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Seamounts are ubiquitous topographic units in the global oceans, and the Caiwei

Guyot in the Magellan Seamounts of the western Pacific is a prime example. In

this study, we analyzed a well-dated sediment core using magnetic properties,

sediment grain size, andmetal enrichment to uncover regional ventilation history

during the middle Pleistocene and explore potential linkages to global climate

changes. Our principal findings are as follows: (1) The median grain size is 3.3 ±

0.2 mm, and clay and silt particles exhibit minimal variation, with average values of

52.8 ± 1.8% and 38.2 ± 1.6%, respectively, indicating a low-dynamic process; (2)

Three grain-size components are identified, characterized by modal patterns of

~3 mm (major one), ~40 mm, and 400–500 mm, respectively; (3) Magnetic

coercivity of the deep-sea sediments can be classified into three subgroups,

and their coercivity values are 6.1 ± 0.5 mT, 25.7 ± 1.0 mT, and 65.2 ± 2.1 mT.

Based on these results, we propose a close linkage between magnetic coercivity

andmetal enrichment, correlating with changes in deep-sea circulation intensity.

Conversely, sediment grain-size changes seem to be more strongly influenced

by eolian inputs. Consequently, we suggest that regional ventilation has

weakened since ~430 ka, likely linked to a reduction in Antarctic bottom

water formation.
KEYWORDS

abyssal ventilation, early diagenesis, magnetic properties, Caiwei (Pako) Guyot, middle
Pleistocene, western Pacific
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1 Introduction

More than 50,000 seamounts have been identified in the Pacific

Ocean, and the Magellan Seamounts, formed by hotspot activity

during 120–90 Ma (Wessel, 1997; Wessel and Lyons, 1997;

Stepashko, 2008), include the Caiwei, the Vlinder, and the Loah,

and are distributed in a northwestward chain (Figure 1). Among

them, the Caiwei Guyot, a well-studied deep-sea flat-topped

seamount, has water depths of ~1 500–1 600 m at its summit and

~5 500 m at its base. The Caiwei Guyot is situated within the main

flow path of the Antarctic bottom water (AABW) and Lower

Circumpolar Deep Water (LCDW) as they move toward the North

Pacific, and the former, AABW, is considered a potential

intermediary in the influence of the Antarctic on global climate

change (Talley, 2008; Kawabe and Fujio, 2010). It covers >70% of the

ocean-bottom region and represents 30%–40% of the total global

water mass (Johnson, 2008). With its high level of dissolved oxygen,

the AABW significantly contributes to abyssal ventilation and redox

conditions (Gordon, 2001). Furthermore, an anti-cyclonic eddy has

been identified over the guyot (Guo et al., 2020), contributing to

similar hydrochemical properties around the seamount, such as

salinity, pH value, and nitrate, likely influenced by this anti-

cyclonic phenomenon (Liu et al., 2019). Previous studies focusing
Frontiers in Marine Science 02
on mineral resources and megafaunal communities (Wang et al.,

2016b; Xu et al., 2016) and microorganisms (Liu et al., 2019; Sun

et al., 2020; Yang et al., 2020) have proposed that cobalt-rich crusts,

carbonate rocks, and calcareous pelagic deposits are the main

dominant sediments on the guyot (He et al., 2001; Wei et al., 2017;

Zhao et al., 2020). This unique seafloor topography, which rises from

the open ocean, also enhances nutrient transport, supporting the local

ecosystem (Wang et al., 2024).

Despite these insights, our understanding of the complex deep-

sea environment remains incomplete. Cross-validation of different

proxies for paleoenvironmental reconstruction has been limited.

For example, dissolute-oxygen reconstruction, a key issue in deep-

sea environmental inferences, has not been thoroughly examined.

In this study, we utilize three widely used proxies, namely early

diagenesis, metal enrichment, and sediment grain size, to infer the

paleoenvironmental conditions of the Caiwei Guyot, situated in an

area strongly influenced by AABW/LCDW circulation (Figure 1).

