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Nearshore water-level prediction has a substantial impact on the daily lives of

coastal residents, fishing operations, and disaster prevention and mitigation.

Compared to the limitations and high costs of traditional empirical forecasts

and numerical models for nearshore water-level prediction, data-driven artificial

intelligence methods can more efficiently predict water levels. Attention

mechanisms have recently shown great potential in natural language

processing and video prediction. Convolutional long short-term memory

(ConvLSTM) combines the advantages of convolutional neural networks (CNN)

and long short-term Memory (LSTM), enabling more effective data feature

extraction. Therefore, this study proposes a ConvLSTM nearshore water level

prediction model that incorporates an attention mechanism. The ConvLSTM

model extracts multiscale information from historical water levels, and the

attention mechanism enhances the importance of key features, thereby

improving the prediction accuracy and timeliness. The model structure was

determined through experiments and relevant previous studies using five years of

water level data from the Zhuhai Tide Station and the surrounding wind speed

and rainfall data for training and evaluation. The results indicate that this model

outperforms the four other baseline models of PCCs, RMSE, and MAE, effectively

predicting future water levels at nearshore stations up to 48 h in advance.

Compared to the ConvLSTM model, the model with the attention mechanism

showed an average improvement of approximately 10% on the test set, with a

greater error reduction in short-term forecasts than that in long-term forecasts.

During Typhoon Higos, the model reduced the MAE of the best-performing

baseline model by approximately 3.2 and 2.4 cm for the 6- and 24-hour

forecasts, respectively, decreasing forecast errors by approximately 18% and

11%, effectively enhancing the ability of the model to forecast storm surges. This

method provides a new approach for forecasting nearshore tides and

storm surges.
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1 Introduction

With the intensification of climate change and frequent

occurrence of marine disasters, the demand for forecasting

various types of marine hazards has recently increased. Natural

disasters, such as storm surges, pose considerable threats to human

life and property, particularly in coastal areas. Therefore, this study

aimed to explore improved methods for marine water-level

prediction to enhance its accuracy and practicality.

Traditional empirical forecasts and numerical simulations have

met prediction requirements to a certain extent; however, they still

have limitations. Empirical forecasts often rely on personal

experience and local ized data , making it difficult to

comprehensively consider the complexity of the marine

environment. Although numerical simulation methods can

accurately model changes in certain marine elements, they still

face challenges in predicting highly nonlinear marine disasters, such

as storm surges and hazardous waves. In addition, high

computational costs and complex model structures limit the

practical application of numerical simulations (Mel et al., 2014).

With the rapid development of artificial intelligence (AI)

technology, deep learning models are gradually being applied to the

prediction of marine elements. Early related studies Sztobryn (2003)

used artificial neural networks (ANN) to predict sea-level heights and

compared them with observed sea-level values, finding that neural

network methods can be integrated into routine operational

forecasting services alongside other conventional methods. A

convolutional neural network (CNN) was utilized to forecast wind

speeds 4 h in advance (Zhao et al., 2020), effectively capturing the

nonlinear patterns of wind speeds; the results demonstrated the

feasibility of CNN in wind speed prediction. In the field of marine

forecasting, predicting water levels involves forecasting time-series

data. Recurrent neural networks (RNN), which are capable of

effectively predicting time series data, were previously used

(Kagemoto, 2020) to forecast ocean waves and validate the

effectiveness of RNNs in time series forecasting. Despite the

presence of some nonlinearity in the data, good forecasting results

were still achieved. Furthermore, with rapid developments in the field

of AI, RNNs have evolved into several variants, such as gate recurrent

units (GRU) and long short-term memory (LSTM), all of which are

better suited for handling time-series data. LSTM was applied to

forecast water levels at 17 stations in Taiwan, and LSTM outperformed

six other models in forecasting accuracy (Yang et al., 2020).

To enhance the performance of various deep learning models,

researchers often combine multiple models or structures to achieve

ideal models by integrating the advantages of each structure. For

instance, the accuracy of storm surge predictions was improved by

combining LSTM and CNN model structures and studying a CNN-

LSTM hybrid model that showed less error in short-term forecasts

compared with those of individual CNN or LSTM models

(Wang et al., 2021). Wave elements were predicted in the South

and East China Seas using the ConvLSTM model for two-

dimensional wave forecasting (Zhou et al., 2021) and demonstrated

high prediction accuracy and efficiency. To predict tide levels at

multiple tide stations, GRU was combined with graph neural

networks (GNN) to create a graph convolutional recurrent neural
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network (Zhang et al., 2023), and this model forecasted future tide

levels at multiple stations with higher accuracy than those of five

other commonly used baseline models. A more efficient wave

forecasting model, the Double-stage ConvLSTM (D-ConvLSTM),

was proposed (Ouyang et al., 2023). This model outperformed

ConvLSTM in terms of short-term forecasting capabilities

compared to those of the ECMWF-WAM model, while saving

computational resources and time.

