhibited a

similar phenomenon, but its seasonal variation was more

pronounced (Figure 6D).

In this study area, marine debris was observed to exhibit a band-

like distribution in different regions, accompanied by seasonal
FIGURE 5

Significant wave height and water level of the southern and northern observation sites in 2020.09.19 (A), 2020.12.09 (B), 2021.03.15 (C) and
2021.07.16 (D).
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movements (Figure 2). From the biomass results (Figures 6A, B), it was

evident that the presence of debris bands significantly reduced the

biomass value in the adjacent area. If we assume that in the absence of

debris bands, the vegetation biomass values for the corresponding area

follow the linear interpolation between the seaward and landward

values of the debris band, we can estimate the approximate percentage

decrease in biomass due to the influence of debris bands (Figure 7).

Biomass in Area S1 reduced from September 2020 to July 2021,

representing 24% to 58% relative to the assumed fully vegetated

state. The maximum decrease of biomass in Area S2 also occurred in

July 2021, with a value of 48%. Overall, our results show that debris

bands could result in a reduction of approximately 58% in biomass

during the summer and around 30% during other seasons.
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4 Discussion

4.1 Alongshore versus cross-shore
expansion of saltmarsh patches

The lateral movement of the marsh edge has been a focal point

of research (Bouma et al., 2016; Willemsen et al., 2018), as it plays a

critical role in understanding and predicting the dynamic processes

of marsh wetland evolution. Saltmarsh patches are often considered

indicators of seaward accretion of the marsh edge. However, past

research on this topic has predominantly focused on the cross-shore

expansion pattern (Van der Wal et al., 2008), while the alongshore

expansion pattern has been largely overlooked. This oversight could
FIGURE 6

Biomass and median sediment grain size (D50) in the marsh of transect S (A, C) and transect N (B, D).
FIGURE 7

The percentage decrease of biomass due to the debris bands (DB) in Area S1 (A), Area S2 (B) and Area N1 (C). The “Area” corresponds to the region
with debris bands in Figures 6A, B.
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impact the accuracy of modelling and prediction of tidal wetland

morphodynamics, as alongshore processes might contribute

significantly to the alongshore morphological evolution of marshes.

Our study suggests that both alongshore and cross-shore

expansion can occur at rates in excess of 100 m yr-1, albeit in a

spatially discontinuous fashion (UAV orthoimages): The marsh

patches in the southern region followed a cross-shore dominated

expansion pattern, i.e. the patch zone directly expanded seaward and

patches then connected (Figure 2). The expansion rate was

approximately 11.7 meters in one year (Figure 3C). In the northern

region, marsh patches initially appeared on the northward unvegetated

flat (Figure 2A), connecting to each other in the subsequent growth

cycle and merging with the landward vegetated marsh (Figure 2C).

Meanwhile, new patch areas formed southward rather than seaward.

Eventually, the northern saltmarsh advanced toward the sea but

through a form of alongshore expansion. The characteristic of this

expansion pattern was the sudden and rapid seaward advancement of

the marsh edge, with an alongshore expansion rate of approximately

180 m and a cross-shore expansion rate of approximately 119.4 m in

one year, which also resulted in a sudden decrease in the mean

elevation of the marsh edge (Figure 4). During the expansion process

in the northern saltmarsh, there was a significant difference in the

expansion rates between December 2020 to March 2021 and March

2021 to July 2021, which were 5.9 meters and 113.5 meters,

respectively. This difference is related to the growth pattern of

Spartina alterniflora, whose seeds can remain dormant until

germination in the following spring, resulting in the rapid expansion

observed between March 2021 and July 2021. Overall, both patterns

achieved the seaward expansion of the saltmarsh, but alongshore
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spreading of patches with subsequent connection was critical in

achieving the fast (> 100 m yr-1) expansion rate.

What are the causes of the alongshore expansion? From Apr. 2017

to July 2018, Dai et al. (2021) conducted field observations in the same

study area and found that both the southern and northern marsh edges

expanded gradually seaward but not with any alongshore pattern. But

in September 2020, a well-developed saltmarsh with vegetated

protrusions onto the tidal flat was observed in the northern region

(Figure 2A), which would have provided seeds for the subsequent

development of patches towards the south. Our measurements show

that alongshore currents in the northern area may have played a critical

role in this expansion history (Figure 8): the alongshore current

predominantly flowed southward with a maximum velocity of 0.26

m s-1 in March 2021 (spring), which would have facilitated the

transport of vegetation seeds towards the south (Figure 8C). In July

2021 (summer), the alongshore current reversed to a northward

dominant flow with a maximum velocity of 0.34 m s-1, exceeding

that in spring (Figure 8D). The strong north-westward flow during

summermay have caused the edge of the newly developedmarsh patch

region to form at an angle with the shoreline (Figure 2C). The cross-

shore current in spring and summer both predominantly flowed

westward, with a maximum velocity of 0.23 m s-1 (Figures 8C, D),

which may have limited the direct seaward expansion of plant seeds.