By integrating magnetostratigraphy and authigenic beryllium

isotopes (10Be/9Be), we have constructed a reliable age-depth

model for the studied core. Using this geochronological

framework, we discuss the magnetic and grain-size properties in

conjunction with metal enrichment in abyssal sediments in this

unique region since ~440 ka.
FIGURE 1

Schematic map showing the study site (MABC–11) and oceanographic setting. The flows were modified from previous works (Guo et al., 2020;
Kawabe and Fujio, 2010; Zhai and Gu, 2020). AABW, Antarctic bottom water; LCDW, Lower Circumpolar Deep Water. U1422 and ODP 806 are the
referenced sites mentioned in the main text.
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2 Methods

2.1 The studied core

Core MABC–11 (155.53° E, 15.22° N, 5,840 m water depth) was

retrieved from the eastern base of the Caiwei Guyot (Figure 1) using

a box corer aboard R/V Haiyang Liu Hao in July 2012, with a core

length of 59 cm.

The age model of core MABC–11 was developed using

magnetostratigraphy and by tuning changes in element Ca

intensity (from XRF scanning) with the deep-sea benthic d18O
stack LR04 (Lisiecki and Raymo, 2005), which reflects global ice

volume changes. The resulting average sedimentation rate is 0.73

mm/kyr (Yi et al., 2021a). To further refine the chronology, this age-

depth model was adjusted based on 10Be/9Be data to integrate deep-

sea paleoenvironmental records from the Mariana Trench and

Magellan Seamounts (Yi, 2023). For this study, the core was

sampled for the depth interval of 7.0–49.5 cm at 5 mm

resolution, and 86 subsamples in total were obtained for magnetic

and grain-size analyses between 221 and 904 ka (Figure 2).
2.2 Magnetic measurement

Hysteresis loops were conducted on all 86 samples using a

Princeton Measurements Inc. MicroMag 3900 Vibrating Sample

Magnetometer (VSM). A peak field of 0.3 T was set for hysteresis

loops, and saturation magnetization (Ms), saturation remanence
Frontiers in Marine Science 03
(Mrs), coercive force (Bc), and the coercivity of the remanence (Bcr)

were determined from the hysteresis loops, after calibration using

the data from between 0.25 and 0.30 T. All magnetic measurements

were conducted at the Paleomagnetism and Geochronology Lab

(PGL), Institute of Geology and Geophysics, Chinese Academy

of Sciences.

The mathematical unmixing of hysteresis loops can provide

detailed information about different coercivity spectra (Jackson

et al., 1990). The polymodal distribution for unmixing in this

study is expressed as follows:

F = p1f 1 +… + pif i;  on
1pi = 1 (1)

where fi represents the function for component iwhere i = 1 to n

components, and pi is the percentage contribution of the

components. A series of target functions has been proposed for

unmixing (Heslop, 2015); here, we used the normal function to

identify the potential end members of magnetic minerals in the

sediments (Heslop, 2015; Heslop and Roberts., 2012). The normal

function has the following form:

F = p1
1ffiffiffiffiffiffiffiffiffiffiffi
2pa1

p e
−

x−b1ð Þ2
2a2

1

h i
+ p2

1ffiffiffiffiffiffiffiffiffiffiffi
2pa2

p e
−

x−b2ð Þ2
2a2

2

h i

+ p3
1ffiffiffiffiffiffiffiffiffiffiffi
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p e
−

x−b3ð Þ2
2a2

3

h i
(2)

Here, x is the independent variable and represents the magnetic

field, and the dependent variables are the second derivatives of the

hysteresis loop data, which were first standardized to the interval of
FIGURE 2

Core MABC–11 with the age-depth model during the middle Pleistocene. (A) The excess 230Th data and the estimated SAR for the upper part (Yang
et al., 2020); (B) photo of the core; (C–E) ChRM declination and inclination, with the polarity of core MABC–11 (Yi et al., 2021a); (F) The geological
polarity timescale (GPTS) (Hilgen et al., 2012). B, Brunhes chron; M, Matuyama chron; J, Jaramillo subchron; M/B, the Matuyama/Brunhes boundary.
(G) The modified age-depth model of core MABC–11 (Yi, 2023).
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[0, 4]. The coefficient p represents the relative ratio between three

components (namely Cnt1–3), a determines the distribution shape

(namely Shp1–3), and b controls the position of the central tendency

of the curve, herein, the magnetic coercivity (namely Coe1–3).
2.3 Grain-size measurement