With the outstanding performance of transformer models based

on self-attention mechanisms across various fields of artificial

intelligence, increased attention has been recently focused on the

application of attention mechanisms (Vaswani et al., 2017). In AI,

attention mechanisms are a technology that allows models to focus

on important parts of information processing, akin to how humans

concentrate on critical information when reading or observing

(Itti et al., 1998; Corbetta and Shulman, 2002; Larochelle and

Hinton, 2010). The introduction of attention mechanisms

typically improves the model performance to some extent. A

squeeze-and-excitation networks(SENet) module was developed

(Hu et al., 2018), and it achieved good results across various

classification networks at that time. The convolutional block

attention module (CBAM), which does not consume excessive

computational resources, enhances the target classification and

detection performance in various models (Woo et al., 2018).

Owing to its ability to focus on more feature information while

conserving computational resources, this study integrates the

CBAM module for research purposes. In tasks involving time-

series prediction, CBAM enhances the model forecasting

performance by capturing the attention weights of input features

across channels and spatial points, enabling better identification of

anomalous events in input features. The CNN and LSTM models

exhibit certain limitations when predicting marine elements. For

example, CNN models capture local features within datasets (LeCun

et al., 1998), whereas LSTMmodels are suitable for capturing temporal

dependencies within a time series (Hochreiter and Schmidhuber,

1997). However, when these two models are individually applied,

they often fail to fully consider the comprehensive impact of the input

feature time and spatial characteristics. The ConvLSTM model

integrates the strengths of CNN and LSTM, demonstrating

advantages in time-series prediction tasks and better handling of

these tasks. Therefore, this study proposes a novel model that

integrates attention mechanisms with the ConvLSTM to better

predict changes in coastal water levels.

This study proposes a CBAM-ConvLSTM model for predicting

water levels, which integrates the advantages of attention

mechanisms, CNN, and LSTM to enhance prediction accuracy. A

case study was conducted using actual measurement data from

Zhuhai Station, China, and it was compared with four other models:

ANN, CNN, LSTM, and ConvLSTM. Experiments were conducted

to forecast the measured water levels 6, 12, 24, and 48 h in advance,

employing multiple evaluation metrics to assess the models. This

study provides new insights and methods for improving marine

water level prediction models, thereby contributing to better

safeguarding of human lives and property in coastal areas.

The remainder of this paper is organized as follows: Section 2

discusses the data and methodology used in this study; Section 3
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outlines the forecasting process and model structure; Section 4

compares the tidal and storm surge forecasting results of our model

with those of other baseline models; and Section 5 summarizes the

conclusions and limitations of this study.
2 Data and methods

2.1 Data

The water level data used in this study were collected from

hourly measurements at the Zhuhai tide station from 2016 to 2020.

These data reflect the variations in water levels under different

environmental conditions and provide essential foundational data

for establishing prediction models. Meteorological data were

sourced from the European Center for Medium-Range Weather

Forecasts (ECMWF) global atmospheric reanalysis product ERA5.

The selected ERA5 data included hourly records from 2016 to 2020

for the 10m u-component of wind, 10m v-component of wind, and

total precipitation at a spatial resolution of 0.25° (Hersbach et al.,

2023). This study exclusively employed the aforementioned data as

inputs for the models because these elements constitute

considerable factors contributing to nonlinear changes in water

levels. Moreover, when forecasting water levels, introducing

excessive inputs can lead to redundant data and hinder the ability

of the model to accurately capture patterns. Therefore, this study

avoided including redundant factors as much as possible. Figure 1

shows the location of Zhuhai Station.
2.2 Methods

2.2.1 Research problem
This study forecasted the water levels at the Zhuhai Station in

advance using neural network models based on historical water level

data from nearshore tidal gauge stations and weather information.

Models for advanced water level prediction were trained according to

the forecasting requirements. To construct the water level prediction

models, this study employed various neural network models,

including ANN, LSTM, CNN, ConvLSTM, and ConvLSTM with

fused attention mechanisms, these models were chosen for this study

because ANN, LSTM, and CNN are the classic deep learning model

architectures, which are widely used in various research fields and are

the more common baseline models used for comparison. ConvLSTM

is able to combine the advantages of these classic models, so these

neural network models are finally chosen for this study, to conduct

multi-step-ahead forecasts of water levels at Zhuhai Station and the

corresponding analytical research.
2.2.2 CBAM and ConvLSTM
The Convolutional Block Attention Module (CBAM) consists

of two attention modules: the Channel Attention Module and the

Spatial Attention Module, as illustrated in Figure 2.