The alongshore characteristics of the current near the marsh edge and

the seasonal changes in the current direction were consistent with

previous observations (Zhao et al., 2014). After July 2021, the marsh

patches continued to grow and interconnected, completing their

establishment (Supplementary Figure 1A). Moreover, although the

subsequent alongshore current shifted to the north, the marsh
FIGURE 8

The current velocity and the cumulative distribution function (CDF) of velocity at the northern observation site in 2021.03.15 (A, C) and 2021.07.16
(B, D). The current velocity data was sampled from a single layer located 0.15 m above the seabed.
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remained relatively stable with minimal changes (Supplementary

Figure 1B). We hypothesize that there are potentially two primary

factors contributing to the formation of this alongshore saltmarsh

expansion pattern: a well-developed initial saltmarsh area with

protruding shorelines on which a strong alongshore current was able

to act and facilitate expansion through the transport of sediment

and seeds.

More detailed field sampling would elucidate whether this

hypothesis holds here and potentially elsewhere. What is clear,

however, is that, when considering the past and future evolution of

an alongshore current dominated saltmarsh, this rapid alongshore

saltmarsh expansion cannot be overlooked, especially in the context

of the need to predict future saltmarsh areas for conservation and

ecosystem service provision on comparably large, open coast settings.
4.2 Temporal variation of sediment grain
size and vegetation biomass

Numerous studies have shown that saltmarshes can directly

capture suspended sediment particles through locally enhancing

salinity and particle flocculation or promoting sediment deposition

by attenuating hydrodynamic (tidal or wave-induced flow) energy,

hence facilitating the sediment settling processes (Yang, 1999; Mudd

et al., 2010; Zhou et al., 2022a). Field observations on several tidal flats

worldwide suggest that the sediment grain size exhibits a ‘landward

fining’ phenomenon (Friedrichs, 2011), which indicates that

saltmarshes mainly promote the deposition of the finer sediment.

Some studies find that high magnitude tide/wave events (storms) can

erode and suspend relatively coarse sediments on the lower flat, which

can be transported shoreward and settle on the saltmarsh (Zhou et al.,

2022b; Pannozzo et al., 2023) and, to some extent, changes the

‘landward fining’ trend. Yang (1999) mentioned that sediment grain

size in the marsh area was also influenced by the seasonal changes in

the vegetation.

In this study, the mean biomass of Spartina alterniflora shown in

Figure 9 presented seasonal variation consistent with its biological
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growth characteristics. The distribution curve of the mean biomass

exhibited a concave pattern from September 2020 to July 2021, with the

minimum value occurring in March 2021 (spring). However, the trend

of the mean D50 varies inversely with the mean biomass, which

increased from September 2020 to March 2021 and then decreased,

forming a convex curve (Figure 9). This indicated that the seasonal

variation trend of sediment grain size in saltmarshes was opposite to

the trend of vegetation biomass. The presence of vegetation facilitates

the deposition of fine sediment particles, but with the seasonal

weakening of vegetation capacity (i.e., winter), there is a trend of

surface sediment coarsening in the saltmarsh area. Although

geotechnical properties are affected by multiple factors (e.g., seasonal

change in hydrodynamics) and need further investigation (Evans et al.,

2022), this preliminary seasonal relationship between grain size and

biomass can provide more specific evidence for the relatively simple

biological processes in current bio-morphodynamic models, facilitating

model development.
4.3 Spatial variation of vegetation biomass
under the impact of marine debris

The spatial variation of Spartina biomass is influenced by various

natural factors such as inundation duration, sea-level rise, storms, tidal

creeks, marsh-edge morphology and so on (Mudd et al., 2004; Belliard

et al., 2016; Chen et al., 2020b; Tang et al., 2022; Hang et al., 2024).