Grain-size samples were placed in an ultrasonic vibrator with

sodium hexametaphosphate [(NaPO3)6] for several minutes to

facilitate dispersion and were measured using a Malvern

Mastersizer 2000 grain size analyzer in the Key Laboratory of

Engineering Oceanography, Second Institute of Oceanography,

Ministry of Natural Resources of China.

Fifty grain-size classes between 0.1 and 2000 mm were exported

for further analysis. The grain-size distributions were then analyzed

by using mathematical methods, including the varimax-rotated

principal component analysis (VPCA), environmentally sensitive

components, and lognormal-based unmixing (modified from

Equation 2), and the common signal of deep-sea dynamics was

extracted by a PCA on the studies cores for paleoenvironmental
Frontiers in Marine Science 04
inferences, following the procedures reported in previous studies

(e.g., Chen et al., 2021; Paterson and Heslop, 2015; Yi et al., 2022).
3 Results

3.1 Grain-size properties

The median grain-size value (M) of the sediment is 3.3 ± 0.2

mm, indicating a low-dynamic sedimentary environment that

remained relatively stable throughout the middle Pleistocene

(Figure 3B). The proportions of clay (< 4 mm) and silt (4~63 mm)

particles display minimal variation, with average values of 52.8 ±

1.8%, and 38.2 ± 1.6%, respectively, while sand particles (> 63 mm)

exhibit greater variability, averaging 9.0 ± 2.6%. Notably, coarse

components, likely authigenic micro-nodules (>200 mm), are

present in several samples, consistent with slow sediment

accumulation in marine environments (Wang et al., 2016a), and

are observed in surrounding regions (Yi et al., 2022, 2020).

The grain-size distributions are multi-modal, with modal sizes of

approximately 3 mm (dominant), ~40 mm, and 400-500 mm
FIGURE 3

Sediment grain-size characteristics of core MABC–11. (A, B) Grain-size distribution; PDF, probability density function, CDF, cumulative density
function. (C) Mathematical unmixing; EMs are the main grain-size components; CCs are the components of the grain-size sensitive fraction; Mean
PDF, the average grain-size curve of all samples; S.D., the standard deviation for all samples. (D) Principal component analysis (PCA) results; VFs are
the leading principal components.
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(Figure 3). Only minor differences were found in the grain-size

distributions across different samples, suggesting a stable

sedimentary environment during the examined interval. Following

the method of Boulay et al. (2003), which has proven effective for

identifying sedimentary processes and dynamics (e.g., Hu et al., 2021;

Sun et al., 2003), we identified three environmentally sensitive grain-

size components (CC1-CC3), with modal sizes of 2.6-4.8 mm, 42.2-

51.5 mm, and 676-1000 mm, respectively (Figure 3C).

Polymodal grain-size spectra can be mathematically partitioned

(Ashley, 1978), enabling the separation of orthogonal modes

(independent grain-size components/factors) to identify potential

changes in input functions and/or sedimentary dynamics (e.g.,

Chen et al., 2020, 2021; Yi et al., 2012b). Using a three-

component lognormal function following the method of Paterson

and Heslop (2015), which is similar to Equation 2, we obtained

three components, EM1, EM2, and EM3 (Figure 3C), with modal

sizes of 3.2 mm, 34.6 mm, and 455 mm, respectively. VPCA can also

be used to identify the processes controlling sediment grain-size

changes and to extract paleoenvironmental signals (e.g., Hu et al.,

2021; Yi et al., 2012a). Similarly, the results of VPCA also identify

three characteristic components, VF1-VF3 (Figure 3D), accounting

for 78.9% in total (Table 1).