Channel attention in CBAM utilizes global average pooling to

obtain global statistical information for each channel and employs
Frontiers in Marine Science 03
two fully connected layers to learn the channel weights. During the

propagation of the input features, the values in the channel

attention structure initially undergo global average pooling.

Subsequently, the pooled values are passed through a sigmoid

function to normalize the weights, which are then multiplied by

the corresponding channel values to acquire the global statistical

information for each channel. The spatial attention module in

CBAM uses max-pooling and average-pooling to extract detailed

features from each spatial position. Specifically, post-convolution,

which generates multiple channels, and spatial attention in CBAM

apply max-pooling and average-pooling operations to each channel

at every feature point. After obtaining the two matrices, they are

concatenated and processed through a convolutional layer and a

sigmoid function to learn the weights for each spatial position.

Finally, these weights are applied to each spatial position on the

feature map to produce features with enhanced spatial importance.

The utilization of these attention mechanisms can effectively

improve the performance of neural network models. This process

is represented by the following formula:

F0 = Mc(F)⊗ F (1)

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F)))

= s (W1(W0(F
c
avg)) +W1(W0(F

c
max)))

(2)

F00 = Ms(F
0)⊗ F0 (3)

Ms(F)  = s (f 7�7(½AvgPool(F);MaxPool(F)�))
       = s (f 7�7(½Fs

avg ; F
s
max�))

(4)

where F represents the input feature values; F' denotes the

feature values after passing through the channel attention module

Mc(F); F'' denotes the feature values after passing through the

spatial attention module Ms(F), ⊗ represents element-by-element

multiplication; W0 and W1 are the weights of the MLP, s denotes

the sigmoid function, 7×7 is the convolution operation using the

7×7 convolution kernel, AvgPool and MaxPool denote global

average pooling and global max pooling. During the

multiplication process, attention values are broadcasted

accordingly: channel attention values are broadcasted along the

spatial dimensions, and F'' is the final output.

ConvLSTM is a specialized type of recurrent neural network that

combines the characteristics of CNN and LSTM (Shi et al., 2015).

Initially, RNNs were used to handle time-series problems; however,

they encountered issues of vanishing and exploding gradients when

dealing with long sequential data (Bengio et al., 1994). LSTM, which

adds gate mechanisms to RNNs, partially alleviates these problems,

and is more suitable for processing long sequential tasks. ConvLSTM

units, building upon traditional LSTM units, replace point-wise

multiplication in gate mechanisms with convolutions, enabling the

simultaneous consideration of both the temporal and spatial features

of the data. In ConvLSTM, convolution operations are used not only

for mapping inputs to hidden states but also for computing gate

signals between hidden states and mapping hidden states to outputs.

This design enables ConvLSTM to capture local dependencies in
frontiersin.org
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spatiotemporal sequence data while retaining its ability to handle

long-term dependencies, such as LSTM. With the introduction of

convolution operations, ConvLSTM has become more efficient in

processing high-dimensional data, achieves weight sharing, reduces

the number of model parameters, and allows ConvLSTM units to

process different regions of data in parallel, thereby further enhancing

the computational efficiency. The ConvLSTM model itself combines

the advantages of these classical ANN, CNN and LSTM models, and

its forecasting performance is relatively high. Therefore, combining

the attention mechanism with the ConvLSTM model can get better

forecasting results than combining other baseline models.

ConvLSTM is widely used in various spatiotemporal prediction

tasks, such as weather forecasting, video prediction, and traffic flow

prediction. Typically, ConvLSTM uses two-dimensional image data as

input, but it has been shown that using one-dimensional data can yield

better prediction results than those of LSTM (Jalalifar et al., 2024).

Moreover, LSTM may exhibit degraded performance when dealing

with long input sequences constructed using sliding windows. In

contrast, ConvLSTM can handle one-dimensional time-series data by

dividing long sequences into subsequences for training. For instance,

given the input of hourly water-level data of LSTM over five days, it
Frontiers in Marine Science 04
learns the overall patterns for these five days. However, in the

ConvLSTM, the data can be restructured into segmented data for

each of the five days. This approach allows the model to not only learn

the overall patterns but also capture finer temporal patterns within

each day, thereby achieving better prediction performance. By

learning the patterns of data variation over time, the ConvLSTM

can extract features at various timescales, thus generating relatively

accurate predictions of future states.

it = s (Wxi*Xt +Whi*Ht−1 +Wci ∘Ct−1 + bi) (5)

ft = s (Wxf *Xt +Whf *Ht−1 +Wcf ∘Ct−1 + bf ) (6)

Ct = ft ∘Ct−1 + it ∘ tanh(Wxc*Xt +Whc*Ht−1 + bc) (7)

ot = s (Wxo*Xt +Who*Ht−1 +Wco ∘Ct + bo) (8)

Ht = ot ∘ tanh(Ct) (9)

where it represents the input gate, Ct is the memory gate, ft is

the forget gate, ot is the output gate, Ht is the final unit output, and ∘
FIGURE 2

CBAM structure.
FIGURE 1

Zhuhai station.
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is hadamard product. ConvLSTM shares a similar overall structure

with LSTM, featuring 3-gate structures. The difference is that the

convolution kernel in each gate * represents convolution.