Since inundation duration is the primary factor, biomass generally

exhibits a parabolic distribution in the cross-shore direction

(Morris et al., 2002; Mudd et al., 2004), which is the biomass

distribution pattern used in most current bio-morphodynamic

models (Zhou et al., 2016; Mariotti, 2020). In our study, however, we

found that debris bands significantly impact the spatial distribution of

vegetation biomass, which could result in a maximum reduction of

approximately 58% in biomass (Figure 7). At this point, the traditional

parabolic biomass distribution pattern becomes inapplicable, as it

would significantly affect the accuracy of the surface growth

component of marsh evolution models.
FIGURE 9

The seasonal variation of the mean vegetation biomass and the mean median diameter of sediment (D50).
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Further, our results showed that the debris bands were mobile

(Figure 7) and that the location of the debris bands was determined

by (as well as influenced) the seasonal variation of saltmarsh

biomass with the latter likely determining the distance of the

debris bands from the saltmarsh edge (i.e. debris more likely to

be ‘trapped’ by areas of higher biomass).

By analyzing the movement and composition of debris bands,

they could be classified into three main categories: stable type

(e.g., DB1 in Figure 2), migrating type (e.g., DB2, DB4 and DB5

in Figure 2), and organic type (e.g., DB3 in Figure 2). The stable

debris bands in our study were usually found in locations far from

the saltmarsh edge, where they experienced minimal hydrodynamic

influence. Thus, their location, width and length were less likely

to change, which indicates that the influence of this kind of debris

band on the underlying vegetation and soil is also likely to be

longer lived. Compared to the stable type, the migrating debris

bands were found closer to the marsh edge and were more

susceptible to the action of waves and tides. The movement

exhibited seasonal changes, likely because (a) the ability of

vegetation to trap debris and (b) hydrodynamic conditions and

thus their capacity to shift the material in the debris bands varied

across seasons. Moreover, with the continuous seaward expansion

of the saltmarsh, migrating debris bands might be expected to

experience less disturbance over time and may potentially

transform into the stable type (e.g., DB4 in Figure 2G). The

organic debris band mainly consists of organic matter, such as

plant litter and seaweed. These high-density organic materials were

observed to form a dense matrix that was intricately connected to

plant-standing crops. Coupled with the anaerobic conditions during

decomposition, the tight ‘interweaving’ of the organic material with

the marsh could make these debris bands significant determinants

of marsh functioning and morphological evolution.

Currently, there is limited research on the interactions between

debris bands and biogeomorphology, and the processes and

mechanisms involved remain unclear. Our study clearly highlights

that further in-depth research is warranted.
5 Conclusions

Our multi-method biogeomorphological field study on the open

coast tidalmarsh wetlands in Jiangsu, China, enabled us to build amore

comprehensive picture of biogeomorphological processes over seasonal

toannual timescales thathave thus farbeenneglected in the tidalwetland

literature. Our results revealed particularly that biophysical interactions

among multiple processes could lead to previously overlooked

sedimentary behaviors and bio-morphological patterns: Firstly, we

observed that the dominance of alongshore currents facilitated an

alongshore expansion of saltmarsh patches. Different from the

commonly reported cross-shore expansion, the alongshore pattern

achieved seaward advancement of the marsh edge by first alongshore

spreadingandthenconnecting,withanalongshorerateofapproximately

180mand a seaward rate of approximately 120m in one year. Secondly,
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seasonally varying saltmarsh biomass coincided with seasonally varying

sediment deposition, resulting in the particle size of sediment near the

marsh edge coarsening when plants withered and fining when plants

grew, with likely, as yet unexplored implications for soil ecology and

stability.Thirdly,theinteractionbetweenvegetationandstrandedmarine

debris formedbandeddebris zoneswithin the saltmarsh.Results showed

that debris bands could cause a biomass reduction of up to 58% during

summer and around 30% during other seasons, altering the commonly

observed parabolic biomass-elevation relationship in mono-specific

Spartina wetlands. Meanwhile, the position of debris bands was affected

by the seasonal variation of saltmarsh biomass and distance from the

saltmarshedge,suggestingthatthereisafeedbackbetweentheeffectofthe

debris bands on vegetation and, in turn, of the vegetation on the likely

future trapping of debris.

We challenge the developers of numerical morphodynamic models

of saltmarsh evolution and those involved in saltmarsh management to

consider the combination of quantitative and qualitative observations

and relationships we have identified in this study. There is a clear case

to be made for future studies that focus in more detail on the

importance of these previously overlooked biophysical relationships.
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