Combining all the grain size results, including the environmentally

sensitive components (CC1-CC3), lognormal-based unmixing (EM1-

EM3), and VPCA results (VF1-VF3), there are three grain-size

components similarly identified with a major group (modal sizes at
Frontiers in Marine Science 05
~3-4 mm), suggesting a single dominant factor controlling sedimentary

dynamics in the study area during the depositional interval.
3.2 Magnetic coercivity from unmixing
loop curves

Previous studies on magnetic minerals in the Caiwei Guyot

sediments, including hysteresis loop, IRM acquisition, and first-

order reversal curve analyses, demonstrate that low-coercivity

magnetite is the dominant magnetic mineral, with fine grains (Lin

et al., 2019; Yi et al., 2021b). Similar mineral properties have been

documented at IODP Site U1337 in the eastern Pacific (Yamazaki,

2012), and core XTGC1311 from the middle Pacific (Li et al., 2020).

Hysteresis loop analysis of all 86 samples reveals that the

magnetic loops are closed below 200 mT (Figure 4A), indicating a

dominance of low-coercivitymagnetic minerals. The coercivity values

(Bc and Bcr) average 11.4 ± 0.3 mT and 31.5 ± (< 0.05) mT,

respectively. On the Day plot (Day et al., 1977), the samples plot

within the PSD range, close to the SD field (Figure 4B). Despite

minimal variation on the Day plot, a higher Bcr/Bc and Mrs/Ms ratio

prior to ~500 ka suggests slightly coarser magnetic grains (Roberts

et al., 2018). A three-component lognormal function was applied to

mathematically unmix the hysteresis loops (Heslop, 2015; Heslop and

Roberts., 2012), yielding coercivity components (Coe1-Coe3) of 6.1 ±

0.5 mT, 25.7 ± 1.0 mT, and 65.2 ± 2.1 mT, respectively (Figure 5). A

similar analysis was also applied to unmix the IRM acquisition curves

(Maxbauer et al., 2016), and a comparison between hysteresis loop-

based and IRM acquisition-based results shows no significant

differences (Yi et al., 2021b), and thus is not plotted here.

In a log-normal based unmixing (Equation 2), we employed

three parameters to describe a subpopulation of magnetic coercivity,

a, b, and p, in which a determines the shape of the distribution

(Shp1–Shp3), representing each magnetic type/source/mineral, b
controls the position of the central tendency of the curve (Coe1–

Coe3), herein representing magnetic coercivity or degree of early

diagenesis for each magnetic group, and p indicates the relative
TABLE 1 Results of the principal component analysis of the sediment
grain size of core MABC-11.

Component

Initial Eigenvalues/Extraction Sums of
Squared Loadings

Total % of variance Cumulative %

VF1 13.58 29.5 29.5

VF2 13.56 29.5 59.0

VF3 9.15 19.9 78.9
FIGURE 4

Hysteresis loops of all samples in original (blue lines) and calibrated (black lines) forms (A), and Day plot (B) of all samples. SD, single domain; PSD,
pseudo–single domain; MD, multiple domain.
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percentage of each component in a population (Cnt1–Cnt3),

representing the ratio of each magnetic group against the total.

Since the source of magnetic minerals in the western Pacific was

relatively stable (Chen et al., 2023), the coercivity spectrum can be

expressed by these three parameters, and plotting these three

parameters together can provide useful information to assess how

magnetic minerals changed after deposited (Figure 5). As shown,

the major component is Coe2, accounting for about 47%–50% of

total magnetic grains in the sediment. Moreover, there is no distinct

difference between the pattern of a-b for components Coe2 and

Coe3, indicating that these two magnetic groups were linked to a

similar source and/or experience similar post-deposition changes

(early diagenesis). However, for component Coe1, a more complex

relationship between the three magnetic parameters is observed

(Figure 5A). Considering all of these observations, together with the

close relationship between the derived magnetic components

(Figure 5D), component Coe2 was employed for later analysis.
4 Discussion

4.1 Comparison between three
ventilation proxies

There are several proxies for studying deep-sea ventilation,

including the enrichment of oxygen-sensitive metals (such as Mn,

Zn, Ni, and V), sediment grain size, and magnetic coercivity. For
Frontiers in Marine Science 06
instance, element Mn migrates from reducing to oxidizing

environments, making it highly sensitive to sedimentary redox

changes (Costa et al., 2018; Löwemark et al., 2014; Slemons et al.,

2012; Yi et al., 2023). Conversely, sediment grain size reflects the

intensity of bottom-water flows, where coarser particles suggest

higher sedimentary dynamics and intensified bottom waters, as

reported in previous studies (e.g., Hall et al., 2001; Yi et al., 2022).