In this study, the features outputted by the ConvLSTM units

were fed into the CBAM module to extract the attention weights

between each unit, followed by spatial attention weight calculations

on the input feature maps to obtain attention-enhanced feature

maps. By introducing the attention module, the ConvLSTM model

focuses more on learning the salient parts of the data, thereby

improving the prediction of actual changes in water levels. In water

level data, variations often resemble tidal changes; however, during

typhoon impacts, the changes in water level are substantially larger

than usual. Owing to the scarcity of data influenced by typhoons,

conventional neural network models tend to have larger forecasting

errors for this subset of water-level data. ConvLSTM has the

advantage of handling time-series data. The CBAM module

provides more parameters that can help the model notice

potential changes in water level characteristics, and the CBAM

module can notice the importance of the data between channels and

input sequences, compared with the general channel attention

module can learn more details to improve the performance of the

model. This study introduces the CBAM module on top of the

ConvLSTM to enhance the ability of the model not only to

accurately forecast tides but also to pay more attention to the law

of storm surges and the details of water level change and obtain a

neural network model with a better forecast effect.
2.2.3 Evaluation metrics
During testing, the following metrics were used to evaluate the

performances of the neural networks: Mean Absolute Error (MAE),

Pearson product-moment correlation coefficient (PCCs), and root-

mean-squared error (RMSE). These evaluation indicators are

commonly used indicators for deep learning applications in the

marine field, which can visualize the advantages and disadvantages

of the model results for subsequent analysis and research. The

formulas are expressed as follows:

MAE =
1
no

n
i=1jXi − Yij (10)

PCCs = on
i=1(Xi − �X)(Yi − �Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(Xi − �X)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Yi − �Y)2
q (11)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Xi − Yi)

2 ​

r
(12)

where n is the number of data points, Xi is the predicted value at

the i-th data point; and Yi is the true value at the i-th data point.

Smaller MAE and RMSE values indicate smaller errors between the

predicted and actual values, whereas larger PCCs indicate a higher

similarity between the predicted and actual curves. This study used

these evaluation metrics to assess the results of predicting water

levels at 6, 12, 24, and 48 h ahead for each model.
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3 Prediction models

3.1 Model forecasting process

In this study, the CBAM module was integrated into the

ConvLSTM model to obtain a fused attention mechanism for

water-level prediction. The input-output relationships and feature

propagation of the model are shown in Figure 3.

The training process can be divided into three major modules:

data preprocessing, model training, and model prediction. First, the

model was subjected to data preprocessing. Hourly time-series data

for wind speed and precipitation in terms of longitude and latitude

were averaged from nine grid points near the research station.

Values obtained through linear regression were used to fill missing

or abnormal values. The input data were screened to ensure quality

and reliability. Interpolation was performed to maintain data

integrity and continuity. Subsequently, the data were normalized

to ensure that each feature had a similar scale and distribution.

Normalization prevents input features of different magnitudes from

affecting the model training weights, thereby enhancing the

robustness and stability of the model. The normalization formula

is as follows:

Yi =
Xi − Xmin

Xmax − Xmin
(13)

where Yi represents the normalized data; Xi represents the data

before preprocessing, Xmax and Xmin represent the minimum and

maximum values of the data for each feature, respectively.

After data preprocessing, the processed data were divided into a

70% training set, 15% validation set, and 15% test set. The training

and validation data were inputted into the model for iterative

training. During training, the ConvLSTM units in the model

learned the temporal features of the data, followed by training

with the CBAM module to help the model focus on important

features within the input data. Subsequently, the final output was

obtained through the fully connected layers and compared with the

label data to compute the loss. After multiple training iterations, a

well-trained water-level forecasting model was obtained. The test

set was then fed into the trained water level forecasting model to

obtain the predicted water levels. Finally, the predicted water levels

were evaluated against the test labels using metrics, such as MAE,

RMSE, and PCCs for model assessment.
3.2 Model construction

To analyze and compare the forecasting results, this study

employed baseline models, such as ANN, CNN, LSTM, and

ConvLSTM, in addition to the CBAM-ConvLSTM model. ANN

is a computational model that simulates a network of neurons in the

human brain, processing information through weighted sums and

nonlinear activation functions that are widely used in pattern

recognition and decision-making (McCulloch and Pitts, 1943).

Convolutional neural network (CNN) is a type of neural network
frontiersin.org
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similar to ANN and is typically designed for processing image data.

CNNs have been extensively applied in image recognition and

classification by learning local features of images using

convolutional kernels. LSTM networks are extensions of RNNs

that incorporate gate mechanisms to address the vanishing and

exploding gradient problems of traditional RNNs when dealing

with long sequential data. They are particularly suitable for tasks

that require the retention of long-term dependencies, such as

natural language processing and time-series prediction. Therefore,

apart from ConvLSTM, these models were chosen as comparative

models in this study.

The parameters for each model are listed in Table 1. Owing to

the different characteristics of each model, this study

comprehensively evaluated their performances based on various

parameter configurations. After multiple experiments and in

consideration of previous relevant studies (El-Diasty et al., 2018),

the network architecture settings in Table 1 were finalized. The

ANN model part of Table 1 indicates that the ANN model in this

study has 2 hidden layers, with 528 and 64 neurons, respectively; the

CNN model part indicates that the model has 2 hidden layers, with

a convolutional kernel of 3*1 outputting 8 feature data, and a

convolutional kernel of 3*1 size outputting 16 feature data,

respectively; the LSTM model part indicates that the model has 3

layers of hidden layers, each hidden layer has 5 LSTM cells; the

ConvLSTMmodel part indicates that the model has 3 hidden layers,

each hidden layer has 5 ConvLSTM cells; the CBAM-ConvLSTM

model part indicates that the model has 2 hidden layers, each

hidden layer has 5 ConvLSTM cells, and 1 CBAM layer is added at

the output layer of the ConvLSTM layer. The ANN structure is

relatively simple with fewer parameters; therefore, a two-layer

neural network with a larger number of neurons was set, and the

number of training iterations was increased compared with those of

other models. The CNN extracts the local features of the input data

using convolutional kernels, effectively reducing the model

parameters. Given the short duration of water-level anomalies
Frontiers in Marine Science 06
during extreme weather events, this study employed smaller

convolutional kernels to better capture such local features. To

ensure computational efficiency, the model was limited to two

convolutional layers with 300 training epochs. The LSTM, which

is commonly used for long time-series data, achieves good

forecasting results with fewer parameters. To expedite the

computations, the LSTM units were kept relatively small without

considerable performance degradation. ConvLSTM excels at

learning features across various timescales in time-series data,

necessitating a large number of parameters. The parameter

structure in Table 1 was determined through experimentation,

effectively balancing the forecast accuracy and computational

speed. The inclusion of the CBAM module in the CBAM-

ConvLSTM did not substantially increase the computational

overhead. To better demonstrate the effectiveness of the CBAM

module, this study maintained the model hyperparameters of

CBAM-ConvLSTM, which were largely consistent with those of

ConvLSTM. Additionally, the network structure was optimized to

reduce the number of parameters that the model needed to learn

without compromising the performance.

In addition to the hyperparameters listed in Table 1, some

important parameter settings were consistent across the models. For

instance, all models utilized the Adam optimizer, ReLU activation

function, batch size of 256, and initial learning rate of 0.005 and

employed the mean squared error (MSE) as the loss function during

training. These settings were based on experimental findings and

helped balance the training speed and forecast accuracy to a

certain extent.

In addition to configuring the model structures and

hyperparameters, it is essential to reformat the input data to

satisfy the requirements of each model. Based on multiple

experiments and relevant studies (Nitsure et al., 2014), the model

inputs were determined as follows: ANN utilized the time series

data from the previous 1 h; CNN and LSTM used the time series

data from the previous 24 h; and ConvLSTM and CBAM-
FIGURE 3

Model prediction process.
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ConvLSTM utilized the time series data from the previous 120 h.

These inputs were used to predict water levels at intervals of 6, 12,

24, and 48 h. During the training of the ANN, the input-output data

pairs were offset according to the prediction step length. Short input

data in models, such as CNN and LSTM, may prevent the model

from learning underlying patterns within the forecast timescale,

whereas excessively long inputs can reduce training efficiency and

potentially degrade forecast accuracy compared with those of

relatively shorter inputs. In certain cases, excessively long inputs

may prevent the model from converging. Therefore, the choice of

using the previous 24 h of time-series data as input strikes a balance

between capturing sufficient temporal dependencies and

maintaining the training efficiency for the CNN, LSTM, and

similar models. For ConvLSTM and CBAM-ConvLSTM, which

can efficiently handle longer input sequences, the input choice was

aligned with the settings listed in Table 1.

Five prediction models were constructed for comparison.