Magnetic properties of deep-sea sediments also offer potential

insights into deep-water redox conditions (e.g., Chang et al., 2016;

Kissel et al., 2020; Kruiver and Passier, 2001) due to conversions

between Fe2+ and Fe3+ in crystal lattices in the context of oxygen-

rich bottom water. However, the exact influence of early diagenesis

expressed by changes in magnetic mineral properties may vary

between sites because investigations with different oxidation states

show that PSD magnetite could be significantly negatively

correlated to partial oxidation in a shell-only model, or positively

correlated in cases of changing magnetite sizes (Ge et al., 2014;

Chen et al., 2023). Hence, considering that the Mn record of core

MABC–11 has been cross-validated in previous studies (Yi et al.,

2021a; Yi, 2023), we take the Mn record as a reference and compare

all of the three proxies to reveal the potential linkages between them

(Figures 6–8).

The Mn-enriched sedimentary record from core MABC–11

shows a significant increase in Mn concentration, concurrent with a

decrease in sediment median grain size (Figure 6). This observation

is contrary to the typical linkage between sediment grain size and

bottom-water intensity reported in previous studies (e.g., Hall et al.,
FIGURE 5

Unmixed parameters from hysteresis loops of all samples. (A–C) Three magnetic components, (D) Coercivity comparison. The relative ratios
between the three components were labeled as Cnt1–3, the distribution shapes were labeled as Shp1–3, and the positions of the central tendency
of the curve indicating the magnetic coercivity were labeled as Coe1–3.
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2001; Lamy et al., 2024), suggesting that other processes beyond

bottom-water intensity are involved.

Aeolian inputs, which are increasingly recognized as important

contributors to deep-sea sedimentation in the western Pacific, may

have played a major role, particularly since the middle Pleistocene

(Yi et al., 2020, 2022; Yao et al., 2021). The grain-size variation

observed in core MABC–11 is generally consistent with records of

drying processes in the Asian interior (Figure 7A), inferred from the

d13C record of the Taklimakan Desert (Liu et al., 2020), and eolian

transport to the Japan Sea (Figure 7B), implied from the K content

of IODP Site U1422 (Zhang et al., 2018). Fine grains in deep-sea

sediments in the North Pacific were mainly carried by the westerlies

and/or winter monsoons from the Asian interior (e.g., Rea, 1994;

Jiang et al., 2019; Xu et al., 2015), inferring that aridification in inner
Frontiers in Marine Science 07
Asia would result in more eolian particles in deep-sea sediment and

a decrease in sediment grain size.

Moreover, seamounts, such as Caiwei Guyot, exert unique influences

on regional circulation, vertical mixing, and sediment transport (Bograd

et al., 1997; Chen et al., 2015; Yang et al., 2017; Zhang and Boyer, 1993,

1991). For example, a series of complex responses, such as the

anticyclonic cap (Lavelle and Mohn, 2010), are generated to modulate

regional circulation when currents flow across a seamount (Perfect et al.,

2018; Robertson et al., 2017). By studying sediment grain-size properties

in the central Philippine Sea, the agreement between deep-sea

sedimentary dynamics and ENSO-like changes was highlighted in the

Quaternary, suggesting the long-term influence of upwelling and unique

submarine topography (Yi et al., 2022). Similarly, in a 3-year monitoring

study, a deep anticyclonic cap over the studied guyot was proposed (Guo
FIGURE 6

Comparison between the sedimentary Mn (Mn_f1) and grain-size variation of core MABC–11 in the middle Pleistocene. (A) Median size, (B) EM1,
(C) PCA scores. GS is the integrated record of the three PCA components, namely GS=29.5×VF1 + 29.5×VF2 + 19.9×VF3 (Table 1). Mn–f1 was
derived from element ratios of Mn/Cl, Mn/K, Mn/Ca, Mn/Ti, and Mn/Fe, representing the common signal of three cores (MABC-11, J11b, and A25)
linked to the regional bottom-water changes (Yi, 2023).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1470134
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shen et al. 10.3389/fmars.2024.1470134
et al., 2020), and this topography-induced downwelling could have