Figure 4 illustrates the schematic diagrams of each network

structure used in this study. Specifically, the input data shapes for

the models are as follows: the input tensor for the ANN is shaped as

(None, 4); for the CNN and LSTM, it is shaped as a 3-dimensional

tensor (None, 24, 4), where the first dimension represents the

number of samples used in each training batch; the second

dimension represents the length of the time series used in

training; and the third dimension represents the number of

channels indicating the input factors. The input data shape for

CBAM-ConvLSTM and ConvLSTM is a 5-dimensional tensor,

where the dimensions denote the number of samples used in each
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training batch, length of the time series used in training, number of

channels, number of rows in the input data, and number of columns

in the input data.

In this study, we forecast the measured water level 6h, 12h, 24h

and 48h in advance respectively, and the output labeled data of the

model are the measured water level after 6h, 12h, 24h and 48h

respectively, and train the prediction model with different advance

prediction lengths by setting up different inputs and labeled datasets

respectively. All the models in this study were implemented using

Python, primarily based on the PyTorch framework. To ensure

reproducibility owing to the presence of randomness in the models,

fixed random seeds were set for each model to guarantee

reproducible results. After conducting multiple experiments,

suitable parameter structures were determined, and the weights of

each model were iteratively optimized.
4 Results and discussion

Table 2 shows the performance of each model in forecasting

water levels 6, 12, 24, and 48 h ahead.

Through a horizontal comparison of evaluation metrics among

various models, it was observed that the CBAM-ConvLSTM model

performed best across all multi-step-ahead forecasting and

evaluation indicators. The ANN struggled to forecast the water-

level trends in this experiment, exhibiting substantial overall errors.

Across various forecast horizons, the CBAM-ConvLSTM model

showed improvements compared to several baseline models.

Specifically, the model reduced the average RMSE of each forecast

horizon by approximately 21.2%, 19.2%, and 11.1% compared with

those of LSTM, CNN, and ConvLSTM, respectively. The average

MAE was reduced by approximately 23.2%, 20.6%, and 9.9%

compared with those of the LSTM, CNN, and ConvLSTM,

respectively. Overall, integrating the CBAM module shows the

potential for enhancing model forecasting performance.

The prediction error of each model increased with an increase

in the prediction step size, and CBAM-ConvLSTM exhibited the

best performance. The comparison of various indices in the table

demonstrates that the test set error of all models increases with an

increase in the advanced prediction step size; however, compared

with other baseline models, the CBAM-ConvLSTM model still has

some advantages. Even when forecasting water levels 48 h in

advance, the test set errors remained consistently low, indicating

practical applicability.

To better compare the forecasting performance of each model,

we analyzed the predictive capabilities of the CNN, LSTM,

ConvLSTM, and CBAM-ConvLSTM models on a test set by

plotting scatter diagrams. In Figure 5, the black line represents

the polynomial fit of the predicted versus the actual values in the test

set obtained using the least-squares method. The dashed black line

corresponds to the y=x line. As the data density decreases, the colors

of the scatter points in Figure 5 lighten, indicating that the data

density is calculated using Gaussian kernel density estimation.

A comparative analysis of the scatter distributions in Figure 5

reveals the superior performance of the CBAM-ConvLSTM model.

Specifically, the model exhibited lower MAE and RMSE values. The
TABLE 1 Parameter settings for each model.

Model parameter value

ANN Input data shape (None,4)

Number of neurons in
each layer

528,64

epoch 1000

CNN Input data shape (None,24,4)

Convolution kernel size
and number of
output channels

(3,1),8;
(3,1),16;

epoch 300

LSTM Input data shape (None,24,4)

LSTM Number of units 5,5,5

epoch 300

ConvLSTM Input data shape (None,5,4,24,1)

ConvLSTM Number
of units

5,5,5

epoch 300

CBAM - ConvLSTM Input data shape (None,5,4,24,1)

ConvLSTM Number
of units

5,5

epoch 300
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overall data distribution is more concentrated and closer to the

fitted line, with a smaller angle to the y=x line, indicating a closer

alignment between the predicted and actual values. Compared with

the other models, the CBAM-ConvLSTM model showed a more

uniform distribution of forecast results around the fitted line. This

characteristic became more pronounced with a longer prediction

step size, suggesting a more reasonable distribution of the predicted
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values. Moreover, fewer scatter points significantly deviated from

the fitted line compared to those in the other three models, further

demonstrating the ability of the CBAM-ConvLSTM model to

effectively forecast extreme events.

To visually assess the forecasting performance of each model,

the predicted results of each model were compared with the actual

water levels through visualization. Because of the large volume of
FIGURE 4

Architectures of the models used for prediction.
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data in the test set, which spans hourly data from April 3, 2020, to

December 27, 2020, directly visualizing the forecast results does not

easily reveal differences. Therefore, following the approach of Wang

et al. (2021), the test set data were segmented, and the MAE was

computed to obtain clearer results.

From Figure 6E, the performances of various models at different

prediction step sizes in the test set show that the models proposed in

this study generally outperform the other baseline models. CNN

and LSTM exhibited increasing errors with longer prediction step

sizes, whereas ConvLSTM and CBAM-ConvLSTM performed well,

with the errors remaining within acceptable ranges. The

distribution pattern of the MAE in the test set reveals larger

errors in the latter half, coinciding with periods of frequent

typhoons where station water levels are significantly influenced,

resulting in weaker regularities and slightly larger forecasting errors.

Comparing the latter half of the MAE values, the CBAM-enhanced

ConvLSTM model shows smaller errors, indicating better learning

of the hidden patterns in the data. Comparing the MAE

distributions of the four prediction step sizes in Figures 6A–D, it

is evident that, overall, the distributions are relatively uniform. In

the latter half of the segments, the MAE of the model is relatively

smaller compared to those of other models, particularly noticeable

in the ahead 6-h forecast scenario, where the fluctuations in MAE in

the test set are significantly reduced compared to those in other

models. This observation validates the effectiveness of the

proposed models.

Nearshore water levels affected by typhoons often undergo

drastic changes, typically resulting in storm surges. Accurately

predicting such nonlinear and intense changes in water level can

be challenging. This study used the Typhoon “Higos”, which passed

near Zhuhai Station, as an example to further evaluate the

forecasting capabilities of the models during typhoon events.

Tropical Storm No. 2007 “Higos” formed in the northeast South

China Sea on August 18, strengthened into a typhoon near the
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Guangdong coast at 20:00 on August 18, made landfall in Jinwan

District, Zhuhai at 06:00 on August 19, then moved northwestward,

weakened into a tropical depression after entering Guangxi, and

was stopped numbering by the Central Meteorological Observatory

at 23:00 on August 19.

Figures 7A–D show the forecasted and actual water level

changes at 6, 12, 24, and 48 h ahead. It is evident that as the

prediction step size increases, the forecast performance of all

models gradually decreases. However, overall, the CBAM-

ConvLSTM model performs relatively well. During typhoon

“Higos”, compared to CNN, LSTM, and ConvLSTM models, the

CBAM-ConvLSTM model reduces the average MAE by

approximately 15.5%, 19.2%, and 10.5%, respectively, at various

prediction steps. Specifically, compared to other top-performing

models, the CBAM-ConvLSTM model reduces MAE by

approximately 3.2 and 2.4 cm at 6 and 24h forecasting steps,

respectively, representing reductions of approximately 18% and

11% in forecast errors. As the prediction step size increases,

forecasting difficulty also increases accordingly, yet the CBAM-

ConvLSTM model maintains relatively low errors, demonstrating

the effectiveness of the attention module.

During August 19, the tidal stations were substantially affected

by typhoons, resulting in abnormally high-water levels. All models

underestimated the water-level rise caused by storm surges;

however, the potential for improved water-level forecasting

capability was evident in the CBAM-ConvLSTM model. The

CNN and LSTM models showed poor sensitivity to short-term

storm surges, underestimated their impact, and consistently

overestimated normal water levels post-storm surges. Compared

to CBAM-ConvLSTM, ConvLSTM exhibited less stability, slightly

lagging in forecasting some high tide water levels on August 19 at a

6 h forecasting step, and underestimating the water levels on August

19 and August 22 at 24 and 48 h forecasting steps compared to

other models. Across all prediction step sizes, CBAM-ConvLSTM
TABLE 2 Results of five models predicting multiple steps ahead on the test set.

Ahead step Index ANN CNN LSTM ConvLSTM CBAM
- ConvLSTM

6h PCCs 0.346 0.979 0.977 0.987 0.990

RMSE/cm 54.903 11.754 12.338 9.204 8.392

MAE/cm 43.775 8.958 9.371 6.625 6.223

12h PCCs 0.282 0.979 0.978 0.982 0.987

RMSE/cm 54.290 12.141 11.860 10.515 9.029

MAE/cm 43.950 9.239 9.046 7.680 6.519

24h PCCs 0.766 0.976 0.974 0.974 0.981

RMSE/cm 37.186 12.356 12.735 12.995 10.931

MAE/cm 30.734 9.094 9.513 9.358 8.028

48h PCCs 0.549 0.944 0.940 0.951 0.956

RMSE/cm 48.448 18.549 19.367 17.448 16.482

MAE/cm 39.948 14.262 15.100 13.291 12.735
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performed relatively well in forecasting abnormally high-water

levels from August 19 to August 20, closely matching the actual

water levels. This indicates that the CBAM-ConvLSTM model

effectively captures the impacts of typhoon events, demonstrating

its advantages in storm surge prediction tasks.