imparted evident precessional signals into the sedimentary Mn of core

MABC–11 (Yi et al., 2021a). Based on this vertical connection in the

study area, the downwelling processes could result in more eolian

particles being deposited into deep-sea sediments, agreeing with the

relationships between the Mn and grain-size records observed in core

MABC–11 (Figure 6) and between the zonal SST difference (ENSO-like

changes) and MABC–11 grain-size record (Figure 7C). Therefore, it is

inferred that eolian inputs may be the dominant factor controlling the

sedimentary dynamics in the Caiwei Guyot during the

middle Pleistocene.

For magnetic proxies, it is observed that as the Mn contents

increase in core MABC–11, the coercivity values of the magnetic

components decrease (Figure 8). This inverse relationship between

magnetic coercivity and Mn record suggests that redox conditions
Frontiers in Marine Science 08
influenced the preservation and alternations of magnetic minerals

in deep-sea sediments.

The relationship between magnetic coercivity and deep-sea redox

conditions has been demonstrated using surficial sediments in the

Philippine Sea and its surrounding area, and the results show that for

PSD magnetite, in higher deep-water oxidation conditions, early

diagenesis could result in a lower coercivity of the sediments, and

vice versa (Chen et al., 2023). In such a case, prolonged exposure of

magnetic minerals to oxygen-rich bottom waters leads to the

maghemitization of magnetite grains, which reduces their coercivity.

This observation is consistent with experimental studies, in which the

partial oxidation of PSD magnetite grains in a core-shell model can

decrease the effective diameter of magnetite grains, resulting in a lower

coercivity value (Ge et al., 2014; Özdemir and Dunlop, 2010). However,

offsets between the Coe2 andMn_f1 records are also evident (Figure 8),
FIGURE 7

Comparison between the grain-size variation of core MABC–11 (GS, 3-point moving average) and various paleoenvironmental proxies in the middle
Pleistocene. (A) the K content of IODP Site U1422 in the Japan Sea (Zhang et al., 2018), (B) the d13C record of a sediment core from Lop Nur in the
Taklimakan Desert (Liu et al., 2020), and (C) the zonal SST difference between ODP Sites 806 and 846/847 (Fedorov et al., 2015). The correlation
coefficients in (A–C) are r = 0.38 (p<0.01), 0.15 (p<0.10), and 0.34 (p<0.01), respectively. See the aforementioned notes.
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which can be attributed to that the relationship between magnetic

coercivity and redox conditions may be influenced by other factors,

such as the magnetic grain size, mineralogy, and concentration (Chen

et al., 2023). Hence, the observed relationship between magnetic

coercivity and sedimentary Mn likely reflects changes in bottom-

water oxygenation in the study area and can serve as a proxy for

deep-sea ventilation (Figure 9).
4.2 Ventilation history of the
Magellan Seamounts

Integrated evidence suggests that significant changes in regional

ventilation occurred in the Magellan Seamounts during the middle

Pleistocene (Figure 9). To exclude potential dominant influences
Frontiers in Marine Science 09
from marine productivity on abyssal redox conditions, a comparison

was conducted between the sedimentary Mn of core MABC–11 and

the planktonic d13C record from ODP Site 806 (Schmidt et al., 1993).

No significant correlation was observed between these records (Yi,

2023), suggesting that ventilation changes were the primary driver of

redox conditions rather than changes in productivity in the study

area. These proxies reveal a weak but observable in-phase relationship

between abyssal ventilation and the LR04 record (Lisiecki and

Raymo, 2005), likely indicating intensified deep-sea ventilation

during interglacial intervals. This finding aligns with other records

from the North Pacific (Jacobel et al., 2017), and further highlights

the complex relationship between global glacial-interglacial cycles

and deep-sea circulation.

Moreover, glacial intensification of abyssal ventilation is clearly

evident during MIS 12, consistent with similar findings in the eastern
FIGURE 8

Comparison between the sedimentary Mn and magnetic coercivities of core MABC–11 in the middle Pleistocene. (A–C) Three coercivity
components compared with Mn changes. The arrows in (A, B) indicate a significant change across the MBE. The average values of the Coe2 record
prior to and post-MBE are 25.0 ± 0.6 mT and 26.5 ± 0.7 mT, respectively. The average values of the Mn_f1 record prior to and post-MBE are 0.50 ±
0.16 and 0.59 ± 0.18, respectively. See the aforementioned notes.
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Pacific (Yi et al., 2023) and the southwestern Pacific (Hall et al., 2001).

The diversity of abyssal ventilation in the study area between glacial

and interglacial alternations may be attributed to the redistribution of

bottom/deep water masses within the deep Pacific (Yi, 2023), which is

worthy of further investigation in the future.

Furthermore, a long-term trend of decreasing abyssal ventilation

since ~430 ka (Figure 8) coincides with the Mid-Brunhes Event

(MBE), a period characterized by enlarged amplitudes in the glacial-

interglacial cycles (Figure 9B). Whether the MBE represents multiple

equilibria in the climate system (Jansen et al., 1986; Paillard, 1998), or

a transition between two distinct climate states singly responding to

astronomical forcing (Tzedakis et al., 2017; Yin, 2013) remains

debated. A latitudinal shift of the Southern Hemisphere westerlies

inducing CO2 to respire from the Southern Ocean (Kemp et al., 2010)

and/or a slowdown of AABW formation (Yin, 2013) have been

proposed to be the potential mechanisms for the MBE. In our study,

the reduced ventilation observed in this study is consistent with the

predicted slowdown in AABW formation after the MBE,

corroborating a recent reconstruction of AABW variability in the

eastern Pacific (Yi et al., 2023).
5 Conclusions

By studying core MABC–11, this study reveals significant

insights into deep-sea ventilation in the Magellan Seamounts

during the middle Pleistocene, specifically through the integration
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of magnetic coercivity, metal enrichment, and sediment grain size.

We have determined that the median value of sediment grain size is

3.3 ± 0.2 mm, with minimal changes in clay and silt contents

(average values of 52.8 ± 1.8% and 38.2 ± 1.6%, respectively), and

greater variability in sand content (average 9.0 ± 2.6%). The

dominant magnetic mineral identified is low-coercivity PSD

magnetite, with three distinct coercivity subgroups: 6.1 ± 0.5 mT,

25.7 ± 1.0 mT, and 65.2 ± 2.1 mT. By comparing these proxies with

various environmental indicators, we proposed that magnetic

coercivity and metal enrichment effectively track the signals of

deep-sea circulation intensity, whereas sedimentary grain-size

changes are more closely linked to eolian inputs with topography-

induced influences on the upper ocean. Furthermore, we confirmed

that reginal ventilation weakened since the MBE (~430 ka), which

likely reflects the reduced AABW formation. This ventilation

decrease aligns with previous reconstructions of AABW in the

eastern Pacific, and the observed changes in sedimentary dynamics,

magnetic minerals, and geochemical proxies provide valuable

insights into the broader implications of the MBE on global deep-

sea circulation patterns.
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FIGURE 9

Ventilation history of the study region (Caiwei Guyot) in the middle Pleistocene. (A) Two proxies of regional ventilation derived from the sediments
of core MABC–11 vs. the d13C gradient between ODP sites 607 and 849 (Hodell and Venz-Curtis, 2006). (B) The benthic d18O stack LR04 (Lisiecki
and Raymo, 2005). MIS, marine isotope stages, which are labeled as numbers 1–25 at the top. See the aforementioned notes.
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