However, the CBAM-ConvLSTM model exhibited certain

limitations, with a noticeable decline in performance when

forecasting over an extended prediction step size. As demonstrated

in Figure 8, the CBAM-ConvLSTM model achieved the highest

accuracy in 6-h advance forecasts. However, as the prediction step
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size for advanced forecasts increased, the ability of the model to

predict anomalous water levels gradually diminished. At a 48-h

forecasting step, although the fit of the model is superior to that of

other models, it still tends to underestimate some extreme water

levels. The primary pattern the model has mainly learned is tidal

variation, and it struggles to further learn the nonlinear patterns

brought about by typhoons, which is also a current challenge in

extending the prediction step size. There are two possible reasons for

this finding. First, training data selection may not be sufficiently

comprehensive. Although this study used water level, wind, and
FIGURE 5

Scatter plots of water level forecasts 6, 24, and 48 h ahead using CNN, LSTM, ConvLSTM, and CBAM-ConvLSTM models.
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precipitation data as the training and validation data of the model,

these few factors and data from a single station may not fully reflect

the characteristics of coastal water level changes. The potential

patterns learned by the model are limited, making it difficult to

maintain the forecasting capabilities over longer prediction step sizes.

Second, there is an issue with the model and its structures. The

CBAM and ConvLSTM models used in this study have certain

advantages in handling such time-series data; however, with the

rapid development of various model algorithms, there may be models

and modules that are more suitable for this issue. Moreover, the

structure of the model in this study is a relatively lightweight

architecture determined after experimentation and may not be the

optimal solution. There is still room for improvement in the structure

of the model. However, the CBAM-ConvLSTM model proposed in

this study for predicting water levels remains a potential model for

water level forecasting.
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5 Conclusion

The primary focus of this study is a comparative analysis of the

CBAM-ConvLSTM model, which incorporates an attention

mechanism, with models such as an artificial neural network

(ANN), convolutional neural network (CNN), long short-term

memory (LSTM), and ConvLSTM, in the context of water level

forecasting at the Zhuhai station. The CBAM-ConvLSTM model,

through its convolutional block attention module (CBAM), can

focus on considerable features within the data, enhancing their

importance, and thus better identifying anomalous events in water-

level data compared to other models. Additionally, by integrating

the ConvLSTM model, it effectively learns the multiscale

characteristics of the data, leading to superior forecasting

outcomes. Furthermore, to achieve a model that consumes

minimal computational resources while maintaining relatively
FIGURE 6

Segmental MAE comparisons of CNN, LSTM, ConvLSTM, and CBAM-ConvLSTM models forecasting 6 (A), 12 (B), 24 (C), and 48 (D) h ahead on the
test set, and (E) segmental MAE comparisons of CBAM-ConvLSTM model forecasting 6, 12, 24, and 48 h ahead on the test set.
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high forecasting accuracy, all model structures and parameter

settings in this study were determined through multiple

experimental adjustments.

The CBAM-ConvLSTM model demonstrated superior

performance in the water-level prediction task at Zhuhai Station

compared with those of the other four baseline models used for
Frontiers in Marine Science 12
comparison. The model showed higher accuracy in short-term

forecasts than that in long-term forecasts and was capable of

effectively forecasting water levels 48 h in advance. On average,

the CBAM-ConvLSTM model improved the performance by

approximately 20% on the test set compared with those of the

CNN and LSTM models. When the CBAM module was
FIGURE 8

Forecasted and actual water levels by CBAM-ConvLSTM model at 6, 12, 24, and 48 h ahead during Typhoon “Higos”.
FIGURE 7

Forecasted and actual water levels by CNN, LSTM, ConvLSTM, and CBAM-ConvLSTM models at 6 (A), 12 (B), 24 (C), and 48 (D) h ahead during
Typhoon “Higos”.
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incorporated into the model, the performance on the test set

improved by approximately 10% compared to that of the

ConvLSTM model. During typhoon “Higos”, the model reduced

the mean absolute error (MAE) by approximately 3.2 and 2.4 cm for

the 6- and 24-h forecasts, respectively, which corresponds to a

reduction of approximately 18% and 11% in forecasting error.

Across the four prediction step sizes, the performance of the

model improved by approximately 10%, showing better

forecasting capabilities for storm surges compared to those of the

other baseline models, and thus holding a certain practical value.

The model used in this study is also applicable for forecasting at

other tidal stations, provided sufficient data are available. Nevertheless,

there are some areas where our study falls short:(1) The more

comprehensive and reliable set of factors affecting nearshore water

levels for forecasting. Because there is a certain interplay between the

water level variations at coastal stations and the various influencing

factors, combining various effective factors can reveal hidden features,

which can contribute to better forecasting outcomes. (2) Optimizing

model parameter structures to extend the prediction step size. The

parameter structure determined in this study may not be the best

solution; other structures may consume fewer computational

resources and yield better forecasting results.
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